
 

Page 1 of 23 

 

 1 

ASSESSING CLIMATE CHANGE IMPACTS ON THE STABILITY OF SMALL TIDAL 2 

INLETS: Part 2- DATA RICH ENVIRONMENTS 3 

 4 

 5 

 6 

 7 

TRANG MINH DUONG1,2, ROSHANKA RANASINGHE1,2,3*, MARCUS THATCHER4, SARITH 8 

MAHANAMA5,6, ZHENG BING WANG2, PUSHPA KUMARA DISSANAYAKE7, MARK HEMER8, ARJEN 9 

LUIJENDIJK2, JANAKA BAMUNAWALA1, DANO ROELVINK1,2, DIRKJAN WALSTRA2 10 

 11 

1. Department of Water Science and Engineering, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The 12 

Netherlands.  T.Duong@un-ihe.org (Ph: +31 643 733 463), R.Ranasinghe@un-ihe.org (Ph: +31 13 

646 843 096)  14 

2. Deltares, PO Box 177, 2600 MH Delft, The Netherlands.  15 

3. Water Engineering and Management, Faculty of Engineering Technology, University of 16 

Twente, PO Box 217, 7500 AE Enschede, The Netherlands 17 

4. CSIRO Oceans & Atmosphere, Private Bag 1, Aspendale VIC 3195,  Australia 18 

5. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, 19 

Maryland, USA 20 

6. Science Systems and Applications Inc, Lanham, Maryland, USA 21 

7. Environmental Physics group, Limnological Institute, University of Konstanz, 78464 Konstanz, 22 

Germany 23 

8. CSIRO Oceans & Atmosphere, GPO Box 1538, Hobart TAS 7001 Australia 24 

 25 

 26 

*corresponding author 27 

 28 

 29 

 30 

 31 

 32 

https://ntrs.nasa.gov/search.jsp?R=20170010426 2019-08-31T16:15:28+00:00Z

mailto:T.Duong@un-ihe.org
mailto:R.Ranasinghe@un-ihe.org


 

Page 2 of 23 

 

 33 

Abstract 34 

Climate change (CC) is likely to affect the thousands of bar-built or barrier estuaries (here referred 35 

to as Small tidal inlets - STIs) around the world. Any such CC impacts on the stability of STIs, 36 

which governs the dynamics of STIs as well as that of the inlet-adjacent coastline, can result in 37 

significant socio-economic consequences due to the heavy human utilisation of these systems and 38 

their surrounds. This article demonstrates the application of a process based snap-shot modelling 39 

approach, using the coastal morphodynamic model Delft3D, to 3 case study sites representing the 3 40 

main STI types; Permanently open, locationally stable inlets (Type 1), Permanently open, 41 

alongshore migrating inlets (Type 2) and Seasonally/Intermittently open, locationally stable inlets 42 

(Type 3). The 3 case study sites (Negombo lagoon – Type 1, Kalutara lagoon – Type 2, and Maha 43 

Oya river – Type 3) are all located along the southwest coast of Sri Lanka. 44 

 45 

After successful hydrodynamic and morphodynamic model validation at the 3 case study sites, CC 46 

impact assessment are undertaken for a high end greenhouse gas emission scenario. Future CC 47 

modified wave and riverflow conditions are derived from a regional scale application of spectral 48 

wave models (WaveWatch III and SWAN) and catchment scale applications of a hydrologic model 49 

(CLSM) respectively, both of which are forced with IPCC Global Climate Model output 50 

dynamically downscaled to ~ 50 km resolution over the study area with the stretched grid 51 

Conformal Cubic Atmospheric Model CCAM. Results show that while all 3 case study STIs will 52 

experience significant CC driven variations in their level of stability, none of them will change 53 

Type by the year 2100. Specifically, the level of stability of the Type 1 inlet will decrease from 54 

'Good' to 'Fair to poor' by 2100, while the level of (locational) stability of the Type 2 inlet will also 55 

decrease with a doubling of the annual migration distance. Conversely, the stability of the Type 3 56 

inlet will increase, with the time till inlet closure increasing by ~75%. The main contributor to the 57 

overall CC effect on the stability of all 3 STIs is CC driven variations in wave conditions and 58 

resulting changes in longshore sediment transport, not Sea level rise as commonly believed. 59 

 60 

1 Introduction 61 

 62 

Bar-built or barrier estuaries (here referred to as Small tidal inlets - STIs) are one of the 3 main 63 

types of inlet-estuary/lagoon systems identified by Bruun and Gerristen (1960). These systems are 64 

commonly found in wave dominated and microtidal environments; especially in tropical and sub-65 

tropical regions of the world (e.g. India, Sri Lanka, Vietnam, Florida (USA)), and South America 66 

(Brazil), South Africa, and SW/SE Australia). STIs generally comprise narrow (< 500 m wide) 67 
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inlet channels and shallow (average depth < 10 m) estuaries/lagoons with surface areas less than 50 68 

km2 (Duong et al., 2016).  69 

 70 

STIs can be classified into 3 main categories based on their general morphodynamic behaviour as: 71 

- Permanently open, locationally stable inlets (Type 1) 72 

- Permanently open, alongshore migrating inlets (Type 2) 73 

- Seasonally/Intermittently open, locationally stable inlets (Type 3). 74 

 75 

The Type of the STI reflects the stability of the inlet (i.e. open, close, migrating) governs the 76 

dynamics of the adjacent coastline and of the estuary/lagoon connected to the inlet, and is therefore 77 

a key diagnostic in assessing potential CC impacts on STIs. The term "inlet stability", in general 78 

usage, may refer to locational stability or channel cross-sectional stability. Locationally stable 79 

inlets are those that stay fixed in one location, but may stay open (i.e. locationally and cross-80 

sectionally stable inlets - Type 1) or close intermittently/seasonally (i.e. locationally stable but 81 

cross-sectionally unstable inlets - Type 3). Cross-sectionally stable inlets are those in which the 82 

inlet dimensions will remain mostly constant over time. However, cross-sectionally stable inlets 83 

may also migrate alongshore (i.e. cross-sectionally stable but locationally unstable - Type 2) 84 

(Duong et al., 2016). 85 

  86 

The stability of STIs (or the inlet condition) is governed by two main phenomena: the flow through 87 

the inlet (tidal prism and riverflow) and nearshore sediment transport in the vicinity of the inlet. 88 

Thus, inlet stability is a function of the balance between terrestrial (e.g. riverflow) and oceanic 89 

forcing (e.g. mean sea level, waves) (Ranasinghe et al., 2013). All of these system forcings are 90 

expected to be affected by climate change (CC) (Duong et al., 2016; Ranasinghe, 2016). IPCC 91 

(2013) projections indicate a global mean sea level rise (SLR) of 0.26 - 0.82 m by 2081 – 2100 92 

(relative to 1986 – 2005) with the most pessimistic RCP 8.5 scenario projecting an SLR of 0.52 m 93 

to 0.98 m, by 2081 – 2100. Where future riverflows are concerned, IPCC (2013) projections for the 94 

RCP 8.5 scenario indicate increases/decreases of up to 30% in annual runoff in many parts of the 95 

world by the end of the 21st century relative to the present. Hemer et al. (2013) presented wave 96 

projections which indicate that annual mean wave heights will decrease in around 25% of the 97 

global ocean, while an increase is projected for about 7.1% of the global ocean. Furthermore, 98 

Hemer et al. (2013) projected clockwise and anti-clockwise rotations in wave direction for about 99 

40% of the global ocean.  Thus, the stability of thousands of STIs around the world governed by 100 

these forcings are likely to be impacted by CC in the 21st century resulting in serious socio-101 

economic consequences owing to the wide range of economic activities (e.g. tourist hotels and 102 
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tourism associated recreational activities, inland fisheries, harbouring sea going fishing vessels) 103 

that STIs and surrounding areas often support.  104 

 105 

Recognising the difficulty associated with investigating CC impacts on the stability of STIs via a 106 

straightforward application (i.e. a single 100 year long morphodynamic simulation) of presently 107 

available process based coastal morphodynamic models (e.g. Delft3D, CMS, Mike21, Xbeach) (see 108 

for e.g. Nienhuis et al., 2016; Dodet et al., 2013;), Duong et al. (2016) proposed two different 109 

'snap-shot' process based modelling approaches to investigate this phenomenon in data poor and 110 

data rich environments (see Figures 10 - 12 in Duong et al. (2016)). The main differences between 111 

the two approaches are: (a) the data poor approach uses schematised system bathymetry while the 112 

data rich approach requires good measured system bathymetry for model initialisation; (b) the data 113 

poor approach uses freely available coarse resolution (~100 - 200 km) global scale projections of 114 

future CC modified system forcing (i.e. waves, riverflows and sea level rise) while the data rich 115 

approach requires site specific projections of future system forcing obtained from high resolution 116 

regional scale hydrologic and wave models forced with dynamically downscaled Global climate 117 

model (GCM) output; and (c) coastal impact models are only qualitatively validated in the data 118 

poor approach, while both quantitative and qualitative model validation are required in the data rich 119 

approach. 120 

 121 

Duong et al. (in press) demonstrates the application of the 'data poor' approach to 3 case study sites 122 

representative of the 3 main STI types. This article demonstrates the application of the 'data rich' 123 

approach at the same 3 case study sites to derive site-specific projections of CC impacts, and 124 

through a comparison of results obtained using the 'data rich' and 'data poor' approaches, suggests a 125 

basic guideline on when to use which approach. 126 

 127 

2 Study areas 128 

 129 

The 3 case study sites selected for this study are: Negombo lagoon (Type 1), Kalutara lagoon (Type 130 

2) and Maha Oya river (Type 3), all of which are located along the SW coast of Sri Lanka. For CC 131 

impact studies, a study area may be considered to be 'data rich' when wave, wind and riverflow data 132 

(ideally exceeding 10 years to encapsulate inter-annual variability); downscaled future CC 133 

modified wave and riverflow data, and bathymetries of the study area are available. All these data 134 

are available for the 3 case study sites.  135 

 136 

Located in the Indian Ocean Southeast of India (Figure 1), Sri Lanka experiences a tropical 137 

monsoon climate with 2 monsoon seasons: the Northeast (NE) monsoon (November – February) 138 
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and the Southwest (SW) monsoon (May – September). October to December is the wettest period 139 

with about one third of the total annual rainfall occurring during this time (Zubair and Chandimala, 140 

2006). The coastal environment of Sri Lanka is micro-tidal (mean tidal range ~ 0.5 m) wave 141 

dominated (average offshore significant wave height ~ 1.1 m). The SW coast of Sri Lanka, where 142 

the 3 case study sites are located, experiences the most energetic wave conditions during the SW 143 

monsoon with offshore significant wave heights of 1 - 2 m incident from the SW-W octant. Almost 144 

all the beaches around the country are sandy with grain diameters (D50) of 0.2-0.45 mm. Detailed 145 

descriptions of the 3 case study sites are provided in Duong et al. (in press) and are therefore not 146 

repeated here. For the sake of completeness however study area locations, case study sites and 147 

main system characteristics are shown in Figures 1, 2 and Table 1 respectively. The system 148 

characteristics listed in Table 1 were obtained from a range of sources including scientific articles, 149 

technical reports, post-graduate theses, field visits and local experts. Information on Negombo 150 

lagoon was mostly obtained from Chandramohan et al. (1990) and University of Moratuwa (2003); 151 

on Kalutara lagoon from Perera (1993) and GTZ (1994); and on Maha Oya from GTZ (1994). 152 

Fluvial sediment transport into the 3 systems is expected to be practically zero due to 153 

impoundments at upstream dams (personal communication, Sri Lanka Coast conservation 154 

department). 155 

 156 

Table 1. Key characteristics of the 3 case study STIs.  157 

STI 

System 
Inlet dimensions Estuary/Lagoon characteristics 

Coastal 

characteristics 

 
Width 

(m) 

Length 

(m) 

Depth 

(m) 

Basin 

Area 

(km2) 

Average 

Depth 

(m) 

Riverflow 

(Mm3/yr) 
D50 

(m) 

Longshore 

transport 

(Mm3/yr) 

Negombo 

Lagoon 
400 300 3 45 1 2762 250 0.02 

Kalutara 

Lagoon 
150 150 4.5 1.75 3 7500 250 0.5 

Maha 

Oya 

River 

100 70 3 0.2 3.5 1571 250 0.5 

 158 

3 Methodology 159 

 160 

As proposed by Duong et al. (2016) for data rich environments, a modified version of the ensemble 161 

modelling framework proposed by Ranasinghe (2016) (Figure 3) was adopted in this study. 162 

Ranasinghe’s (2016) modelling framework proposes the sequential application of GCM 163 

projections, Regional Climate Models (RCMs), Regional wave/hydrodynamic/catchment models, 164 
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local wave models, and coastal impact models to obtain a number of different projections of the 165 

coastal CC impact of interest.  166 

 167 

In Step 5 of the above framework (see Figure 3), it is necessary to use a coastal impact model that 168 

is appropriate for investigating the CC impact of interest. In this study, which focusses on CC 169 

impacts on the stability of STIs, the coastal area morphoynamic model Delft3D was extensively 170 

used (in 2DH mode). The Delft3D model is described in detail by Lesser et al. (2004) and hence 171 

only a very brief description is provided here. The basic model structure is shown in Figure 4. The 172 

model comprises a short wave driver (SWAN), a 2DH flow module, a sediment transport model 173 

(Van Rijn, 1993), and a bed level update scheme that communicate with each other during a 174 

simulation. To accelerate morphodynamic computations, Delft3D adopts the MORFAC approach 175 

(Roelvink, 2006; Ranasinghe et al., 2011) which takes into account that time scales associated with 176 

bed level changes are generally much greater than those associated with hydrodynamic forcing. 177 

The MORFAC approach essentially multiplies the bed levels computed after each hydrodynamic 178 

time step by a time varying or constant factor (MORFAC) which results in fast morphodynamic 179 

computations.  180 

 181 

CC impact assessment using Delft3D as the coastal impact model was done here following the 182 

‘snap-shot’ approach proposed by Duong et al. (2016) for data rich areas (see Figure 5). Here, 183 

Delft3D was first validated using measured hydrodynamic data (i.e. measured water level and 184 

velocities within the STI systems). Morphodynamic validation was achieved by performing 185 

‘present simulations –PS’ of Delft3D (up to one year long) forced with measured riverflows and 186 

wave conditions, the results of which were compared with observed/reported general inlet 187 

behavioural characteristics and annual longshore sediment transport rates. The target of model 188 

validations performed in this way was to gain confidence in the model's ability to simulate system 189 

morphodynamics by reproducing the contemporary morphodynamic behaviour of the system (e.g. 190 

closed/open, locationally stable/migrating). Note that the morphodynamic hindcasts obtained in the 191 

PS’s were only qualitatively validated in this study as repeated bathymetric data were unavailable 192 

for the case study sites. Unfortunately availability of repeated bathymetric data is a rare occurrence 193 

around the world and hence, in most situations the best that can be hoped for in CC impact studies 194 

of this nature is qualitative model validation as done here. 195 

 196 

The validated model was then forced with dynamically downscaled CC forcing (at the end of the 197 

21st century) to obtain projections of the system behavior that can be expected by 2100. Dynamic 198 

downscaling of GCM derived climate variables is necessary to derive appropriate model forcing for 199 

reliable local scale applications of coastal impact models because GCM outputs are generally 200 
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available at about  1° resolution, which is too coarse for direct application as forcing in local scale 201 

impact models. The CC forced snap-shot simulations were also undertaken for the same duration as 202 

the PS in each system (except for the intermittently closing Maha Oya river, where the simulations 203 

were continued till inlet closure occurred). In simulations incorporating sea level rise (SLR), the 204 

slow continuous raising of estuary/lagoon bed level due to the process of ‘basin infilling’ was taken 205 

into account by adjusting the initial bathymetry of the CC snap-shot simulations. Basin infilling is a 206 

process that occurs when SLR increases the estuary/lagoon (or basin) volume below mean water 207 

level (i.e. 'accommodation space'). Because the basin always strives to maintain a certain 208 

equilibrium volume (Stive et al., 1998; Ranasinghe et al., 2013), when this volume is increased due 209 

to SLR (or land subsidence) basin hypsometry will change, triggering sediment importation into the 210 

basin by wave and tide driven currents to raise the basin bed level. Equilibrium will be re-instated 211 

when a sand volume equal to the SLR induced accommodation space (SLR x surface area of basin) 212 

is imported into the basin. Stive et al. (1998), however, noted that in most situations there will be a 213 

lag between the rate of SLR and basin infilling due to the difference in time scales associated with 214 

hydrodynamic forcing and morphological response. Ranasinghe et al. (2013) showed that, for STIs, 215 

this lag has is about 0.5 over the 21st century (i.e. basin infill volume = 0.5 x SLR driven increase in 216 

accommodation space). In the CC snap-shot simulations involving SLR, the basin infill volume 217 

thus calculated was distributed in the lagoon area such that the shape of contemporary basin 218 

hypsometry curve was preserved (see Section 5.2).  Note that, as upstream dams are thought to 219 

completely block all fluvial sediment transport into the 3 case study systems, future fluvial 220 

sediment transport into these systems was also assumed to be insignificant. 221 

 222 

Throughout this article, the extended inlet behaviour classification scheme proposed by Duong et 223 

al. (in press) is used to discuss model results, and hence it is reproduced below in Table 2 for 224 

convenience. This classification scheme extends Bruun’s (1978) inlet stability classification 225 

scheme, which originally linked the ratio (r) between tidal prism (P) and annual longshore 226 

sediment transport (M) with inlet stability condition (e.g. good, fair, poor), by making an additional 227 

connection between those parameters and the 3 different STI Types mentioned in Section 1 (e.g. 228 

Permanently open, locationally stable inlets (Type 1); Permanently open, alongshore migrating 229 

inlets (Type 2); and Seasonally/Intermittently open, locationally stable inlets (Type 3)). 230 

 231 

 232 

 233 

 234 
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Table 2. Extended classification scheme for inlet Type and stability conditions (From Duong et al., 235 

in press). r = Bruun's inlet stability criterion, P = tidal prism (m3), M = annual longshore sediment 236 

transport volume (m3). 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

4 Implementation 248 

 249 

4.1 Dynamic downscaling 250 

 251 

As mentioned above, IPCC GCMs generally operate a grid resolution of about 1°. However, local 252 

scale (< 10 km) coastal CC impacts studies require model forcing data at much finer resolution 253 

(Ranasinghe, 2016). Therefore, as indicated in the modelling framework for coastal CC impact 254 

assessment shown in Figure 3, GCM outputs first have to be dynamically or statistically 255 

downscaled, usually to about 50 km spatial resolution, and subsequently the downscaled climate 256 

forcing needs to be used in regional/catchment scale coastal forcing models to obtain the high 257 

resolution forcing data that are suitable to use with the coastal impact model (e.g. Delft3D).  In this 258 

study, all downscaled climate variables were derived from the stretched grid model CCAM 259 

(Conformal Cubic Atmospheric Model). CCAM is a semi-implicit, semi-Lagrangian atmospheric 260 

climate model based on a conformal cubic grid (McGregor and Dix, 2008).  Although CCAM is a 261 

global atmospheric model, it allows a variable resolution grid which enables a finer grid resolution 262 

over the target area at the expense of a coarser resolution on the opposite side of the globe.  In this 263 

way, CCAM can be used for regional climate experiments without imposing lateral boundary 264 

conditions.  The variable resolution grid used to derive the downscaled climate variables over Sri 265 

Lanka for this study is shown in Figure 6. In this application CCAM employed 18 vertical levels 266 

(ranging from 40 m to 35 km. The grid used in the CCAM application for this study resulted in a 267 

resolution of about 50 km over Sri Lanka. The model was forced with Sea Surface Temperatures 268 

taken from two of the IPCC Global Climate Models (ECHAM and GFDL) which performed well 269 

in the target area. CCAM output including winds, surface temperature, atmospheric pressure, 270 

Inlet Type r =P/M Bruun Classification 

Type 1 

> 150 Good 

100 - 150 Fair 

50 - 100 Fair to Poor 

20 - 50 Poor 

Type 2 10 - 20 
Unstable 

(open and migrating) 

Type 2/3 5 - 10 
Unstable 

(migrating or intermittently closing)   

Type 3 0 - 5 
Unstable 

(intermittently closing) 
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radiation, ocean temperature etc. was thus obtained for the 1981-2000 (present) and 2081-2100 271 

time slices at a temporal resolution of 6 hours for the high end SRES A2 emissions scenario. 272 

 273 

4.2 Regional/catchment scale coastal forcing models 274 

 275 

4.2.1 Riverflow  276 

 277 

The CCAM output over Sri Lanka was used in a hydrologic model to derive riverflow estimates for 278 

the present (1981-2000) and future (2081-2100) (Mahanama and Zubair, 2011). The 6-hourly 279 

surface meteorological forcings used included shortwave radiation, longwave radiation, total 280 

precipitation, convective precipitation, surface pressure, air temperature, specific humidity, and 281 

wind for the two different periods. The hydrologic model used was the Catchment Land Surface 282 

Model (CLSM: Koster et al., 2000; Ducharne et al., 2000). CLSM is a macroscale hydrologic 283 

model that balances both surface water and energy at the Earth’s land surface. CLSM considers 284 

irregularly shaped, topographically delineated, hydrologic catchments as the fundamental element 285 

on the land surface for computing land surface processes and has been successfully implemented in 286 

Sri Lanka using bias corrected reanalysis meteorological forcings (Mahanama et al., 2008). For this 287 

study, CLSM was forced in offline mode using CCAM downscaled surface meteorological forcings 288 

to generate riverflows into the 3 case study lagoons.  289 

 290 

Available gridded precipitation data were used for bias correcting the downscaled ECHAM 291 

and GFDL precipitation hindcasts for the present time slice, which were then used in CLSM 292 

to simulate riverflows. Monthly riverflows from 22 gauge stations across Sri Lanka for the 293 

period 1979-1993 were used for validating CLSM for the hindcast period 1981-2000. As the 294 

ECHAM and GFDL projections for the 3 case study lagoons were very similar, only GFDL 295 

projections were used to construct the annual cycle of riverflows to use as future forcing in 296 

the Coastal impact model, Delft3D. Here Delft3D was used with a morphological acceleration 297 

factor (MORFAC, Roelvink (2006)) of 13 to ensure the representation of the spring-neap 298 

cycle in the CC impact assessments (see Section 5.1 below), and therefore, 13-day averaged 299 

riverflows were used to construct the annual riverflow time series (Figure 7) to force the 300 

process based snap-shot model simulations described below in Section 5. In general, by 2100, 301 

riverflow is projected to decrease by about 41% and 32% at Negombo lagoon and Kalutara 302 

lagoon respectively, while an increase of about 72% is projected for Maha Oya river. 303 

 304 

 305 

 306 
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4.2.2 Waves 307 

 308 

CCAM winds were used to force two nested spectral wave models for 1981-2000 (hindcast) and 309 

2081-2100 (future) time slices (Bamunawala, 2013). Due to the similarity between CCAM 310 

downscaled ECHAM and GFDL winds in the study area, only CCAM-GFDL winds were used in 311 

this analysis. For the generation of far field waves, WAVEWATCH III (Tolman, 2009) was used 312 

(Latitudes N22°-S7°; Longitudes E65°-E95°). SWAN (Booij et al., 1999) was used in the near field 313 

from about 50 m depth to the coastline extending from Galle to Puttalam along the SW coast (see 314 

Figure 1 for locations). Modelled wave conditions for the hindcast period were compared against 315 

available deep water wave data off Colombo. The bias correction required to ensure a good 316 

model/data comparison was then determined and applied to the future projected wave conditions 317 

with the commonly adopted assumption that present-day biases between model and reality will 318 

remain the same in future (Charles et al., 2012; Wang et al., 2015). Bias corrected SWAN model 319 

output at 20 m depth offshore of the 3 case study sites were computed to use as boundary forcing 320 

in the process based snap-shot model simulations described in Section 5 below. As the 321 

process based model Delft3D was used with a MORFAC of 13 to ensure the representation of 322 

the spring-neap cycle in the CC impact assessments (see Section 5.1 below), 13-day averaged 323 

wave heights and directions were used to construct the annual time series of wave conditions 324 

for model forcing (Figure 8).  325 

 326 

4.3 Coastal Impact modelling 327 

 328 

The process based coastal area model Delft3D was used for all morphodynamic simulations 329 

undertaken in this study. For each of the 3 case study applications in this study, identical wave and 330 

flow domains which were large enough to avoid any boundary problems affecting the area of 331 

interest were created (Figure 9).  High resolution (~10 m x10 m) grid cells were used in the 332 

(approximate) surf zone and inlet channel for all 3 study areas to ensure that key physical processes 333 

in the vicinity of the inlet entrance and channel were accurately resolved by the model. Good 334 

measured bathymetries were available for all 3 case study sites. 335 

 336 

5 Results 337 

 338 

5.1 Model validation 339 

Hydrodynamic validation 340 

First the models were validated against measured water level and velocity data in the study areas. 341 

Water level and velocity measurements for Negombo lagoon were available from a previous study. 342 
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Two pressure sensors were deployed in Kalutara lagoon and Maha Oya river to collect water level 343 

data for this study specifically. Unfortunately however, due to problems with data acquisition, 344 

water level data at Kalutara lagoon was only captured intermittently, while the sensor deployed at 345 

Maha Oya river was lost. Therefore, hydrodynamic model validation could only be undertaken for 346 

Negombo and Kalutara lagoons. The hydrodynamic validation simulations were undertaken with 347 

only tidal and riverflow forcing as wave effects are minimal within the 3 case study STIs. Tidal 348 

forcing constituted of astronomical tides composed of the 6 main tidal constituents in the area (M2, 349 

S2, N2, K2, K1, O1), and riverflow was introduced as a time series based on available 350 

measurements. Morphological updating was turned off in these short-term simulations.  351 

 352 
Table 3. Data used for hydrodynamic model validation at the case study sites. 353 

STI System Data type Data period 

Negombo lagoon Water level 01 - 30 Oct 2002 

 Velocity 02 - 03 Oct 2002 

Kalutara lagoon Water level 13 - 26 Feb 2013 

 354 
Table 4. Model/data comparison statistics for the hydrodynamic validation simulations. 355 

Negombo lagoon 

Water level S1 S3 

 
RMSE R2 RMSE R2 

 
0.0325 0.9747 0.0312 0.8355 

Current CM1 CM2 

Current velocity 0.1027 0.7319 0.0598 0.4397 

Current direction 10.17 0.6890 14.59 0.5628 

Kalutara lagoon 

 
Feb 15 Feb 20 Feb 23 

Water level K1 K1 K1 

 
RMSE R2 RMSE R2 RMSE R2 

 
0.1155 0.8668 0.0776 0.9872 0.0538 0.8747 

 356 

The validation periods and data are shown in Table 3. The measurement locations are shown in 357 

Figure 10. Based on the careful analysis of model results from over 50 sensitivity tests of the 3 case 358 

study sites and with the benefit of decades of in-house experience using Delft3D (and its 359 

predecessors) for coastal applications, a Chezy friction coefficient of 65 m1/2/s, eddy viscosity of 1 360 

m2/s and hydrodynamic time step of 6 seconds were adopted in all 3 hydrodynamic validation 361 

simulations. Model performance was assessed by computing the Root mean square error (RMSE) 362 

and the correlation coefficient (R2) between corresponding modelled and measured water levels 363 

and velocities at the study sites. The model/data comparisons for Negombo and Kalutara lagoons 364 

(Figures 11 and 12, and Table 4) are reasonably good, providing sufficient confidence in the 365 

models to proceed with the morphodynamic simulations. 366 
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 367 

Morphodynamic validation 368 

For morphodynamic validation, a Delft3D simulation was undertaken with the above described 369 

contemporary forcing (i.e. 'Present simulation' - PS) at each system. In each case, astronomical 370 

tidal forcing was introduced at the offshore boundary using the tidal constituents presented by 371 

Wijeratne (2002). Riverflow/wave forcing was applied using the 13-day averaged time series 372 

shown in Figures 7 and 8. A hydrodynamic spin up time of 24 hrs was used to ensure that model 373 

velocities were stable before sediment transport and morphological computations commenced. 374 

Model parameter values adopted, following Duong et al. (in press), are shown in Table 5.  375 

 376 
Table 5. Model parameter settings. 377 

Parameter Adopted value 

Hydrodynamic time step (s) 6 

Hydrodynamic spin-up time (hrs) 24 

Horizontal eddy viscosity (m2/s) 1 

Horizontal eddy diffusivity (m2/s) 0.1 

Chezy bottom friction coefficient (m1/2/s) 65 

Directional wave spreading (deg) 10 (considering predominant swell conditions) 

Sediment transport formula Van Rijn (1993) 

Dry cell erosion factor 0.5 

Wave-flow coupling interval (hrs) 1 

MORFAC 13 

Output interval for whole domain (hrs) 1 

Output interval for pre-defined observation 

points and cross-sections (s) 
600 

 378 

A MORFAC of 13 was used in these simulations in order to capture two spring-neap cycles (29 379 

days) of hydrodynamic forcing within a 1 year morphodynamic simulation.  On top of the 380 

MORFAC = 13 simulations, a series of simulations were executed with MORFAC values of 1 and 381 

5 to investigate the sensitivity of model predictions to the adopted MORFAC value (with 382 

appropriate changes in wave-flow coupling time and forcing time series). The MORFAC induced 383 

differences between model predictions in these sensitivity tests were very small, indicating that a 384 

MORFAC of 13 was appropriate for the simulations undertaken herein. Morphodynamic validation 385 

simulations for the permanently open Negombo lagoon (Type 1) and Kalutara lagoon (Type 2) 386 

were undertaken for one year, capturing the annual cycle of riverflow (high/low seasons) and wave 387 

conditions (monsoon/non-monsoon periods) while the simulation for the intermittently closing 388 

Maha Oya river (Type 3) was continued only until inlet closure occurred.     389 

 390 
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The main objective of the PS’s is to gain confidence in the model's ability to correctly reproduce 391 

the general morphodynamic behaviour (e.g. close/open, and locationally stable/migrating) of the 392 

system under contemporary forcing. Therefore, as a first qualitative validation, the general 393 

behaviour of the systems as seen in available aerial/satellite images of the study areas was 394 

compared with that simulated by the models. In a more quantitative sense, modelled annual 395 

longshore sediment transport rates (M) and Bruun inlet stability criteria (r = P/M) were compared 396 

against reported values and observed inlet Type respectively.  For these latter comparisons, 397 

quantitative information regarding the modelled annual longshore sediment transport rates (M), 398 

tidal prism (P) need to be extracted from model output. It should also be noted that the substantial 399 

riverflows in the 3 STIs investigated here enhance the ebb tidal prism (due to the tide effect only), 400 

which is one of the two phenomena that govern inlet stability. For convenience, therefore, the flow 401 

volume through the inlet during ebb due to the combined effect of tides and riverflow is referred to 402 

hereon simply as tidal prism (P). Summary descriptions of the methods used to extract P and M 403 

from the model output are provided below. 404 

 405 

To calculate M, the ambient annual longshore sediment transport (LST) volume needs to be 406 

computed. The ambient LST rate computed by the model is affected by the tidal inlet as well as the 407 

lateral model boundaries. This quantity therefore needs to be assessed sufficiently updrift of the 408 

inlet as well as sufficiently far from the updrift model boundary. Up to 10 cross-sections were pre-409 

defined either side of the inlet (ensuring that the cross-sections spanned the full surf zone at all 410 

times) to determine the optimal alongshore location of the cross-shore section over which M should 411 

be calculated. The optimal cross-shore section for ambient LST estimates was identified via a 412 

careful comparison of the modelled LST rates across all the pre-defined cross-shore sections. The 413 

annual ambient LST across the optimal cross-shore section (M) was then computed from the model 414 

output. 415 

 416 

To compute P, cross-sections were pre-defined at every grid line (~10 m spacing) across the inlet 417 

channel and discharges were extracted and stored every 10 minutes (user defined output interval). 418 

P was then estimated at each cross-section by calculating the difference between consecutive 419 

cumulative discharge peaks and troughs.  Cumulative discharge is calculated by the model at every 420 

hydrodynamic time step (in this case, 6 s) and output at the pre-defined output interval (10 421 

minutes). The tidal prism thus calculated did not vary along the inlet and therefore the P calculated 422 

at the middle of the inlet channel was used in subsequent calculations.  423 

 424 
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The M and P values calculated as described above were combined to compute the Bruun criterion 425 

for inlet stability r = P/M. This produced a time series of r which was time averaged to derive the 426 

annual representative r indicating the general stability condition of the inlet.  427 

 428 

Modelled bed level changes and satellite images for the 3 systems are shown in Figures 13-15. 429 

Modelled and measured (reported) annual LST (or M) in the vicinity of the 3 inlets, the computed r 430 

values, associated Bruun inlet stability classification and inlet Type following Table 2 are shown in 431 

Table 6. 432 

 433 

Table 6. Modelled and measured (reported) annual LST (M) in the vicinity of the 3 case study 434 

inlets (S and N indicate southward and northward transports respectively), the model derived Bruun 435 

criterion r, the corresponding Bruun stability classification, and inlet Type following Table 2. 436 

STI system 
Reported M 

(m3/yr) 

Modelled M 

(m3/yr) 

r = 

P/M 

Bruun stability 

classification 

Inlet 

Type 

Negombo 

Lagoon 
20,000 S 42,000 S 221 Good 1 

Kalutara 

Lagoon 
500,000 S 562,000 S 11 Unstable 2 

Maha Oya 

River 
500,000 N 450,000 N 1 Unstable 3 

 437 

Satellite images of Negombo lagoon show the locationally and cross-sectionally highly stable 438 

nature of this inlet (Figure 13, top) which the model reproduces correctly (Figure 13, bottom). The 439 

modelled annual longshore sediment transport in the vicinity of the inlet is small (42,000 m3) in 440 

agreement with reported values (Table 6). The model derived Bruun criterion (r) value is 221 (> 441 

150), which also indicates a very stable inlet following Table 2. 442 

 443 

The Kalutara lagoon inlet has historically migrated about 2 km southward in 3-4 years, with an 444 

annual migration of ~500 m (Figure 14a, top). When the migrating inlet reaches the southern end of 445 

the barrier between the lagoon and the ocean (beyond which it is physically impossible for the inlet 446 

to migrate), a new, more hydraulically efficient inlet has traditionally been naturally or artificially 447 

created at the northern end of the lagoon, starting off a new migration cycle (Figure 14a, top). The 448 

locationally unstable and cross-sectionally stable inlet behaviour seen in the satellite images is 449 

correctly reproduced by the validation simulation (Figure 14a, bottom). The modelled annual 450 

longshore sediment transport of 562,000 m3 to the south and the migration rate of about 600 m/yr 451 

to the south (Figure 14b), are both in agreement with reported values (Table 6 and Perera, 1993). 452 

The model derived Bruun criterion (r) value is 11 (< 20), which indicates an unstable inlet 453 

following Table 2. This r value of 11 for the alongshore migrating but permanently open Kalutara 454 
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inlet implies that the Bruun criteria definition of an 'unstable inlet' when  r < 20 applies to 455 

locational stability and not to cross-sectional stability. This is consistent with the results of the data 456 

poor approach for Type 2 STIs presented in Duong et al. (in press). 457 

 458 

The validation simulation for Maha Oya inlet reproduces the locationally stable and cross-459 

sectionally unstable inlet behaviour seen in satellite images of this system (Figure 15a). The 460 

modelled inlet closure occurs 45 days into the simulation. The time evolution of the modelled inlet 461 

cross-sectional area shown in Figure15b further illustrates the complete closure of the inlet after 45 462 

days.  The modelled annual longshore sediment transport of 450,000 m3 to the North is in 463 

agreement with reported values (Table 6). The Bruun criterion (r) value calculated using model 464 

derived P and M values for Maha Oya inlet is 1 (< 20), which correctly indicates an unstable inlet 465 

following Table 2. However, consistent with the results of the data poor approach for Type 3 STIs 466 

presented in Duong et al. (in press), this very low r value of 1 implies that an r value much lower 467 

than Bruun's threshold for unstable conditions (r = 20) may be necessary for an inlet to be cross-468 

sectionally unstable.  469 

 470 

In summary, the above results show that the model is able to reproduce contemporary observed 471 

behaviour of the 3 case study STIs providing sufficient confidence in the model to proceed with CC 472 

impact assessments. 473 

 474 

5.2 CC impact assessment 475 

 476 

For each STI system, the validated model was then implemented via snap-shot simulations to 477 

investigate future CC impacts on the system. These simulations were also undertaken for the same 478 

duration as the validation simulations, or, in the case of Maha Oya river, until inlet closure 479 

occurred. For each STI, CC modified riverflow and wave forcing were implemented using the 480 

projected forcing shown in Figures 7 and 8. A worst case SLR of 1m (by 2100 relative to the 481 

present) was applied at all 3 systems. The tidal forcing of all CC impact simulations were the same 482 

as that used in the corresponding validation simulations. 483 

 484 

Due to the spatially non-uniform bathymetries of the systems, SLR driven basin infilling was 485 

implemented differently compared to the simple spatially uniform raising of the lagoon/inlet bed 486 

level method used in the flat-bed schematized models employed in Duong et al. (in press). Here, 487 

the bed levels of the initial measured bathymetry were changed to accommodate the basin infill 488 

volume (calculated as total infill volume = 0.5 x SLR x Ab, where Ab = surface area of lagoon, or 489 

basin; Ranasinghe et al. (2013)) such that the shapes of the present and future basin hypsometry 490 
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curves were more or less the same. Basin hypsometry is the relationship between the basin depth 491 

(hb) (measured from surface to the bottom, elevation = 0 at surface) and the basin area (Ab) 492 

(measured from bottom to surface, with area = 0 at the bottom) (Boon and Byrne, 1981). 493 

Essentially, the shape of the basin hypsometry curve reflects the channel-shoal structure of a basin, 494 

which can be reasonably assumed to remain more or less unchanged as long as natural and/or 495 

human induced disturbances to the morphological equilibrium of the system are not too large. For 496 

example, Wang et al. (2002) have shown that the hypsometry of the Western Scheldt estuary (The 497 

Netherlands) follow the same relatively simple algebraic relation through time despite the 498 

morphological developments driven by relative SLR as well as human interferences.  499 

 500 

To estimate the bed level changes required to represent basin infilling in this way, first it is 501 

assumed that at all grid points: 502 

ℎ𝑏,𝑓 = (ℎ𝑏,𝑝 +  𝑆𝐿𝑅) − ∆ℎ        (1) 503 

where h is assumed to follow the general depth transfer function given by,  504 

∆ℎ = 𝑎′(ℎ𝑏,𝑝 + 𝑆𝐿𝑅)         (2) 505 

where a' is a coefficient, of which the optimal value is found via iteration. Subscripts 'p' and 'f' 506 

represent present and future respectively. 507 

 508 

As an example, the year 2100 basin hypsometry curve calculated for Kalutara lagoon using the 509 

above approach is shown in Figure 16, together with the contemporary hypsometry curve.  510 

 511 

Negombo Lagoon 512 

The modelled future morphological changes over one year for the Type 1 Negombo lagoon are 513 

shown in Figure 17. For easy comparison, the validation simulation results for this STI shown in 514 

Figure 13 are also reproduced in Figure 17 (top panels). Model results show that this STI will 515 

remain a locationally and cross-sectionally stable inlet by 2100. The r value however decreases to 516 

75, from its present value of 221. This is due to the future increase in southward M resulting from 517 

the CC driven clockwise rotation of waves (see Figure 8). According to Bruun's inlet stability 518 

classification (Table 2), this implies that the level of stability of the inlet will decrease from 'good' 519 

to 'fair to poor'.  520 

 521 

Kalutara lagoon 522 

The modelled future morphological changes over one year for the Type 2 Kalutara lagoon are 523 

shown in Figure 18, together with corresponding validation simulation results. Model results show 524 

that Kalutara lagoon will remain a permanently open, alongshore migrating Type 2 STI by year 525 
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2100. However the migration distance doubles to ~1200 m, while the r value decreases to 6 from 526 

its present value of 11. These changes can be directly attributed to the future increase in southward 527 

M due the CC driven clockwise rotation of waves (see Figure 8). 528 

 529 

Maha Oya river 530 

The modelled future morphological changes for the Type 3 Maha Oya river are shown in Figure 531 

19, together with corresponding validation simulation results. Model results show that this STI will 532 

remain an intermittently open, locationally stable Type 3 STI by year 2100. However the time until 533 

inlet closure increases by about 75% from its modelled present value of 45 days to 78 days, while 534 

the r value slightly increases to 5 from its present value of 1. These changes in system behaviour 535 

are due to the combined effect of the future increase in annual riverflow (see Figure 7) and the 536 

smaller northward M resulting from the CC driven clockwise rotation of waves (see Figure 8). 537 

 538 

Table 7. Comparison of year 2100 projections obtained from the data poor and data rich 539 

approaches for the 3 case study sites. Note: The comparable data poor approach simulations from 540 

Duong et al. (in press) are: C11 for Negombo lagoon, C11 for Kalutara lagoon and C14 for Maha 541 

Oya river. 542 

STI system 

 

Present inlet 

Type 

Changes in 

system forcing by 

2100 

Projected inlet  

Type and behaviour by 2100 

Data Poor 

approach 

Data Rich 

approach 

Negombo lagoon Type 1 SLR,M+,P- Type 1 Type 1 

Kalutara lagoon Type 2 SLR,M+,P- 
Type 2, ~ 100% 

more migration 

Type 2, ~ 100% 

more migration 

Maha Oya river Type 3 SLR,M-,P+ 
Type 3, open  

~150% longer  

Type 3, open ~75% 

longer 

 543 

Comparison of future projections of inlet Type and changes in main behavioural characteristics 544 

obtained from the data poor and data rich approaches (Table 7) shows very good agreement for 545 

each of the 3 STIs. This provides a type of validation for the low-cost data poor approach, 546 

indicating that the approach may be used with confidence even in data rich environments to obtain 547 

qualitative insights at low cost. It is however, noteworthy that the time to closure of the Type 3 548 

system shows a significant difference (~100% difference) between the two approaches. 549 

Furthermore, the data rich approach also provides detailed and site specific information on where 550 

future erosion/accretion may be expected in and around STIs, which is essential for the 551 

development of informed and effective local scale CC adaptation strategies in STI environs.  552 

 553 

 554 

 555 
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5.3 Relative contributions of CC driven variations in system forcing to inlet stability 556 

  557 

For each case study site, four additional simulations where CC forcing was sequentially removed 558 

(Simulations R2-R5; R1 being the above discussed 'all inclusive' CC impact simulation) were 559 

undertaken to investigate the relative contribution of the different CC forcings to future inlet 560 

stability. The CC forcings implemented in each simulation are shown in Table 8. Note that when 561 

CC modified future forcing is not used in a certain simulation, the present day values are still used 562 

for that forcing type in the year 2100 snap-shot simulation (i.e. representing a scenario where there 563 

is no CC driven variation in the future forcing). For example, in R2, the present day riverflow 564 

shown in Figure 7 was used (i.e. no CC driven variation in riverflow is imposed in R2). Also, basin 565 

infilling was not included in simulations that excluded SLR (i.e. R5). When SLR is implemented 566 

(Simulations R1-R4), it was specified as 1m. This set of simulations can be used to determine the 567 

effect of CC driven changes in each of the system forcings on future STI behaviour. For example, 568 

the difference between R2 and R1 would be indicative of the isolated effect CC driven changes in 569 

annual riverflow would have on STI behaviour, while differences between R5 and R1 would 570 

provide insights on the effect of SLR. 571 

 572 

Table 8. Forcing conditions implemented in the different CC forcing simulations. Subscript 'f' 573 

indicates future conditions. 574 

 
SLR  HSf ,f Rf  

R1 x x x 

R2 x x 
 

R3 x 
 

x 

R4 x 
  

R5 
 

x x 

 575 

The main results from this set of simulations are summarised in Table 9. The results of the 576 

validation simulation (R1) are also shown for easy comparison. 577 

 578 

The results in Table 9 indicate that the presence or absence of CC driven changes in any one 579 

system forcing is not capable of changing the Type of any of the 3 case study STIs.  580 

 581 

For Negombo lagoon, the results indicate that CC driven changes in wave conditions (in this case 582 

with an associated increase in M) have the largest impact on inlet stability, accounting for almost 583 

70% of overall CC modified r value of 75 (by comparing r for R1, R3 and R4). Comparison of 584 

results for R1, R2 and R5 indicates that CC driven variations in riverflow and SLR both appear to 585 
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have smaller but similar contributions to the overall CC effect on inlet stability (~10% 586 

contribution).  587 

 588 

Table 9. Model predicted year 2100 STI types and inlet behavioural characteristics in response to 589 

different CC forcings. 590 

 
Negombo 

lagoon 
Kalutara lagoon Maha Oya river 

Simulation r Type r 
Migration 

distance(m) 
Type r 

Time till 

closure(days) 
Type 

R1 75 Type 1 6 1210 Type 2 5 78 Type 3 

R2 82 Type 1 7 1183 Type 2 4 72 Type 3 

R3 128 Type 1 7 914 Type 2 1 65 Type 3 

R4 142 Type 1 9 851 Type 2 1 65 Type 3 

R5 83 Type 1 6 1067 Type 2 4 72 Type 3 

 591 

For Kalutara lagoon, the variations among r values computed for the 5 simulations are insignificant 592 

and stay within the 5 < r < 10 range. Nevertheless, the variations in migration distance indicate that 593 

the phenomenon which contributes most to the 1210 m of migration due to combined CC forcing 594 

(R1) is CC driven variations in wave conditions (R3, 25% contribution to the overall migration 595 

distance). 596 

 597 

At Maha Oya, while both the r value and time to closure for all simulations vary very little, the 598 

biggest drops in both diagnostics are attributable to CC driven variations in wave conditions (by 599 

comparing R1, R3 and R4).  600 

 601 

The above results show that, at all 3 case study sites, the CC effect that dominates future changes in 602 

STI behaviour is CC driven variations in wave conditions, and not SLR as is commonly thought. 603 

This is consistent with the conclusions derived from the application of the ‘data poor’ modelling 604 

approach by Duong et al. (in press). 605 

 606 

6 Conclusions 607 

 608 

A snap-shot simulation approach using the process based coastal area morphodynamic model 609 

Delft3D has been applied to assess CC impacts on the stability of Small Tidal Inlets (STIs). The 610 

modelling approach was applied to three case study sites representing the main types of STIs: 611 

locationally and cross-sectionally stable inlets (Type 1, Negombo lagoon, Sri Lanka - permanently 612 

open, fixed in location); cross-sectionally stable, locationally unstable inlets (Type 2, Kalutara 613 

lagoon, Sri Lanka - permanently open, alongshore migrating); and locationally stable, cross-614 
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sectionally unstable inlets (Type 3, Maha Oya river, Sri Lanka - intermittently open, fixed in 615 

location). Future CC modified wave and riverflow conditions were derived from a regional scale 616 

application of spectral wave models (WaveWatch III and SWAN) and catchment scale applications 617 

of a hydrologic model (CLSM) respectively, both of which were forced with IPCC GCM output 618 

dynamically downscaled to ~ 50 km resolution over the study area with the stretched grid 619 

Conformal Cubic Atmospheric Model CCAM. 620 

 621 

The coastal impact model used in this study, Delft3D, was successfully validated for contemporary 622 

conditions using short-term hydrodyamic measurements and the general morphological behaviour 623 

observed in satellite images of the study sites. Subsequent CC impact simulations undertaken with 624 

the validated models forced by projected SLR, waves and riverflows for the end of the 21st century 625 

indicate the following: 626 

 627 

 None of the 3 case study STIs will change Type by the year 2100. 628 

 By the end of the 21st century, the level of stability of the Negombo lagoon, as indicated by 629 

the Bruun criterion r, will decrease from 'Good' to 'Fair to poor'. The level of (locational) 630 

stability of the Kalutara lagoon, as indicated by the doubling of the annual migration 631 

distance, will also decrease. At Maha Oya river, the time till inlet closure will increase by 632 

about 75%, indicating an increase in the level of stability of this inlet. 633 

 CC driven variations in wave conditions, and resulting changes in the annual longshore 634 

sediment transport, is the main contributor to the overall CC effect on the stability of all 3 635 

STIs. SLR and CC driven variations in riverflows play only a rather secondary role. 636 

 637 

Results obtained herein by applying the 'data rich' approach to the 3 case study sites are in good 638 

agreement with those obtained for similar trends in CC driven variations in forcing using the  'data 639 

poor' approach presented in the companion article (Duong et al., in press), providing more 640 

confidence in the robustness of the low-cost 'data poor' approach. However, the 'data rich' approach 641 

provides more detailed and reliable site specific information on likely future morphological 642 

changes in and around STIs which is essential for effective on-the-ground coastal zone 643 

management/planning. Therefore, as a basic guideline, it is suggested that the 'data poor' approach 644 

be applied when only qualitative insights into how CC might affect the stability of STIs are 645 

required, and the 'data rich' approach be applied when quantitative information is required for the 646 

development of informed and effective site specific CC adaptation strategies, especially at Type 2 647 

and Type 3 STIs at which significant future behavioural changes could occur. 648 

 649 



 

Page 21 of 23 

 

Acknowledgments:  650 

TMD was supported by the UNESCO-IHE and DGIS (Dutch foreign ministry) cooperation 651 

program UPARF. RR is supported by the AXA Research fund and the Deltares Harbour, Coastal 652 

and Offshore engineering Research Programme 'Bouwen aan de Kust'. 653 

 654 

References 655 

Bamunawala, R.M.J., 2013.  Impact of climate change on the wave climate of Sri Lanka. MPhil 656 

Thesis, University of Moratuwa, Sri Lanka. 55p.     657 

Boon, J.D., Byrne, R.J., 1981. On basin hypsometry and the morphodynamic response of coastal 658 

inlet sytems. Marine Geology, 40, 27-48. 659 

Booij, N., Ris, R.C., Holthuijsen L.H., 1999. A third generation wave model for coastal regions. 660 

Part 1: model description and validation. Journal of Geophysical Research 104 (C4), 7649–661 

7666. 662 

Bruun, P., Gerritsen, F., 1960. Stability of coastal inlets. North-Holland Publishing Co., 663 

Amsterdam, 123pp. 664 

Chandramohan, P., Nayak, B.U., 1990. Longshore - transport model for South Indian and Sri 665 

Lankan coasts. Journal of Waterway, Port, Coastal, and Ocean Engineering, 116, 408-424. 666 

Charles, E., Idier, D., Delecluse, P., Deque, M., Le Cozannet, G., 2012. Climate change impact on 667 

waves in the Bay of Biscay. Ocean Dynamics, 62, 831-848. 668 

Ducharne, A., Koster, R. D., Suarez, M.J.,Stieglitz, M., Kumar, P., 2000.  A catchment-based 669 

approach to modeling land surface processes in a GCM, Part 2, Parameter estimation and 670 

model demonstration. Journal of Geophysical Research, 105, 24823-24838. 671 

Dodet, G., Bertin, X., Bruneau, N., Fortunato, A.B., Nahon, A., Roland, A. 2013. Wave-current 672 

interactions in a wave-dominated tidal inlet, Journal of Geophysical Research (Oceans), 118, 673 

1587–1605 674 

Duong, T.M., Ranasinghe, R., Walstra, D. J. R., Roelvink, D., 2016. Assessing climate change 675 

impacts on the stability of small tidal inlet systems: Why and How? Earth Science Reviews, 676 

154, 369-380. 677 

Duong, T.M., Ranasinghe, R.,Luijendijk, A., Waltsra, D.J.R., Roelvink, D., (in press). Assessing 678 

climate change impacts on the stability of small tidal inlets - Part 1: Data poor environments. 679 

Marine Geology (accepted 23. 05. 2017). 680 

GTZ., 1994. Longhsore sediment transport study for the South West coast of Sri Lanka. Project 681 

Report. 25p. 682 

Hemer, M., Fan., Y., Mori, N., Semedo, A., Wang, X.L., 2013. Projected changes in wave climate 683 
from a multi-model ensemble. Nature Climate Change, 3, 471-476. 684 

IPCC, 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. 685 

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental 686 

Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. 687 



 

Page 22 of 23 

 

Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University 688 

Press, Cambridge, United Kingdom and New York, NY, USA. 689 

Koster, R.D., Suarez, M.J., Ducharne, A.,Stieglitz, M., Kumar, P., 2000. A catchment-based 690 

approach to modeling land surface processes in a GCM, Part 1, Model Structure. Journal of 691 

Geophysical Research, 105, 24809-24822. 692 

Lesser, G., Roelvink, J.A., Van Kester, J.A.T.M., Stelling, G.S., 2004. Development and validation 693 

of a three-dimensional morphological model. Coastal Engineering 51, 883–915. 694 

Mahanama, S.P.P., Koster, R.D., Reichle, R.H., Zubair, L., 2008. The Role of Soil Moisture 695 

Initialization in Sub-seasonal and Seasonal Streamflow Prediction - A Case Study in Sri 696 

Lanka. Advances in Water Resources, 31, 1333-1343. 697 

Mahanama, S.P.P., Zubair, L., 2011. Production of streamflow estimates for the Climate Change 698 

Impacts on Seasonally and Intermittently Open Tidal Inlets (CC-SIOTI) Project. FECT 699 

Technical Report 2011-01: Foundation for Environment, Climate and Technology, Digana 700 

Village, October, 2011. 20p. 701 

McGregor, J., Dix, M., 2008. An updated description of the conformal cubic atmospheric model.  702 

In: High resolution Simulation of the Atmosphere and Ocean (Eds. Hamilton, K., Ohfuchi, 703 

W.) Springer, pp. 51-76. 704 

Nienhuis, J. H., Ashton, A.D., Nardin, W., Fagherazzi, S., Giosan, L. 2016. Alongshore sediment 705 

bypassing as a control on river mouth morphodynamics, Journal of Geophysical Research 706 

(Earth Surface), 121, 664–683. 707 

Perera, J.A.S.C., 1993. Stabilization of the Kaluganga river mouth in Sri Lanka. M.Sc Thesis 708 

Report. International Institute for Infrastructural Hydraulic and Environmental Engineering, 709 

Delft, The Netherlands, 97p.  710 

Ranasinghe, R., 2016. Assessing climate change impacts on open sandy coasts: A review. Earth 711 

Science Reviews 160, 320-332. 712 

Ranasinghe, R., Duong, T.M., Uhlenbrook, S., Roelvink, D., Stive, M., 2013. Climate change 713 

impact assessment for inlet-interrupted coastlines. Nature Climate Change, 3, 83-87, 714 

DOI.10.1038/NCLIMATE1664. 715 

Ranasinghe, R., Swinkels, C., Luijendijk, A., Roelvink, D., Bosboom, J., Stive, M., Walstra, D., 716 

2011. Morphodynamic upscaling with the MORFAC approach: Dependencies and 717 

sensitivities. Coastal Engineering, 58, 806-811. 718 

Ranasinghe, R., Stive, M., 2009. Rising Seas and Retreating Coastlines. Climatic Change 97, 465-719 

468. 720 

Roelvink, J.A., 2006. Coastal morphodynamic evolution techniques. Coastal Engineering, 53, 277–721 

287. 722 

Tolman, H., 2009. User manual and system documentation of WAVEWATCH III™ version 3.14. 723 

NOAA / NWS / NCEP / MMAB Technical Note 276, 194 pp + Appendices. (URL 724 

http://polar.ncep.noaa.gov/waves/wavewatch/). 725 

University of Moratuwa., 2003. Engineering study on the feasibility of dredging the Negombo 726 

Lagoon to improve water quality. Final Report. Part II: Technical & Enviromental 727 

Feasibility. 728 

http://gmao.gsfc.nasa.gov/GMAO_personnel/Reichle_Rolf/jrnl_page.php?num=22
http://gmao.gsfc.nasa.gov/GMAO_personnel/Reichle_Rolf/jrnl_page.php?num=22
http://gmao.gsfc.nasa.gov/GMAO_personnel/Reichle_Rolf/jrnl_page.php?num=22
http://polar.ncep.noaa.gov/waves/wavewatch/


 

Page 23 of 23 

 

Wang, L., Ranasinghe, R., Maskey, S., van Gelder, P.H.A.J.M., Vrijling, J.K., 2015. Comparison 729 

of empirical statistical methods for downscaling daily climate projections from CMIP5 730 

GCMs: a case study of the Huai River Basin, China. International Journal of Climatology, 731 

DOI 10.1002/joc.4334. 732 

Wang, Z.B., Jeuken, M.C.J.L, Gerritsen, H., De Vriend, H.J., Kornman, B.A., 2002. Morphology 733 

and asymmetry of the vertical tide in the Westerschelde estuary. Continental Shelf Research, 734 

22, 2599-2609. 735 

Wijeratne, E.M.S. 2002. Sea level measurements and coastal ocean modelling in Sri Lanka. 736 

Proceedings of the 1st scientific session of the National Aquatic Resources Research and 737 

Development Agency, Sri Lanka. 18p. 738 

Zubair, L., Chandimala, J., 2006. Epochal changes in ENSO – streamflow relationships in Sri 739 

Lanka. Journal of Hydrometeorology, 7(6), 1237-1246. 740 

 741 


