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Key Points 16 

 Profile-average RMSE of simulated soil temperature versus in situ observations is 17 

reduced by using corrected local forcing and land cover 18 

 Subsurface heat transport is mostly realistic; when not; it is improved via treatment of 19 

soil organic carbon-related thermal properties 20 

 Mean bias and RMSE of climatological ALT between simulations and observations are 21 

significantly reduced with updated model version 22 

  23 
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Abstract 24 

Besides soil hydrology and snow processes, the NASA Catchment Land Surface Model (CLSM) 25 

simulates soil temperature in six layers from the surface down to 13m depth.  In this study, to 26 

examine CLSM’s treatment of subsurface thermodynamics, a baseline simulation produced 27 

subsurface temperatures for 1980-2014 across Alaska at 9-km resolution. The results were 28 

evaluated using in situ observations from permafrost sites across Alaska.  The baseline 29 

simulation was found to capture the broad features of inter- and intra-annual variations in soil 30 

temperature.  Additional model experiments revealed that: (i) the representativeness of local 31 

meteorological forcing limits the model’s ability to accurately reproduce soil temperature, and 32 

(ii) vegetation heterogeneity has a profound influence on subsurface thermodynamics via 33 

impacts on the snow physics and energy exchange at surface. Specifically, the profile-average 34 

RMSE for soil temperature was reduced from 2.96⁰C to 2.10⁰C at one site and from 2.38⁰C to 35 

2.25⁰C at another by using local forcing and land cover, respectively. Moreover, accounting for 36 

the influence of soil organic carbon on the soil thermal properties in CLSM leads to further 37 

improvements in profile-average soil temperature RMSE, with reductions of 16% to 56% across 38 

the different study sites. The mean bias of climatological ALT is reduced by 36% to 89%, and 39 

the RMSE is reduced by 11% to 47%. Finally, results reveal that at some sites it may be essential 40 

to include a purely organic soil layer to obtain, in conjunction with vegetation and snow effects, 41 

a realistic “buffer zone” between the atmospheric forcing and soil thermal processes.  42 

  43 
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1. Introduction 44 

Permafrost dynamics play a vital role in the water, energy and carbon cycles. Climate variability 45 

predominately controls the general patterns of permafrost occurrence and evolution at regional to 46 

global scales. At the local scale, many factors, including complex topography, soil type, 47 

vegetation and snow cover also strongly affect the thermal state of the subsurface. In situ 48 

permafrost measurement networks that provide near-surface and borehole temperature 49 

observations are critical for monitoring local permafrost conditions at the point scale [e.g., 50 

Hinkel and Nelson [2003], Molders and Romanovsky [2006], Osterkamp and Romanovsky 51 

[1999], Romanovsky and Osterkamp [1995, 1997], Romanovsky et al.[2010], Shiklomanov et 52 

al.[2010]]. However, in situ data are still too sparse in space and in time to allow their extensive 53 

use for monitoring permafrost at the regional scale, particularly in areas with a harsh 54 

environment and climate, such as Alaska.  55 

 56 

Remote sensing techniques offer an alternative approach to monitoring the extent and 57 

distribution of permafrost at the regional scale.  Specifically, remote sensing can detect (i) the 58 

surface expression of underground permafrost dynamics [Farquharson et al., 2016; Jones et al., 59 

2011; Panda et al., 2010], (ii) the freeze/thaw state based on microwave dielectric properties 60 

[Frolking et al., 1999; Kim et al., 2011; Kimball et al., 2004; Kimball et al., 2001; Rautiainen et 61 

al., 2014; Zhao et al., 2011] and (iii) the active layer thickness (ALT) based on measurements of 62 

surface subsidence [Liu et al., 2012; Liu et al., 2010].  The obvious drawback of remote sensing 63 

techniques, however, is that they cannot directly detect permafrost in the deep subsurface.  64 

 65 
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Other approaches for monitoring permafrost and/or the ALT include empirical, equilibrium and 66 

numerical modeling methods, as categorized in Riseborough et al. [2008]. Empirical methods 67 

estimate permafrost response to climate and environmental factors (e.g. soil properties, soil 68 

wetness, vegetation, etc.), such as geographically weighted regression methods [Mishra and 69 

Riley, 2014] and spatial analytic techniques based on the Stefan solution [Nelson et al., 1997; 70 

Shiklomanov and Nelson, 2002; Zhang et al., 2005], and usually require site-specific information 71 

to develop regression relationships. Equilibrium methods translate air temperature data into 72 

estimates of ground temperature and ALT [Romanovsky and Osterkamp, 1995; Sazonova and 73 

Romanovsky, 2003] and are typically suitable only for systems with limited complexity [Jafarov 74 

et al., 2012].   75 

 76 

Numerical modeling, in contrast, is not subject to the above limitations and can be an effective 77 

method to describe permafrost dynamics at regional to global scales with the unique advantage 78 

of being able to forecast the permafrost response to and feedback on climate change  [Jafarov et 79 

al., 2012]. However, numerical modeling requires realistic process parameterizations and 80 

accurate data to characterize the local topography, soil characteristics, land surface cover, and 81 

micro-climate [Duguay et al., 2005]. With recent advances in the development of the necessary 82 

databases and improved model physics, numerical models, including Earth system models, have 83 

become increasingly useful for estimating permafrost [Jafarov et al., 2012; Riseborough et al., 84 

2008]. For instance, numerical modeling studies have shown permafrost degradation in Alaska 85 

[Jafarov et al., 2012; Lawrence and Slater, 2005]. However, more work is needed to quantify the 86 

skill of Earth system models to estimate permafrost conditions. Recent efforts to improve 87 

permafrost modeling have addressed using a deeper soil column [Alexeev et al., 2007; Lawrence 88 
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et al., 2008], incorporating a surface organic layer [Nicolsky et al., 2007], and accounting for the 89 

impact of soil organic carbon on the thermal and hydrologic properties of the soil [Lawrence and 90 

Slater, 2008].   In addition, models would benefit from an improved representation of the sub-91 

grid variability of land surface properties such as vegetation properties and soil characteristics 92 

[Riseborough et al., 2008].  93 

 94 

In this paper, we systematically assess and improve the ability of a global land surface model 95 

(namely, the NASA Catchment Land Surface Model, or CLSM) to represent permafrost 96 

conditions in Alaska, extending through a more focused analysis the earlier and more limited 97 

evaluation of CLSM’s permafrost performance included in Stieglitz et al. [2001].  Specifically, 98 

this work aims to (i) assess the performance of soil temperature profile estimates (and thus 99 

permafrost conditions) simulated by CLSM in Alaska, (ii) investigate the uncertainty associated 100 

with the meteorological forcing, land cover, and soil thermal parameter inputs, and (iii) improve 101 

the skill of CLSM for simulating permafrost dynamics. 102 

 103 

2. Theoretical Background and Model Configuration 104 

Permafrost is modeled here using CLSM [Ducharne et al., 2000; Koster et al., 2000], the land 105 

model component of the NASA Goddard Earth Observing System (GEOS-5) coupled Earth 106 

system model.  Here, CLSM is used in an off-line (land-only) configuration. The CLSM 107 

subsurface heat transfer module uses six soil layers, each with its own prognostic heat content.  108 

For the land cover classes considered in this discussion, these six subsurface layers lie below a 109 

negligibly thin surface (skin) layer from which surface radiative and turbulent fluxes are 110 
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computed. (As described by Koster et al. [2000], this surface layer in fact features three 111 

horizontally distinct temperatures tied to horizontally-varying hydrological regime.)  The soil 112 

thickness for each subsurface layer increases with depth; the relevant depths are 0~0.1m, 113 

0.1~0.3m, 0.3~0.7m, 0.7~1.4m, 1.4~3m, and 3~13m from top to bottom, respectively.  Snow 114 

acts as a buffer that modulates the heat and water exchange between the overlying air and the 115 

underlying land surface and is simulated using a three-layer snow model that tracks the evolution 116 

of snow mass, snow depth, and snow heat content [Stieglitz et al., 2001].   117 

 118 

In the following, we outline the theoretical background of the soil heat transfer module in CLSM 119 

(section 2.1) and the current parameterization for soil thermal conductivity (section 2.2).   120 

Thereafter, we describe changes to the model parameterization that are designed to improve the 121 

simulation of permafrost (section 2.3).  Finally, we discuss the model domain and ancillary 122 

forcing data (section 2.4). 123 

  124 

2.1 Heat Transfer 125 

Heat transfer in the subsurface is governed by the one-dimensional heat diffusion equation (Eq. 126 

1): 127 

 𝐶
𝜕𝑇(𝑧, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑧
(𝜆

𝜕𝑇(𝑧, 𝑡)

𝜕𝑧
) (Eq. 1) 

where C is the volumetric heat capacity (Jm
−3

K
−1

), which is equal to the sum of the specific heat 128 

capacities of the soil constituents (water, ice, soil minerals, organic matter, and air) multiplied by 129 

their respective volumetric fractions.  The soil temperature at depth z and time t is denoted as 130 
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T(z, t) (K), and 𝜆 is the soil thermal conductivity (Wm
−1

K
−1

), which also varies with depth and 131 

time.  Using a finite-difference method, the heat diffusion equation (Eq. 1) can be discretized and 132 

approximately solved using 133 

 𝐻(𝑙, 𝑡 + 1)= 𝐻(𝑙, 𝑡) +(𝐹 (𝑙 + 1) - 𝐹(𝑙))∆t (Eq. 2) 

where 𝐻(𝑙, 𝑡)  represents the heat content associated with soil layer 𝑙  (J m
−2

), with a zero 134 

reference value corresponding to a layer holding liquid water at exactly 0°C (so that “negative” 135 

heat contents imply the presence of ice and, potentially, subfreezing temperatures).  136 

 137 

𝐻(𝑙, 𝑡) is related to the temperature T(l,t) and the fraction of ice in the layer, fice(l,t), through 138 

consideration of the heat capacity, C, and the assumed amount of water, W, in the soil that can 139 

freeze or melt.  The ice fraction is computed first: 140 

fice(l,t) = 0.  if   𝐻(𝑙, 𝑡)/(𝐿𝑠𝑊)  > 0. 141 

fice(l,t) = 1.  if   𝐻(𝑙, 𝑡)/(𝐿𝑠𝑊)   < -1.  (Eq. 3) 142 

fice(l,t) = - 𝐻(𝑙, 𝑡)/(𝐿𝑠𝑊)   otherwise. 143 

𝐿𝑠 here represents the latent heat of fusion.  With the ice fraction known, we can compute T(l,t), 144 

expressed here in degrees Celsius: 145 

   T(l,t) =  𝐻(𝑙, 𝑡) / C   if fice(l,t) = 0 146 

   T(l,t) = (𝐻(𝑙, 𝑡) + 𝐿𝑠𝑊) / C  if fice(l,t) = 1  (Eq. 4) 147 

   T(l,t) = 0    otherwise.   148 

 149 
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The heat flux 𝐹(𝑙) due to heat diffusion along the temperature gradient between layer 𝑙-1 and 𝑙  150 

(Wm
−2

), for use in (1), is expressed as 151 

 𝐹(𝑙) = 𝐾
∆𝑇

∆𝑧
= 𝐾 

𝑇(𝑙,𝑡) −𝑇(𝑙−1,t)

zc(𝑙)−zc(𝑙−1) 
 (Eq. 5) 

where 𝐾 =
[𝑧𝑏(𝑙)−𝑧𝑐(𝑙−1)]𝜆(𝑙−1)+[𝑧𝑐(𝑙)−𝑧𝑏(𝑙)]𝜆(𝑙)

zc(𝑙)−zc(𝑙−1) 
 is the depth-weighted thermal conductivity 152 

(Wm
−1

K
−1

) between layers l and l-1, zb(𝑙) represents the depth at the top of layer 𝑙, and zc(𝑙) is 153 

the depth at the center of layer 𝑙.  154 

 155 

Eq. 2 is solved using an explicit approach, that is, the soil temperatures at the current time step 156 

are determined from the heat contents (the model’s prognostic variables) at the previous time 157 

step using (Eq. 3) and (Eq. 4) above.  The heat flux at the uppermost soil boundary is equal to the 158 

ground heat flux, which is obtained by solving the surface energy-balance equation. A no-heat-159 

flux boundary condition is applied at the lowest boundary (i.e., at ~13m depth). The key model 160 

parameters impacting the soil heat transfer is the thermal conductivity, which is further described 161 

in the next section.  162 

 163 

2.2 Baseline Soil Thermal Conductivity Parameterizations 164 

The soil thermal conductivity parameterization in CLSM is based on Johansen [1977] and 165 

Farouki [1981]. Specifically, the thermal conductivity 𝜆 of unsaturated soil is a weighted average 166 

of the saturated and dry thermal conductivities: 167 
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 𝜆 = 𝐾𝑒𝜆𝑠𝑎𝑡 + (1 − 𝐾𝑒)𝜆𝑑𝑟𝑦 (Eq. 6) 

where 𝐾𝑒 is the Kersten number, which is related to the degree of saturation of the soil layer 168 

[Johansen, 1977].  In CLSM, the soil water model component is only loosely coupled with the 169 

soil heat transfer component.  The baseline CLSM version uses a constant saturation for the 170 

calculation of the thermal conductivity under unsaturated conditions, assuming that the soil water 171 

is always at 50% of saturation regardless of the modeled soil water conditions; that is, 𝐾𝑒 = 0.5.  172 

Below the water table, fully saturated conditions are assumed.  For the layer that contains the 173 

water table, the Kersten number is computed as Ke = (∆z1*0.5+∆z2)/(∆z1+ ∆z2), where ∆z1 and 174 

∆z2 are the partial layer thicknesses above and below the water table, respectively.  In general, 175 

the computation of 𝐾𝑒 is inconsistent with the modeled soil moisture conditions. 176 

  177 

The thermal conductivity for dry soil, 𝜆𝑑𝑟𝑦, has the form 178 

 𝜆𝑑𝑟𝑦 = 0.039 × 𝑛−2.2 (Eq. 7) 

where 𝑛 is the porosity, which is assumed to be 0.45 in the baseline CLSM version for the 179 

calculation of 𝜆𝑑𝑟𝑦. Thus, 𝜆𝑑𝑟𝑦 = 0.226 Wm
−1

K
−1

 regardless of soil type.  (Note that CLSM uses 180 

soil texture-dependent porosity values [De Lannoy et al., 2014] for modeling soil moisture 181 

dynamics.)  Finally, the thermal conductivity of saturated soil, 𝜆𝑠𝑎𝑡, is computed as 182 

 𝜆𝑠𝑎𝑡 = 𝜆𝑠
(1−𝑛)𝜆𝑖

(𝑛−𝑤𝑢)𝜆𝑤
𝑤𝑢 (Eq. 8) 
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where 𝜆𝑤, 𝜆𝑖 and 𝜆𝑠  are the thermal conductivities for liquid water (0.57 Wm
−1

K
−1

), ice (2.2 183 

Wm
−1

K
−1

), and soil solids (3 Wm
−1

K
−1

 in CLSM), respectively.  The fractional volume of liquid 184 

water, 𝑤𝑢, is calculated as wu=n*(1.-fice), where fice is the ice fraction.  185 

 186 

2.3 Model Improvements 187 

While the essential physical processes for soil heat transfer are considered in the baseline CLSM 188 

(section 2.2), three underlying assumptions potentially impair the model’s ability to accurately 189 

simulate permafrost dynamics.  The first assumption is the use of a constant soil water saturation 190 

of 0.5 for the calculation of the thermal conductivity under unsaturated conditions, which 191 

neglects the impact of soil water dynamics on the thermal processes. 𝜆𝑑𝑟𝑦 and 𝜆𝑠  The second is 192 

the use of a constant soil water saturation of 0.5 for the calculation of the heat capacity, C.  The 193 

third is the use of constant thermal conductivity values for 𝜆𝑑𝑟𝑦 and 𝜆𝑠 regardless of soil mineral 194 

type and organic carbon content.  Each of these issues was addressed in turn in the development 195 

of an improved treatment of subsurface heat transport.   196 

 197 

To address the first issue, we modified CLSM to use the dynamically-varying modeled soil 198 

moisture estimates in the calculation of the thermal conductivity (Eq. 6).  As a result, the updated 199 

CLSM now allows for more efficient heat transport when the soil is wetter.  This modification of 200 

the code is employed in all of the simulations described in section 5.  201 

 202 

Addressing the second issue with code modifications is not nearly as straightforward.  As soon as 203 

heat capacity becomes a function of soil moisture content, energy balance calculations become 204 
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significantly more complex, given that a proper energy balance requires that the energy attached 205 

to the dynamic water variable be transported with this water as it diffuses, drains, or is extracted 206 

for transpiration, all in addition to or in conjunction with energy transport through heat diffusion.  207 

Given the unusual water variables in CLSM – they are not strictly tied to soil layers, as in other 208 

LSMs, and in any case they are not coincident with the vertical temperature discretization – such 209 

energy-in-water accounting would quickly become intractable.  In the face of these issues, we 210 

addressed the question of heat capacity instead with a series of five sensitivity experiments, 211 

assigning to a given experiment a non-dynamic specific heat capacity associated with one of five 212 

different water contents: w = 0., 0.25, 0.5, 0.75 and 1, where w is the soil’s degree of saturation.  213 

The time series over multiple years of simulated subsurface temperatures at a representative site 214 

were found to be largely insensitive to the heat capacity employed, particularly for w ≥ 0.25 (see 215 

Figure S1 in the supplementary file).  In light of this insensitivity, we retain the original 216 

assumption of w=0.5 for the calculation of the constant specific heat capacity, recognizing the 217 

potential for some error in very dry conditions (which are, in any case, relatively rare in 218 

permafrost areas). 219 

 220 

To address the final issue above, we adopt a revised parameterization for the soil thermal 221 

properties that incorporates the impact of soil organic carbon based on Lawrence and Slater 222 

[2008].  In the revised parameterization, soil thermal properties are calculated as: 223 

 𝑥 = (1 − 𝑓𝑠𝑐)𝑥𝑚𝑖𝑛𝑒𝑟𝑎𝑙 + 𝑓𝑠𝑐𝑥𝑠𝑐 (Eq. 9) 

where 𝑥 represents a soil thermal property such as 𝜆𝑠, 𝜆𝑑𝑟𝑦, the specific heat capacity of soil 224 

solid 𝑐𝑠, or the soil porosity that is used in heat transfer module. The corresponding thermal 225 
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properties for mineral soil and soil carbon are denoted with 𝑥𝑚𝑖𝑛𝑒𝑟𝑎𝑙 and 𝑥𝑠𝑐, respectively.  The 226 

soil carbon fraction 𝑓𝑠𝑐  is described in more detail in section 3.2.  To be consistent with 227 

Lawrence and Slater [2008], we further set the Kersten number to the degree of saturation 228 

(𝐾𝑒 = 𝑆𝑟 ) under frozen conditions and to Ke=log(𝑆𝑟 )+1 for thawed conditions (though we 229 

constrain it to lie between 0 and 1). This implies, however, that the soil porosities used for the 230 

soil thermal calculations (Eq. 7) differ from the porosities [De Lannoy et al., 2014] used in the 231 

soil water module. The results with this revised CLSM version are discussed in section 5.3. 232 

 233 

2.4 Model Domain and Ancillary Data 234 

Although CLSM is typically used as a global model, we focus here on Alaska, where continuous, 235 

discontinuous, and sporadic permafrost conditions exist in areas ranging from the North Slope to 236 

the southern glacial, high-mountain region [Duguay et al., 2005; Zhang et al., 1999].  Alaska is a 237 

useful study area because suitable in situ observations are available for validation there (section 238 

3.1). Figure 1a shows the model domain used here along with the elevation from the GEOS-5 239 

modeling system [Mahanama et al., 2015].  Figure 1b shows the 2-m air temperature 240 

climatology, calculated by averaging 35 years of data (1980-2014) from the Modern-Era 241 

Retrospective Analysis for Research and Applications-2 [MERRA-2; Bosilovich et al., 2015] 242 

reanalysis.  From north to south, the annual average air temperature ranges from about -10.8⁰C to 243 

6.4⁰C. Figure 1c displays a map of permafrost extent in Alaska, showing four types of 244 

permafrost: continuous (90-100%), discontinuous (50- 90%), sporadic(10- 50%) and isolated 245 

patches ( 0 - 10%) [Brown et al., 2002].  246 

 247 
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We conducted a baseline simulation at 9-km resolution for the entire domain from 1980 to 2014 248 

using the baseline version of the CLSM.  The model configuration within this system is similar 249 

to that used in the Soil Moisture Active Passive Level 4 Soil Moisture algorithm [Reichle et al., 250 

2016].  The model was forced with hourly surface meteorological forcing data from MERRA-2 251 

[Bosilovich et al., 2015; Global Modeling and Assimilation Office (GMAO), 2015a, 2015b]. The 252 

precipitation forcing used here is essentially a rescaled version of the precipitation generated by 253 

the atmospheric general circulation model within the MERRA-2 system [Reichle et al., 2017], 254 

with the (uncorrected) MERRA-2 precipitation rescaled to the long-term, seasonally varying 255 

climatology of the Global Precipitation Climatology Project version 2.2 (GPCP v2.2) product.  256 

(At latitudes south of 62.5°N, some information from the 0.5° degree, global Climate Prediction 257 

Center Unified gauge product is used as described in Reichle et al. [2017], but the impact of the 258 

gauge data is minimal for the high-latitude domain considered here.)  The model was spun up, 259 

reaching a quasi-equilibrium, by looping 100 times through the one-year period from 01/01/2014 260 

to 01/01/2015 and then once through the 35-year period from 01/01/1980 to 01/01/2015 period.  261 

Table 1 describes the land model parameters and boundary conditions used, including soil 262 

texture parameters, soil hydraulic parameters, soil depth, land cover, vegetation height, leaf area 263 

index (LAI), greenness fraction, and albedo [Mahanama et al., 2015]. 264 

 265 

3. Datasets 266 

3.1 In situ Permafrost Observations 267 

To evaluate the simulation results and assess model performance, we used measurements from 268 

51 active permafrost sites in Alaska [Romanovsky et al., 2009]
 

269 
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(http://permafrost.gi.alaska.edu/sites_map; see dots in Figure 1).  Most of the permafrost sites are 270 

equipped with sensors that provide daily measurements of the soil temperature profile down to 271 

0.5m~3m below the surface.  The few sites that only have intermittent, deeper borehole 272 

observations down to 50m~60m are not used here.  The in situ soil temperature observations 273 

were interpolated to the center of each CLSM layer using an Inverse Distance Weighting 274 

method. The aggregated daily soil temperature observations were then used for comparison with 275 

simulated, layer-based soil temperatures.  276 

 277 

Problematic data records were screened out during a quality control review process. Simple cases 278 

include temperature values that were outside of the valid range as well as missing and null 279 

records.  Moreover, we noticed some systematic errors.  For instance, portions of some records 280 

exhibited an unnatural phase shift with respect to the corresponding multi-year climatology. It 281 

might be possible to use these records after correcting for the unnatural time shift, but in our 282 

work we simply excluded the affected measurements from the validation.     283 

 284 

3.2 Soil Organic Carbon Database 285 

We estimated vertical profiles of soil carbon fraction (𝑓𝑠𝑐) from two datasets that provide soil 286 

carbon content. The first dataset is the Global Gridded Surfaces of Selected Soil Characteristics 287 

product developed by the Global Soil Data Task Group of the International Geosphere-Biosphere 288 

Programme Data and Information System (IGBP-DIS) [Carter and Scholes, 2000; Global Soil 289 

Data Task, 2000; Scholes et al., 1995].  The IGBP-DIS data cover the top 1.5m of the soil at 290 

0.083⁰ spatial resolution.  The second dataset is the Northern Circumpolar Soil Carbon Database 291 
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version 2 (NCSCD) [Hugelius et al., 2013a; Hugelius et al., 2014; Hugelius et al., 2013b].  The 292 

NCSCD product is at finer resolution (0.012⁰) and covers the top 3m of soil providing data for 293 

the 0-0.3m, 0-1m, 1-2m and 2-3m depth ranges.  294 

 295 

We interpolated the soil carbon content (kg m
-2

) data to the 9-km model grid using the nearest 296 

neighbor method for both IGBP-DIS and NCSCD data. For the NCSCD data, simple aggregation 297 

of data for the 0~1m and 1~2m depth range was employed to obtain total carbon content in the 298 

top 2m.  Next, we calculated the soil carbon density 𝜌𝑠𝑐  (kg m
-3

).  Following Lawrence and 299 

Slater [2008], we adopted the cumulative carbon storage profile for polar and boreal soils as 300 

identified in Zinke et al. [1986] to estimate vertical distribution (𝑉𝑑) of soil carbon content. The 301 

soil carbon fraction for the l-th layer, 𝑓𝑠𝑐(𝑙), was thus computed as 𝜌𝑠𝑐(𝑙)/𝜌𝑠𝑐,𝑚𝑎𝑥, where 𝜌𝑠𝑐 is 302 

soil carbon density in the l-th layer calculated as 𝑆𝐶𝐶 × 𝑉𝑑(𝑙)/∆z(𝑙), SCC is the soil carbon 303 

content, and 𝜌𝑠𝑐,𝑚𝑎𝑥 is the maximum soil carbon density.  The latter is set to the standard value 304 

for the bulk density of peat, 130kg m
-3

[Farouki, 1981]. 305 

 306 

3.3 Weather Station Data 307 

Weather station data were obtained from the Quality Controlled Local Climatological Data 308 

product, which provides hourly-to-monthly records and is available at the National Centers for 309 

Environmental Information (NCEI; http://www.ncdc.noaa.gov/orders/qclcd/).  Specifically, we 310 

extracted measurements of dry bulb temperature, wet bulb temperature, dew point, relative 311 

humidity, wind speed, air pressure, and precipitation.   Moreover, we downloaded and processed 312 

solar radiation measurements at weather stations from the National Solar Radiation Database at 313 
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NCEI
 

(ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/solar-only/). The weather station 314 

measurements were used to assess the MERRA-2 surface meteorological forcing data and to 315 

improve the forcing data by simple scaling methods (section 5.1).   316 

 317 

Unfortunately, owing to the harsh environmental conditions, it is difficult to maintain weather 318 

stations in the high latitudes, particularly at high elevations, and this results in poor spatial and 319 

temporal coverage. In addition, due to the complex topography and micro-climates commonly 320 

found in Alaska, a particular weather station is often not representative of conditions within an 321 

associated 9-km grid cell.  This is especially true for the interior of Alaska. Only one station, 322 

Deadhorse airport (Site ID: 70063727406), is co-located (within a distance of about 3.5 km) with 323 

a permafrost site (DH1) and could thereby be used in this study.    324 

 325 

4. Assessment of Baseline Results  326 

The baseline simulation was conducted using the original version of CLSM (section 2.2) for the 327 

period 1980 to 2014.  Figure 2a illustrates the soil freeze/thaw variability in space and time using 328 

baseline simulated soil temperature at 8:30pm (local time) on the 16
th

 day of every other month 329 

in 2014 as a typical example. The figure shows that for large regions the top three layers are 330 

frozen (indicated by the gray color) in late winter (February).  The 4
th

 and 5
th

 layers continue to 331 

freeze into April whereas the top two layers are already starting to thaw in early spring.  During 332 

the summer, the near-surface soil continues to thaw, and by August the top three layers are 333 

completely thawed while the 4
th

 layer remains frozen in some parts of the North Slope. With the 334 

start of the cold season in October, the soil starts to re-freeze from the top down.  Note that the 335 
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4
th

 layer is much warmer compared to the upper layers during winter, and the re-freezing cycle in 336 

the 5
th

 layer has an even greater time lag.  The lagged freeze/thaw cycle in the different soil 337 

layers is also illustrated in Figure 2b, which shows, for each layer, the daily climatology of the 338 

frozen area in the domain.  The shaded area indicates the inter-annual variability across the 35-339 

year simulation period.  The figure shows that the frozen area in the top three layers reaches zero 340 

around June.  The 4
th

 through 6
th

 layers show much smaller seasonal variability compared with 341 

the upper layers, owing to the higher heat capacity in the deeper (thicker) layers.   In the 342 

remainder of this section, we use the observations at the in situ permafrost sites (section 3.1; 343 

Figure 1a) to validate the simulated ALT (section 4.1) and soil temperature profiles (section 4.2). 344 

 345 

4.1 Evaluation of Simulated Active Layer Thickness  346 

Simulated ALT values were calculated for each year in the 35-year period based on (1) the 347 

model-simulated soil temperature profiles and (2) the ice content within the uppermost soil layer 348 

that is at least partially frozen.  If the entire soil column remains thawed year-round, the 349 

simulated ALT is set to null (that is, permafrost-free).  The spatial patterns  of the 35-year 350 

minimum, mean, and maximum annual ALT in Alaska are shown in Figure 3a. Generally, the 351 

spatial permafrost distribution is consistent with the permafrost map shown in Figure 1c. Most of 352 

the continuous permafrost extent is captured by the model simulation, while some of the 353 

discontinuous and sporadic permafrost areas are not, perhaps due to model’s coarse resolution. 354 

The spatial ALT pattern is also similar to that of previous studies [e.g. Mishra and Riley, 2014; 355 

Sazonova and Romanovsky, 2003] with relatively shallow ALT in the north and deeper values in 356 

the interior.  Figure 3a also indicates that there is no permafrost in some southern areas of the 357 

domain (gray areas).  This is consistent with the air temperature climatology (Figure 1b), which 358 
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indicates annual average temperatures above -2⁰C.  (Note that the effective annually-averaged 359 

temperature forcing is in fact slightly higher there given that the insulating properties of snow 360 

help shield the subsurface from cold winter air temperatures.)  The permafrost-free areas may 361 

include patches of sporadic or isolated permafrost [Zhang et al., 1999], but such patches are not 362 

resolved in the simulation owing to the relatively coarse (9-km) model resolution. Considering 363 

this, the permafrost-free area can be interpreted as indicative of having a low probability of 364 

permafrost, which is also consistent with the permafrost probability results reported by Pastick et 365 

al.[2015].  The temporal variations in the spatial mean air temperature and ALT (Figure 3b) are 366 

consistent for some years but show a lagged pattern (on the order of one year) for other years, 367 

depending on the magnitude of the temperature changes, which is reasonable.  The figure 368 

suggests a decline in the regionally averaged ALT since 2010, but overall there is a slightly 369 

increasing trend in the regional ALT that is consistent with the increasing air temperature trend 370 

over the 35 years.  The trend line of regional ALT has a positive slope suggesting an increasing 371 

rate about 0.4cm per year, and the warming rate for air temperature is about 0.02⁰C per year as 372 

shown in Figure 3b.  373 

 374 

To validate the simulated ALT, multi-year average ALT values were calculated from the in situ 375 

soil temperature observations at the permafrost measurements sites.  Figure 4 shows a scatter 376 

plot between the simulated and observed multi-year mean ALT values, along with the spatial 377 

distribution of the ALT values at the permafrost sites. The model clearly overestimates ALT at 378 

most sites compared to the observations, by an average of 0.36m.  An outlier site IM1 has a 379 

deeper ALT in the observations (1.81m) than in the simulation (0.62m). Note that pixels that 380 

were permafrost-free in the simulation were excluded from the comparison. Thus, there are only 381 
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38 sites presented here. That is, among the 51 active permafrost sites, there are 13 sites for which 382 

the baseline simulation is permafrost free but observations show permafrost. It should be stressed 383 

that the model performances at these 13 sites are in fact the worst and that this is not reflected in 384 

the bias calculation. In the following, we carefully evaluate the modeled soil temperature results 385 

and then identify the key issues to address in our model simulations. 386 

 387 

4.2 Evaluation of Simulated Soil Temperature Profiles   388 

Daily estimates of the simulated soil temperature profiles were evaluated using observations 389 

from the permafrost sites (section 3.1). In addition to computing RMSE values for each layer, we 390 

also calculated a single, vertically-averaged RMSE value for each site with weights given by the 391 

layer thicknesses.  This profile-average RMSE assigns more weight to the deeper (thicker) 392 

layers. The profile-average RMSE includes only layers for which measurements are available, 393 

which is rarely the case for the 6
th

 layer. This single statistic for each observation station permits 394 

a convenient, comprehensive assessment of the model’s ability to capture subsurface heat 395 

transfer processes. 396 

 397 

 Generally, the baseline simulation results show fair performance at the regional scale (Figure 398 

5a) with a spatially averaged RMSE of 3.48 ⁰C (indicated by the horizontal red line in the 399 

figure).  The performance varies from site to site with a minimum RMSE of 0.83 ⁰C at COW and 400 

a maximum RMSE of 6.52 ⁰C at S3-AWS.  Sites within the same 9-km model grid cell 401 

(indicated by the background shading in Figure 5a) can exhibit large differences in performance.  402 

For instance, sites SL1, SL2, SL3, SL4 and UF1 are within a same model grid cell but have 403 
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RMSE values ranging from 2.29⁰C at SL3 to 4.49⁰C at SL4, demonstrating the large 404 

heterogeneity in local site conditions that cannot be captured by the model as applied here.  405 

Similarly, sites COF, COS, COT and COW have quite different RMSE values of 3.39⁰C, 4.00⁰C, 406 

0.96⁰C and 0.83⁰C, respectively.  The smallest RMSE at COW is attributed to the better 407 

simulation in the 2
nd

 and 3
rd

 layers compared to the other sites (Figure 5b). Note that most sites 408 

do not have RMSE values for the 5
th

 and 6
th

 layers due to lack of measurements.  409 

 410 

The RMSE values of the 51 sites are mapped in Figure 5c.  The figure suggests that, overall, the 411 

baseline simulation results show relatively better performance (blue and green colors) along or 412 

near the coastline and relatively worse performance in the interior of Alaska (yellow and red 413 

colors).  This is possibly because the coastal areas generally have a less variable climate and, in 414 

the northern part of Alaska, less complex terrain than the interior.  Coastal areas are thus better 415 

represented by the meteorological forcing data and the land model parameters from the GEOS-5 416 

system.  The greater heterogeneity in micro-climate, orographic effects, and landscape vegetation 417 

gradients in the interior region is less well described by the global-scale input data.  418 

 419 

We selected 9 sites (as labeled in Figure 5c) for further investigation of these aspects, including a 420 

site that is close to the northern coast (DH1), three sites along the northern highway (FB1, SG2 421 

and GL1), and five sites in the interior near Fairbanks (UF1, SL1, SL2, SL3 and SL4).  The latter 422 

are located within the same 9-km model grid cell.  The sites were selected primarily because of 423 

the availability of (1) soil temperature measurements in each soil layer, (2) long measurement 424 
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records, and (3) local soil information.  Geolocation and land surface information for the selected 425 

sites are provided in Table 2. 426 

 427 

Our ultimate objective for investigating these 9 sites more closely is to improve the model’s skill 428 

in reproducing the subsurface soil temperature profile.  Specifically, DH1 is used to investigate 429 

the impact of errors in the MERRA-2 meteorological forcing data because there is a suitable 430 

weather station nearby (section 3.3).  UF1 is used to study the influence of land cover type on 431 

permafrost simulation because its land cover is distinct from that of the other sites within the 432 

same 9-km model grid cell.  For the remainder of the sites, including FB1, SG2, GL1, SL1, SL2, 433 

SL3 and SL4, soil survey information is available, permitting us to examine the impact on the 434 

model skill of using soil carbon information in the calculation of the soil thermal properties. 435 

 436 

5. Towards Improving Permafrost Modeling  437 

As mentioned in section 2.2, all of the experiments below, with the exception of the baseline 438 

experiment, use an updated model version that allows the simulated soil moisture dynamics to 439 

affect the thermal conductivity calculation (specifically, the Kersten number). Results obtained 440 

during the development of this version demonstrate that this facet of the model physics has only 441 

a marginal impact on modeled soil temperatures (not shown). We now evaluate the impact of 442 

three more important facets of the permafrost modeling problem:  (1) the accuracy of the 443 

meteorological forcing (section 5.1), (2) the choice of land cover (section 5.2), and (3) the 444 

assigned soil thermal properties (sections 5.3 and 5.4). 445 

 446 
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In examining these three aspects, we essentially break down the heat transfer process into two 447 

vertical gradients [Koven et al., 2013]. The first gradient (the “air to shallow soil” gradient) 448 

determines the heat transfer from the atmosphere to the shallow soil and is controlled in part by 449 

the meteorological forcing and land cover type.  The second gradient (the “shallow to deep soil” 450 

gradient) is associated with heat transfer from shallow to deep soils and is controlled by the soil’s 451 

thermal properties. 452 

 453 

5.1 Meteorological Forcing  454 

The evaluation of simulated 9-km grid cell-scale subsurface temperatures with point-scale in situ 455 

measurements is subject to scaling uncertainty.  This is exacerbated by the coarse resolution of 456 

both the MERRA-2 meteorological forcing and the applied land surface parameters.  Consider, 457 

for example, the five sites UF1 and SL1-4, as marked in Figure 5b.  Although the UF1 and SL 458 

sites are within the same model grid cell (9-km) and thus use the same meteorological forcing in 459 

our simulations, the observed soil temperatures at these sites are markedly different – a result of 460 

some unresolved heterogeneity. 461 

 462 

To assess the scaling problem, at least the part associated with meteorological forcing, we 463 

obtained local weather data from a weather station co-located with a permafrost site (site DH1; 464 

see section 3.3).  We then filled the large temporal gaps in the station data using scaled MERRA-465 

2 forcing fields – the original MERRA-2 variables at the grid cell containing the site were scaled 466 

with either multiplicative corrections (for specific humidity, wind speed, precipitation and solar 467 

radiation) or additive corrections (for air temperature and pressure) so that the climatological 468 
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monthly means of the MERRA-2 data matched those of the station observations.  We then forced 469 

the land model with the raw weather station data whenever they were available and with the 470 

scaled MERRA-2 data otherwise.  471 

 472 

The multi-year mean seasonal cycles of the simulated subsurface soil temperatures obtained with 473 

the original MERRA-2 forcing and with the station-based forcing at DH1 are shown in Figure 6, 474 

along with observations.  The figure shows that at this site, the original MERRA-2 forcing 475 

produces a reasonable simulation of subsurface temperature, capturing much of the observed 476 

seasonal cycle. The simulation results improve even further, though, when the station-based 477 

forcing fields are fed into the model (black line; see in particular the simulated-minus-observed 478 

differences shown in Figure 6b). With the original MERRA-2 forcing, the maximum errors 479 

appear in May to July due to a slightly earlier thawing time compared to observations. This 480 

problem is effectively alleviated in the simulation using the station-based forcing fields (black 481 

vs. gray in Figure 6b). The profile-average RMSE is 2.96°C for the daily soil temperature 482 

simulated using the original MERRA-2 forcing, and it reduces to 2.10°C when using the station-483 

based forcing. As for the multi-year mean seasonal cycle, the profile-average RMSE is reduced 484 

by 60% (2.53°C vs. 0.95°C). This confirms that the forcing has a first order impact on the 485 

simulation of the subsurface temperatures. However, both simulations cannot pick up the zero 486 

curtains at the freeze up time around Nov. for the top three layers, which might be associated 487 

with some thermodynamic processes currently lacking in the model, such as the advection of 488 

heat upward or downward with the diffusion of moisture.  489 

 490 
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5.2 Land Cover  491 

The land cover type chosen for a simulation can affect the energy (and water) partitioning at the 492 

land-atmosphere interface and can potentially have a strong impact on the transfer of heat 493 

between the air and the shallow soil. To examine this, we consider now the UF1 site near the 494 

University of Alaska, Fairbanks.  When the land model is run globally (or across Alaska, as in 495 

Figure 2), the assigned vegetation class for this particular grid cell (and thus for our baseline UF1 496 

simulation) is broadleaf deciduous tree.  Site pictures and the site survey, however, indicate that 497 

the local land cover at UF1 is more like grassland (http://permafrost.gi.alaska.edu/site/uf1).  498 

Thus, we performed a new experiment at UF1 with grassland assigned as the surface type and 499 

with the associated vegetation height set to 0.6m (as standardly used in this model for grassland 500 

conditions).  Aside from the aforementioned additional use of a moisture-dependent thermal 501 

conductivity, the experiment was otherwise identical to the baseline experiment.   502 

 503 

The results from the two experiments are illustrated in Figure 7.  The figure shows that 504 

modifying the land cover improves the simulation results at this site; the profile-average RMSE 505 

is reduced from 2.38⁰C for the simulation (“Tree”) to 2.25⁰C for the new experiment (“Grass”). 506 

The improvements are mainly seen in the 5
th

 layer, which indirectly benefits from the better 507 

agreement between simulated snow depth for Grass and observations (see the top panel of Figure 508 

7). The thicker snowpack generated in the “Grass” experiment acts as a stronger “thermal 509 

blanket” that slows down the release of energy from the ground during the cold season, which 510 

facilitates warmer, more accurate soil temperatures in the 5
th

 soil layer. For example, the Grass 511 

simulation results show very good agreement with observations in the 5
th

 layer in October of 512 

2012, while the corresponding temperatures in the Tree experiment are about 3⁰C colder. In May 513 
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of 2013, the 5
th

 layer temperatures simulated in the two experiments differ by up to 2.7⁰C, with 514 

solidly frozen soil in the Tree experiment and thawed soil (at 0.01⁰C) in the Grass experiment.  515 

Note that although the simulation of snow depth is more accurate in the Grass experiment, it is 516 

still underestimated in that experiment, and thus even this experiment shows earlier thawing 517 

compared to the observations. We expect, however, that further improvements could have been 518 

achieved by using local meteorological forcing fields (currently unavailable) in the simulations; 519 

as discussed in Section 5.1, simulations at DH1 demonstrated better thawing time with station-520 

based forcing. 521 

 522 

The change in the snowpack and the resulting changes in the subsurface temperatures in Figure 7 523 

can be explained by the effect of vegetation height on the albedo of snow-covered areas. Because 524 

grassland is shorter than forest, less of its structure appears above the snow cover, resulting in a 525 

larger albedo for the snowpack; for forests in particular, modeled albedo in the presence of snow 526 

is significantly reduced by exposed tree branches and stems. Relative to forests, higher albedos 527 

over grassland for a given amount of snow lead to less melting and thus greater snow 528 

accumulation.  529 

 530 

Overall, the results for UF1 illustrate the difficulty of using local, in situ measurements to 531 

evaluate model simulation results given that the large-scale parameter values assumed for the 532 

grid cell (here, values associated with forest cover) may be inconsistent with the local conditions 533 

at the measurement site.  Although changing the assumed land cover to grassland led to 534 

significant improvements at UF1, subsurface temperatures there are still overestimated during 535 



 

27 

 

summer and underestimated during winter, resulting in still-large inaccuracies in the simulated 536 

seasonal cycle.  This may very well be due to inaccuracies in the MERRA-2-derived 537 

meteorological forcing. The weather station closest to this permafrost site is at the Fairbanks 538 

International Airport, about 5.5km away; the approach used above for DH1 to examine the 539 

impacts of meteorological forcing is thus not applicable here. Nevertheless, we will address in 540 

section 5.3 below how well the model works at UF1 under the assumption of a “perfect” air-to-541 

shallow soil gradient (which would include an assumption of perfect meteorological forcing).  542 

 543 

We now turn our attention to the other sites across Alaska.  Inspection of site pictures suggests 544 

that most permafrost sites are found within grassy areas even when surrounding conditions are 545 

much different. For instance, the SL sites, which are installed in the forested area of Smith Lake 546 

near the University of Alaska, Fairbanks, are seen sitting amongst grassland patches within the 547 

forest 
 

(http://permafrost.gi.alaska.edu/site/sl4). This is reasonable given the logistics of 548 

installation and maintenance. Again, at UF1, assigning grassland rather than forest characteristics 549 

led to an improved simulation of subsurface temperatures; to see if this improvement is seen at 550 

other sites across Alaska as well, we repeated the experiment at these other sites. Figure 8a 551 

shows the profile-average RMSE from this new experiment (“Grass”) minus that from the 552 

baseline simulation (“Baseline”) at all of the sites. In the plot, negative values (blue colors) 553 

indicate improvement in model performance through the use of grassland parameters whereas 554 

positive values (orange and red colors) indicate degraded performance.  While there is a mix of 555 

positive and negative differences, the spatial mean of the RMSE difference is negative (- 0.15⁰C) 556 

indicating an overall improvement.  557 

 558 
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When considering the question of land cover impacts across the various in situ sites across 559 

Alaska, we should note that a comprehensive analysis of albedo effects on snow depth and of 560 

snow insulation effects on the simulation of permafrost is unfortunately limited by a lack of data, 561 

particularly snow depth and total albedo at the sites.  (The availability of snow depth data at UF1 562 

is one of the few exceptions.)  Various ancillary products (e.g., albedo estimates from MODIS) 563 

may perhaps contribute information to a comprehensive study.   564 

 565 

We now examine the consistency between improvements in simulating the aforementioned air-566 

to-shallow soil temperature gradient and the shallow-to-deep soil temperature gradient. First, the 567 

temperature offset between the top soil layer and the overlying air, Ta0, was calculated at the 568 

monthly scale; this offset is taken to represent the temperature gradient from the air to the 569 

shallow soil. Similarly, the offset, T01, between the monthly temperatures in the 4
th

 layer (about 570 

1 meter deep) and the top layer was computed to represent the shallow-to-deep soil gradient.  We 571 

then computed the RMSE of the simulated Ta0 and T01 values against site observations for both 572 

the baseline and grassland experiments. Figure 8b shows the spatial distribution of the 573 

differences between the grassland and baseline experiments in the RMSE for Ta0, and Figure 8c 574 

shows the corresponding differences for the RMSE of T01. As before, negative values indicate 575 

improvements associated with the use of grassland parameters.  576 

 577 

Theory suggests that improvements in Ta0 should translate to improvements in T01 – deep soil 578 

temperature variations are ultimately driven by variations in air temperature, and the deep soil 579 

cannot be simulated properly if the forcing from above is inaccurate. Similarly, degraded model 580 

performance along the air-to-shallow soil temperature gradient would presumably result in a 581 
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degraded shallow-to-deep soil temperature gradient.  This consistency is generally seen (for all 582 

but two sites) in Figure 8b and 8c – locations where Ta0 improves with the use of grassland 583 

conditions also show improvement in T01. The agreement supports the idea that the correct land 584 

cover type, which directly affects the shallow soil temperature, also eventually leads to improved 585 

heat transfer in the deeper soil.  586 

 587 

5.3 Isolating Subsurface Heat Transport Processes 588 

If the meteorological forcing and land surface parameterizations (including land cover) were 589 

perfect in our simulations, the simulation of subsurface temperatures might still be inaccurate 590 

due to a deficient parameterization of subsurface heat transport.  To isolate these problems, we 591 

perform a series of experiments in which the top layer soil temperature is continually forced to 592 

agree with top layer soil temperature observations at a site (i.e., the simulated temperatures in the 593 

top layer are continually replaced with corresponding measured values).  In the model, the top 594 

layer temperature is the sole boundary condition driving the evolution of the temperatures in the 595 

layers below.  By prescribing the time variation of top layer temperature to observations, we 596 

effectively sidestep errors in meteorological forcing and surface parameters at a given site, 597 

allowing us to focus specifically on how well heat is transported in the subsurface. 598 

 599 

The experiments in which the top layer temperature is prescribed are denoted “T1BC”, meaning 600 

that the top soil layer is effectively the upper boundary condition of the model.  For these 601 

experiments, initial soil temperatures in the other soil layers were also prescribed to 602 

observations. The experiment was carried out at sites that have continuous long-period data 603 
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records in at least the top four layers for at least three consecutive years: UF1, WD1, HV1, FB1, 604 

GL1, SG2, and SL1 through SL4. Due to similarity, results for some sites are not shown here; 605 

they can be found in the supplementary material.  606 

 607 

The 5
th

 and 6
th

 layers required special treatment for the initialization because most sites do not 608 

provide corresponding measurements that deep. If the needed measurements were absent, these 609 

layers were initialized to values obtained from a fully spun-up T1BC simulation at that site.  610 

Note that this implies a potential source of error; spinning up the T1BC experiments over only a 611 

few recent years implies that the often warmer recent forcing temperatures (Figure 3b) are 612 

imprinted, perhaps unrealistically, on the 5
th

 and 6
th

 layers.  This should be kept in mind when 613 

interpreting the T1BC results. 614 

 615 

With a prescribed top layer temperature, the soil temperatures simulated in the layers below 616 

should be accurate if the heat transfer mechanism in the subsurface is adequately represented in 617 

the model.  This is seen to be the case at UF1 as shown in the left panel of Figure 9. Other sites 618 

that show very good performance for the T1BC experiments include WD1 and HV1 (see Figures 619 

S2 and S3 in the supplementary file). Figure 9 indicates that the treatment of subsurface heat 620 

transport is not responsible for the errors in the UF1 simulation shown in Figure 7; these errors 621 

must be due to the meteorological forcing or to the treatment of the processes (including 622 

parameter values) that control the surface temperature itself. The model apparently represents 623 

well the physics of, for example, thermal conductivity and water/ice phase change in the 624 

subsurface at these sites (UF1, WD1 and HV1).  625 
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 626 

Other sites (FB1, GL1, SG2, and SL1-SL4), however, did not show the same success.  As shown 627 

in right panel of Figure 9 for SL1 (and in supplementary Figures S4-S9 for the other sites), the 628 

T1BC results at these sites overestimate temperature in the warm period (June to September).  629 

Moreover, for all sites except for SL1, the summer overestimation eventually leads to an 630 

overestimation of temperature in the cold season (winter to early spring; see supplementary file). 631 

The SL1 site is in fact unusual in that its cold season subsurface temperatures in the T1BC 632 

experiment are greatly underestimated (Figure 9, right panel). For SL1, the problem is rectified 633 

in an additional experiment (T2BC) in which the temperatures of both the 1
st
 and 2

nd
 layer are 634 

prescribed to observations.  With the 2
nd

 layer forced to be accurate as well, the simulated 635 

temperatures in the 3
rd

 through 5
th

 layers become realistic (black line in right panel of Figure 9; 636 

no observations are available for the 6
th

 layer.).  From these results we conclude that for SL1, the 637 

treatment of subsurface heat transport in the model is adequate at and below the 3
rd

 layer, but that 638 

some aspect of the problem is poorly captured in the top and 2
nd

 layers.  The sites FB1, GL1, 639 

SG2, SL2, SL3, and SL4 also appear to be deficient specifically in the top two layers, as these 640 

sites also show substantial improvement when the 1st and 2nd layers are prescribed to 641 

observations (see supplementary Figures S10-S15).  642 

 643 

In summary, subsurface heat transfer appears accurate at a few sites but is deficient at several 644 

others, especially in the top and 2
nd

  layer.  We address a possible reason in the next section. 645 

 646 
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5.4 Impacts of Organic Carbon 647 

We hypothesize that the errors in the T1BC experiments seen in the right panel of Figure 9 for 648 

SL1 and in the supplementary material for several other sites relate to the treatment of organic 649 

carbon in the near-surface soil and its impacts on soil thermal conductivity.  A rich, organic 650 

carbon content is associated with a small soil thermal conductivity, which would impede the 651 

insertion of energy into the soil during the warm season and the release of subsurface warmth to 652 

the atmosphere during the cold season. Site soil surveys indicate that all of the sites investigated 653 

in section 5.3 are organically rich, especially near the surface (Table 2). For instance, peat soil at 654 

FB1, SG2 and GL1 exists down to 15cm, 15cm and 55cm, respectively. Although there is no 655 

corresponding information available for SL2, SL3 and SL4, the soil survey indicates that at SL1, 656 

which is very close to SL2-SL4, peat soil is found down to a depth of 31cm. 657 

 658 

Peat soil is poorly represented in the default model framework.  Given the model assumptions 659 

regarding soil texture and organic carbon content, the peat soil information in the soil survey 660 

suggests that the thermal conductivites used in the default model are excessive, particularly near 661 

the surface.  The improvement seen for SL1 in the T2BC experiment may even suggest the 662 

presence of a purely organic litter layer (e.g., decayed and undecayed leaves) at the site from 663 

which the observed top layer temperatures were measured. 664 

 665 

As described in section 3.2, soil carbon fraction profiles were constructed from the IGBP-DIS 666 

and NCSCD soil data.  Figure 10a illustrates the vertical profiles of soil carbon fraction at the 667 

seven sites examined here, including FB1, GL1, SG2, and SL1 through SL4. The profiles 668 
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derived from the two different carbon datasets are nearly identical at the SL sites but differ 669 

significantly at the other sites, especially at SG2. Figure 10b shows the associated soil thermal 670 

properties at GL1. The impact of organic carbon content on the soil thermal properties (e.g., the 671 

thermal conductivities for soil solids 𝜆𝑠 and dry soil 𝜆𝑑𝑟𝑦, the specific heat capacity of the soil 672 

𝑐𝑠, and the soil porosity) are illustrated by the differences between the original CLSM parameters 673 

and the new parameters derived from the soil organic carbon databases. With the new soil 674 

parameterization, 𝜆𝑠  and 𝜆𝑑𝑟𝑦  are much smaller in the top two layers. Conversely, 𝑐𝑠  and the 675 

porosity are much larger than the original CLSM values in the top two layers. In addition, for the 676 

new parameters the entire profile of 𝜆𝑑𝑟𝑦  is much smaller than that of the original CLSM, 677 

whereas the porosity is much larger across all layers.   678 

 679 

We incorporated the two different soil carbon fraction profiles into the CLSM using the soil 680 

parameterization scheme described in section 2.3. We then re-ran the T1BC experiment at FB1, 681 

GL1, SG2, and SL1-4.  Results for GL1 and SL2 are shown in Figure 11.  The subsurface 682 

temperatures obtained in the experiments using the organic carbon profiles (T1BC_OrgC_IGBP 683 

and T1BC_OrgC_NCSCD) show an improved agreement with observations during warm periods 684 

(June through September) relative to the original T1BC experiment, especially for SL2.  Results 685 

for sites FB1, SG2, SL3 and SL4 are similar; see supplementary Figures S16-S19. At GL1, for 686 

which the two sources of organic carbon profiles differ (see Figure 1110), use of the NCSCD 687 

information produces the more realistic subsurface temperatures,  especially for the 3
rd

 layer. 688 

This can be attributed to the larger carbon fraction in the 2
nd

 and 3
rd

 layers at GL1 for NCSCD, 689 

as highlighted in Figure 10.  690 

 691 
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Figure 12 summarizes the results obtained with the organic content profiles.  Compared to the 692 

original T1BC results, the profile-average RMSE is reduced for T1BC_OrgC_IGBP and 693 

T1BC_OrgC_NCSCD at all six of the study sites, with the better results often obtained with the 694 

NCSCD organic content data. The largest improvement in the profile-average RMSE is found at 695 

GL1 (about 56%) using NCSCD data. At individual soil layers, improvements are as high as 696 

70% (Layer 3 at SL2, again using NCSCD data).   697 

 698 

The behavior at site SL1 is anomalous and merits further discussion. As shown in Figure 12g, 699 

both T1BC_OrgC_IGBP and T1BC_OrgC_NCSCD yielded larger profile-average RMSE values 700 

than T1BC (i.e., model results were degraded in an aggregate sense) despite considerable 701 

improvements during the warm period (see supplementary Figure S20) and a reduction of RMSE 702 

for the 2
nd

 and 3
rd

 layers. Nevertheless, both the T1BC_OrgC_IGBP and T1BC_OrgC_NCSCD 703 

simulations still cannot capture the large contrast between the soil temperatures in the top and 2
nd

 704 

layers. Furthermore, neither T1BC_OrgC_IGBP nor T1BC_OrgC_NCSCD correct the 705 

aforementioned underestimation problem at SL1 during the cold season. Moreover, when the 706 

T2BC experiment is performed (i.e., when both the top and 2
nd

 layer temperatures are prescribed 707 

to observations), the use of either the IGBP-DIS or NCSCD data still increases slightly the 708 

profile-average RMSE relative to the original T2BC experiment (Figure 12h). We can only 709 

speculate about this behavior.  It is possible, for example, that relative to the cumulative carbon 710 

storage profile used to approximate the vertical distribution of carbon content at all sites, the soil 711 

carbon content at SL1 is more concentrated in the top two soil layers and much less so in the 3
rd

 712 

and 4
th

 layers. Alternatively, the top two layers might be purely organic layers (a.k.a. litter 713 
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layers) rather than the assumed composite of mineral soil and organic carbon; this particular 714 

explanation is consistent with our analysis in section 5.3.  715 

 716 

Comparison of RMSEs for annual ALT from the different experiments reveals that simulated 717 

ALTs improve at six out of the seven test sites when soil carbon impacts are included, as shown 718 

in Figure 13 (green vs. cyan and magenta bars for simulations with MERRA-2 forcing, and blue 719 

vs. gray and black bars for simulations with prescribed top soil temperature). That is, by 720 

incorporating the thermal impacts of soil carbon into the model, simulated ALT is generally 721 

improved regardless of the quality of the forcing fields. In addition, despite the larger profile-722 

average RMSE of soil temperature from T1BC compared to the two T1BC simulations 723 

incorporating organic carbon at SL1 as discussed above, the annual ALT at this site from 724 

baseline and T1BC simulations are significantly improved after incorporating soil carbon 725 

impacts. The only exception is SL3, which shows larger RMSE of annual ALT from 726 

T1BC_OrgC_IGBP and T1BC_OrgC_NCSCD compared to T1BC.  Nevertheless, all seven sites 727 

the simulations with MERRA-2 forcing (which is available everywhere and thus suitable for 728 

global simulations) demonstrate improved ALT by incorporating soil carbon impacts (cyan and 729 

magenta vs. green bars). One thing we should stress again is that for these sites a permafrost-free 730 

simulation is an error that cannot be quantified in terms of an RMSE of ALT; any simulation at 731 

these sites that has a meaningful ALT (e.g. M2_OrgC_IGBP and M2_OrgC_NCSCD at SLx 732 

sites) is a fundamental, if non-quantifiable, improvement over a permafrost-free simulation (e.g. 733 

Baseline simulation at SLx sites). 734 

 735 
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Figure 13, by the way, also shows that with the original carbon profile, the T1BC simulation 736 

tends to produce, as expected, more accurate ALT than the baseline simulation (dark blue versus 737 

green bars).  We can only speculate on why the MERRA-2 versus T1BC ALT results are 738 

relatively mixed for the improved carbon cases (e.g., magenta versus black bars); perhaps it has 739 

to do with the aforementioned limitation regarding the spin-up of the 5
th

 and 6
th

 layers in the 740 

T1BC experiment. 741 

 742 

Overall, the anomalous results at SL1 and SL3 aside, Figure 11, Figure 12 and 13 support our 743 

hypothesis regarding the importance of properly treating the impacts of organic carbon content 744 

on soil thermal properties and thereby on subsurface heat transfer – our simulations generally 745 

improve with a more careful treatment of organic carbon.  The results indicate that the vertical 746 

profile of fractional organic matter within the soil composite should be specified realistically, as 747 

should the existence of any layers of organic matter sitting on top of the soil layers. A more 748 

realistic thermal “buffer zone” should indeed consider both snow and organic layers at some 749 

sites. 750 

 751 

We now compare multi-year means of estimated ALT from the three simulations with MERRA-752 

2 forcing (i.e., Baseline, M2_OrgC_IGBP and M2_OrgC_NCSCD) with the observed ALT at all 753 

sites across Alaska. The results are shown in Figure 14.  Figure 14b shows that the RMSE of 754 

multi-year averaged ALT is reduced by 11% and 47% for the simulations using IGBP (0.49m vs. 755 

0.55m) and NCSCD (0.29m vs. 0.55m) carbon data, respectively, compared to the baseline 756 

simulation. The overall bias values provided in Figure 14c reveal that the M2_OrgC_IGBP 757 

simulation still overestimates regional ALT but nevertheless shows a 36% improvement (0.23m 758 
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vs. 0.36m) over the baseline, while the M2_OrgC_NCSCD simulation shows a very small 759 

negative bias (-0.04m, reduced by 89% compared to 0.36m in terms of absolute bias) in regional 760 

ALT, indicating a significant improvement.  761 

 762 

6. Summary and Discussion  763 

In this study we used the NASA Catchment land surface model to study permafrost conditions in 764 

Alaska.  We first conducted a regional simulation using the current (baseline) model version and 765 

investigated the general pattern and evolution of the simulated permafrost dynamics across 766 

Alaska.  The modeled ALT shows a large spatial and temporal variability that is consistent with 767 

the regional air temperature climatology (Figures 2, 3).  However, the modeled ALT is 768 

overestimated by ~0.43m on average when compared against in situ observations from 38 769 

permafrost measurement sites (Figure 4).  The simulated soil temperature profiles have a 770 

spatially-averaged, profile-average RMSE of 3.48⁰C versus the in situ measurements (Figure 5).  771 

 772 

Next, we investigated the soil temperature simulation errors along two vertical temperature 773 

gradients, the “air-to-shallow soil” gradient and the “shallow-to-deep soil” gradient. An accurate 774 

simulation of the first gradient is a prerequisite for the successful simulation of the subsurface 775 

temperature profile.  Following this paradigm, we addressed two factors that affect the air-to-776 

shallow soil gradient: (i) the quality of the forcing data and (ii) the land cover representation.  777 

Finally, we examined the performance of simulated subsurface heat transfer in isolation (i.e., we 778 

focused on the shallow-to-deep soil gradient) by prescribing the temperature in the surface soil 779 

layer.   780 
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 781 

In the context of our experiments, errors in the model forcing data have two potential sources: (i) 782 

inaccuracies in the GEOS-5 atmospheric modeling and assimilation system used to generate the 783 

forcing, and (ii) representativeness error, given the relatively coarse (0.5 degree) resolution of the 784 

GEOS-5 system and the point scale of the permafrost measurement sites.  We addressed both 785 

error sources simultaneously by forcing the model at the DH1 site with measurements from a 786 

nearby meteorological station.  The profile-average RMSE of simulated subsurface temperature 787 

at the DH1 site was thereby decreased from 2.96⁰C to 2.10⁰C, indicating that, as might be 788 

expected, meteorological forcing fields that better reflect the local conditions at a local site 789 

produce simulated soil temperature profiles that better agree with observations there.   790 

 791 

Likewise, the model’s land cover parameterization may be inaccurate, or the site-specific land 792 

cover conditions may not be representative of the grid-cell scale average conditions.  In situ 793 

measurement sites are usually in more accessible, grassy areas (where snow can build up more 794 

easily), whereas larger-scale land cover in the areas studied is more typically forest or shrubs.  795 

Our results demonstrate that using grassland parameters rather than the default, grid-average land 796 

cover parameters produces soil temperature profiles that better agree with the observations.  At 797 

the UF1 site, the profile-average RMSE in this experiment decreased from 2.38⁰C to 2.25⁰C.  798 

 799 

Finally, we demonstrated that the baseline version of the CLSM can sometimes simulate 800 

subsurface thermal dynamics with high accuracy if the top layer temperature is simulated 801 

correctly – model simulations that prescribed the surface soil temperature (T1BC) showed 802 
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success in simulating temperature in the subsurface at a number of sites (UF1, WD1 and HV1).  803 

However, at other sites, the T1BC results overestimated the soil temperature, especially during 804 

warm periods.  For these other sites, the temperatures in both the top and 2
nd

 layers needed to be 805 

prescribed to observations (the T2BC experiments) to produce accurate temperatures in the 806 

layers below.  Overall, the T1BC and T2BC experiments suggest that, while CLSM’s treatment 807 

of subsurface heat transport below the 2
nd

 layer is accurate, at several sites the soil heat transfer 808 

properties in the top two layers of the baseline model are deficient.  809 

 810 

This result led to an examination of the impacts of organic matter, which to date had not been 811 

properly considered in the CLSM representation of soil thermal processes.  We conducted 812 

additional simulations that explicitly included the impact of soil carbon on soil thermal processes 813 

using the soil carbon parameterizations of Lawrence and Slater [2008].  These simulations 814 

utilized carbon data from two data sources (IGBP-DIS and NCSCD) and were run in the T1BC 815 

configuration, i.e., with top layer temperatures prescribed to observations.   The results show that 816 

the more careful treatment of soil organic carbon led to greatly improved simulation results at 817 

sites with organic-rich soils.  The profile-average RMSE for T1BC_OrgC_NCSCD was reduced 818 

by as much as 56% (at GL1) when compared to the original T1BC experiment, and indeed, an 819 

RMSE reduction was seen at all of the sites considered in this experiment except for SL1.  At 820 

SL1, we speculate that the explicit modeling of a strictly organic layer (e.g., composed of leaf 821 

litter) may be needed to provide a more effective buffer zone between the air temperature and the 822 

deeper soil.   823 

 824 
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Simulations with the updated model version driven by MERRA-2 forcing also demonstrated 825 

improvements in ALT at the site scale, showing reduced RMSE of annual ALT compared to 826 

baseline results. At the regional scale (considering all sites across Alaska), our simulations show 827 

reduced RMSE of multi-year averaged ALT compared to the baseline results (by 47%) when 828 

NCSCD carbon information is used, along with a very small regional bias (-0.04m).  Note that 829 

while our RMSE of ALT using NCSCD carbon information (0.29m) is somewhat higher than 830 

that found in a similar study by [Jafarov et al., 2012] (0.08m), our model results (unlike theirs) 831 

did not benefit from calibration; also, our mean ALT bias (-0.04m) is very close to their value of  832 

-0.03m.  833 

 834 

Overall, enhanced treatments of meteorological forcing, land cover type, and organic carbon-835 

related soil thermal properties substantially improved CLSM’s ability to simulate realistic 836 

subsurface temperatures.  Progress toward an effective, large-scale representation of subsurface 837 

thermodynamics, however, was nevertheless hampered here by the local-scale character of the in 838 

situ measurements and, in any case, by the limited number of measurement sites.  Looking 839 

ahead, it should be possible to continue model development on a regional, rather than local, scale 840 

using radar retrievals of ALT from the Airborne Microwave Observatory of Subcanopy and 841 

Subsurface (AirMOSS) instrument [Chen et al., 2016].  842 

 843 

Another issue that has not been addressed fully here but is worth investigating further is the 844 

impact of a purely organic layer on subsurface permafrost. Such an organic layer not only has 845 

unique thermal properties but also affects soil hydrologic processes by slowing down bare soil 846 

evaporation from the ground surface, reducing vegetation transpiration [Luthin and Guymon, 847 
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1974], altering downslope runoff pathways, and thus significantly affecting soil moisture 848 

underneath [Hinzman et al., 1991],  which can result in a dramatically different permafrost 849 

response.  Some key parameters associated with an organic layer can possibly be characterized at 850 

the regional scale based on radar remote sensing, such as forthcoming organic layer thickness 851 

retrievals from the AirMOSS project (personal communication with with Mahta Moghaddam 852 

and Richard Chen). Once available, such radar retrievals should make it is possible for us to 853 

improve further the simulation of permafrost at the regional scale. 854 

 855 
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Table 1 – Land model parameters and boundary conditions. 1144 

Land boundary 

conditions 

Data source or generation method Reference 

Soil Depth The Second Global Soil Wetness Project 

(GSWP-2). 

[Dirmeyer et al., 2002] 

Soil parameters Harmonized World Soil Data (HWSD-1.21) 

and the State Soil Geographic (STATSGO2) 

data set. 

[De Lannoy et al., 2014] 

Land cover USGS Global Land Cover Characteristics Data 

Base Version 2.0 (GLCCv2). 

https://lta.cr.usgs.gov/glcc/ 

Vegetation 

height 

The Geoscience Laser Altimeter System 

(GLAS) aboard ICESat (Ice, Cloud, and land 

Elevation Satellite). 

[Simard et al., 2011] 

Leaf Area Index 

(LAI) 

Moderate Resolution Imaging 

Spectroradiometer (MODIS) and GEOLAND2 

LAI product. 

[Baret et al., 2013; 

Camacho et al., 2013] 

Greenness 

fraction 

GSWP-2 [Dirmeyer et al., 2002] 

Albedo Computed by a modified Simple Biosphere [Koster and Suarez, 1991; 
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Model (SiB) albedo parameterization scheme 

and (for the snow-free fraction) scaled by 

MODIS albedo climatology. 

Moody et al., 2008] 

 1145 

  1146 
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Table 2 – Permafrost sites used in Section 5. 1147 

Permafrost 

Sites 

Latitude Longitude Local landcover* 

Local soil 

information# 

Purpose 

DH1 70.1613° -148.4653° 

Landcover units 

include 

Graminoid-moss 

tundra and 

graminoid, 

prostrate-dwarf-

shrub, moss tundra 

(wet and moist 

nonacidic). 

15cm - Peat. Examining 

Meteorological 

Forcing (section 

5.1) 

FB1 69.6739° -148.7219° 

Landcover units 

include 

Graminoid-moss 

tundra and 

graminoid, 

prostrate-dwarf-

shrub, moss tundra 

(wet and moist 

nonacidic). This 

site is located on 

15cm – Peat. Examining upper 

boundary 

condition and soil 

organic carbon 

content (section 

5.4) 
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the inner coastal 

plain with river 

terraces. 

GL1 
68.4774° -149.5024° 

Landcover units 

include 

Graminoid-moss 

tundra and 

graminoid, 

prostrate-dwarf-

shrub, moss tundra 

(wet and moist 

nonacidic). Broad 

glaciated mountain 

valley. 

80cm – Peat; 

127cm  - Silty 

loam; 

199cm - Peat 

and silt mix; 

278cm – silt. 

Examining upper 

boundary 

condition and soil 

organic carbon 

content (section 

5.4) 

SG2 
69.4283° -148.7001° 

Moist acidic 

tundra 

15cm – Peat; 

40cm - Silty 

loam. 

Examining upper 

boundary 

condition and soil 

organic carbon 

content (section 

5.4) 

SL1 64.8694° -147.8608° Forest 
31cm – Peat.  Examining upper 

boundary 



 

59 

 

condition and soil 

organic carbon 

content (section 

5.3 and 5.4) 

SL2 64.8661° -147.8568° Forest 

--- Examining upper 

boundary 

condition and soil 

organic carbon 

content (section 

5.4) 

SL3 64.8675° -147.8588° Forest 

--- Examining upper 

boundary 

condition and soil 

organic carbon 

content (section 

5.4) 

SL4 64.8669° -147.8584° Forest 

--- Examining upper 

boundary 

condition and soil 

organic carbon 

content (section 
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5.4) 

UF1 64.8529° -147.8575° Agricultural field 

--- Examining land 

cover type and 

upper boundary 

condition (section 

5.2 and 5.3) 

* Information is from http://permafrost.gi.alaska.edu/sites_map. 1148 

# Information is from personal communication with with Dr. Vladimir Romanovsky and Dr. 1149 

Alexander Kholodov from University of Alaska Fairbanks.   1150 

http://permafrost.gi.alaska.edu/sites_map
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 1151 

Figure 1 – (a) Elevation data underlying GEOS-5, (b) air temperature at 2m above the ground 1152 

extracted from MERRA-2 for the Alaska domain and (c) a permafrost extent map categorized by 1153 

four types, i.e., Continuous (90-100%), Discontinuous (50- 90%), sporadic(10- 50%) and 1154 

isolated patches ( 0 - 10%) [Brown et al., 2002], obtained from the National Snow and Ice Data 1155 

Center.  Regions in white in (a) and (b) denote glaciers.  Magenta dots indicate the locations of in 1156 

situ permafrost sites used in this study.     1157 

  1158 
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 1159 

Figure 2 – (a) Example of modeled soil temperature for 6 dates in 2014.  Gray color indicates 1160 

frozen soil (temperature equal to or below 273.15K).  (b) 35-year climatology of frozen area, 1161 

with shaded area representing the range associated with inter-annual variability. Dashed lines 1162 

indicate the maximum and minimum across the 35 years.   1163 
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 1164 

Figure 3 – (a) 35-year minimum, mean, and maximum of the annual ALT. The light gray color 1165 

indicates permafrost-free areas.  (b) Spatial mean of the annual ALT (black) and the annual mean 1166 

2-m air temperature (blue). Dashed lines are linearly fitted trend lines for the two variables. 1167 

 1168 

  1169 
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 1170 

Figure 4 – (a) Multi-year mean of simulated (abscissa) vs. observed (ordinate) ALT. (b), (c) 1171 

Maps of the multi-year mean ALT from (b) the model simulation and (c) the in situ observations. 1172 
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 1174 

Figure 5 – (a) Profile-average RMSE for soil temperature estimates from the baseline simulation 1175 

at 51 sites across Alaska. (b) As in (a) but for the RMSE of each soil layer.  Background shading 1176 

in (a) and (b) indicates sites that are within the same 9-km model grid cell. (c) Map of the 1177 

profile-average RMSE for soil temperature. Note that symbols overlap for sites that are close to 1178 

each other. Two overlapping areas (denoted ① and ②) are zoomed in for details. 1179 

 1180 

  1181 
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 1182 

Figure 6 – (a) Comparison of multi-year mean seasonal cycles of observed (red) and simulated 1183 

soil temperature results at DH1 with original MERRA-2 forcing fields (in gray) and station-1184 

based forcing (in black). Differences between simulations and observations for top four layers 1185 

are shown in panel (b). 1186 
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 1187 

Figure 7 – Comparison of observed (red) and simulated soil temperature results at UF1 with 1188 

original global land cover (denoted “Tree” in gray) and grassland (denoted “Grass” in black) in 1189 

accordance with local surface conditions. Top panel shows the observed and simulated snow 1190 

depth for each of the two experiments. 1191 

  1192 
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 1193 

Figure 8 – (a) Difference of profile-average RMSE between the “Grass” experiment and the 1194 

baseline results. Blue colors (negative values) indicate model improvements whereas orange and 1195 

red colors (positive values) indicate model degradation. (b) Difference in RMSE of temperature 1196 

offset along the air-to-shallow soil gradient (Ta0) between the two experiments. (c) Difference in 1197 

RMSE of temperature offset along the shallow-to-deep soil gradient (T01) between the two 1198 

experiments. 1199 
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 1202 

Figure 9 – Comparison of observed (red line) and simulated (blue line) soil temperature where 1203 

observations are used to prescribe the top layer temperature (denoted T1BC) at UF1 and SL1. 1204 

For SL1, simulation results from T2BC (green line) in which soil temperatures at both the 1
st
 and 1205 

the 2
nd

 layer were prescribed to observations are also shown.  1206 
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 1207 

Figure 10 – (a) Vertical profiles of soil carbon fraction (fsc) based on IGBP-DIS and NCSCD at 1208 

sites FB1, GL1, SG2 and SL2. Profiles at SL1, SL3 and SL4 are identical to SL2. The gray 1209 

profile is based on IGBP-DIS. The black dash profile is derived using NCSCD. The cumulative 1210 

carbon storage profile for polar and boreal soils as identified in Zinke et al. [1986] was used to 1211 

calculate the vertical profile. (b) Example of the associated soil thermal properties at site GL1, 1212 

including the thermal conductivity for soil solids (𝜆𝑠 ), the thermal conductivity for dry soil 1213 

(𝜆𝑑𝑟𝑦), the specific heat capacity of soil (𝑐𝑠) and soil porosity. Blue line represents the default 1214 

values originally used in CLSM.  Cyan shading indicates the extent of the top two model layers.    1215 



 

71 

 

 1216 

Figure 11 – Simulation results at GL1 and SL2 for baseline T1BC experiment in which soil 1217 

temperature in the top layer was prescribed from in situ observations, as well as from two T1BC 1218 

simulations (T1BC_OrgC_IGBP and T1BC_OrgC_NCSCD) that incorporate organic carbon 1219 

content profiles derived from the two carbon datasets (IGBP-DIS and NCSCD). 1220 
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 1222 

Figure 12 – RMSE (⁰C) of soil temperature for individual model layers and the profile-average 1223 

RMSE (PfAvg) at FB1, GL1, SG2, SL2, SL3, SL4, and SL1 from the baseline T1BC simulation 1224 

and from the two T1BC simulations incorporating organic carbon content profiles 1225 

(T1BC_OrgC_IGBP and T1BC_OrgC_NCSCD). For SL1, RMSEs for the baseline T2BC 1226 

simulation and from the two T2BC simulations using the carbon datasets are also shown.  1227 
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 1228 

Figure 13 – The RMSEs of annual ALT from different experiments at the seven testing sites, 1229 

including three simulations with MERRA-2 forcing (i.e. Baseline, M2_OrgC_IGBP and 1230 

M2_OrgC_NCSCD) and three simulations with prescribed top soil temperature (i.e. T1BC, 1231 

T1BC_OrgC_IGBP and T1BC_OrgC_NCSCD). Baseline simulation results indicate that SL1, 1232 

SL2, SL3 and SL4 are all permafrost free and thus the RMSE for these sites are null. 1233 

 1234 
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 1235 

Figure 14 – (a) Multi-year mean of estimated ALT from three simulations driven by MERRA2 1236 

forcing vs. observed ALT at sites across Alaska, including baseline simulation and the two 1237 

simulations incorporating organic carbon impacts (M2_OrgC_IGBP and M2_OrgC_NCSCD). 1238 

Open cycles represent sites that baseline simulation show permafrost-free (thus no corresponding 1239 

green dots) whereas the simulations with carbon impacts do not, and are not used for calculation 1240 

of RMSE and bias. (b) RMSE of the multi-year mean of ALT from the three experiments. (c) 1241 

Mean of bias of the multi-year mean of ALT from the three experiments. 1242 
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