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Highlights 

 We compare far-field scattering matrices generated by spheroidal and spherical volumes 

of discrete random medium. 

 Our results demonstrate robustness of coherent and diffuse scattering regimes and associ-

ated optical phenomena. 

 Nonsphericity of particulate volumes causes discernable (albeit less pronounced) optical 

effects in forward and backscattering directions. 

 They can be explained in terms of the same interference/multiple-scattering phenomenon. 
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Abstract 

We use the superposition T-matrix method to compare the far-field scattering matrices gener-

ated by spheroidal and spherical volumes of discrete random medium having the same volume 

and populated by identical spherical particles. Our results fully confirm the robustness of the 

previously identified coherent and diffuse scattering regimes and associated optical phenomena 

exhibited by spherical particulate volumes and support their explanation in terms of the interfer-

ence phenomenon coupled with the order-of-scattering expansion of the far-field Foldy equa-

tions. We also show that increasing nonsphericity of particulate volumes causes discernible (al-

beit less pronounced) optical effects in forward and backscattering directions and explain them in 

terms of the same interference/multiple-scattering phenomenon.        
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1.  Introduction 

The use of direct, numerically exact computer solvers of the macroscopic Maxwell equations 

to study electromagnetic scattering by volumes of discrete random medium (DRM) has been a 

hot topic over the past decade (see, e.g., Refs. [1–6] and the comprehensive reference list in the 

recent review [7]). In particular, the effects of domain size [8], particle size [9], particle refrac-

tive index [1,9]  (including the imaginary part [10]), and particle packing density [11,12] have 

been studied in substantial detail. In many publications the statistical randomness of particle po-

sitions has been modeled by first running a random-number generator to assign coordinates of N 

particles quasi-randomly filling a spherical volume of DRM and then averaging over the uniform 

orientation distribution of the resulting multi-particle configuration (e.g., [1,7] and references 

therein). Several numerical tests have shown that this approach yields highly repeatable far-field 

scattering patterns irrespectively of the initial quasi-random set of particle positions within the 

volume, in a stark contrast to the patterns caused by fully ordered multi-particle configurations in 

random orientation [13]. Furthermore, the use of the analytical orientation-averaging procedure 

afforded by the superposition T-matrix method [14,15] completely eliminates residual statistical 

“noise” in the angular scattering patterns caused by brute-force numerical ensemble averaging 

(see, e.g., Refs. [16,17]). The resulting numerical data have been used to study the suppression of 

the speckle pattern upon ensemble averaging as well as to identify definitively the coherent for-

ward-scattering, diffuse radiative-transfer, and coherent backscattering regimes and their strong 

dependence on particle characteristics [1,7,18]. 

The majority of the results thus obtained have relied on the superposition T-matrix method 

and (with the exception of a cube [16] and a cylindrical slab [19] in fixed orientation) on the 

simplest model of a DRM in the form of a (statistically) spherical particulate volume in random 

orientation (e.g., [1,7,18]). Importantly, however, this technique is not restricted to spherical vol-

umes of DRM and can be applied effectively to, e.g., spheroidal volumes. This makes it possible 

to analyze whether the main conclusions of the previous studies reviewed in Ref. [7] remain in-

tact in the case of randomly oriented nonspherical volumes of DRM and whether nonsphericity 

leads to new discernable effects.  

The main objective of this Short Communication is to perform such an analysis. In the fol-

lowing section we briefly introduce the requisite terminology and notation and describe the mod-

eling methodology used in our analysis. The final section contains a discussion and summary of 
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our findings.        

 

2. Modeling methodology  

Our analysis parallels that in Refs. [1,7,18] and is based on the comparison of far-field scat-

tering matrices generated by spheroidal as well as spherical volumes of DRM having the same 

volume V and populated by identical spherical particles. In all computations, the particle radius r 

is fixed at a value implying the particle size parameter kr = 2, where k is the wave number in the 

host medium, while the refractive index of the particles is fixed at m = 1.31. These specific val-

ues are expected to help identify the presence of the polarization opposition effect [8] observed 

both in the laboratory [20,21] and in telescopic observations for a class of high-albedo solar sys-

tem bodies [22,23]. The radius of the spherical volumes R is fixed at a value implying the vol-

ume size parameter kR = 60. The shape of a prolate or oblate spheroid is defined by its aspect 

ratio E, i.e., the ratio of the longest to the shortest spheroidal axes, while the lengths of the axes 

are defined by the requirement that the spheroid have the same volume V.  

The initial particle coordinates inside a spherical or spheroidal volume are assigned by run-

ning a random-number generator developed by D. W. Mackowski (personal communication; see 

Ref. [24]) and making sure that the particles do not overlap (see examples of multi-sphere con-

figurations representing spherical and spheroidal volumes of DRM in Fig. 1). This is followed by 

the summation of the light-scattering results obtained by averaging over the equiprobable orien-

tation distribution of the particulate volume and of its mirror counterpart. It is well known 

[25,26] that the outcome of this procedure is the symmetric block-diagonal normalized scattering 

matrix given by  
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where ]2,0[    is the scattering angle (i.e., the angle between the incidence and scattering 
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directions) and the (1,1) element (i.e., the phase function) satisfies the standard normalization 

condition  

.1sin)(
~

d
2

1

0
11 



 F                                                                                                            (3)                                                                                                    

Note that the scattering matrix of Eq. (1) is that expected as the asymptotic result of ensem-

ble averaging over an infinite number of quasi-random realizations of a particulate volume. We 

have demonstrated previously that averaging over all orientations of a single quasi-random reali-

zation already yields results representative of those obtained by ensemble averaging. Yet the off-

block-diagonal elements, while being much smaller than the block-diagonal ones in the absolute-

value sense, do not vanish completely. Therefore, the purpose of averaging over the equiprobable 

orientation distribution of the particulate volume and of its mirror counterpart is to yield the scat-

tering matrix (1) with the off-block-diagonal elements precisely equal to zero. We have verified 

that doing that with the superposition T-matrix method is in fact numerically equivalent to an 

artificial symmetrization wherein the off-block-diagonal elements computed for a randomly ori-

ented quasi-random multiparticle group are zeroed out without adding the scattering matrix for 

the mirror counterpart of the group.            

All numerical computations have been performed on the distributed-memory computer clus-

ter of the Main Astronomical Observatory of the Ukrainian National Academy of Sciences using 

the parallelized version of the superposition T-matrix method described in Ref. [15]. 

 

3. Discussion and conclusions  

Fig. 2 displays all six independent elements of the normalized scattering matrix for a spheri-

cal volume of DRM with N = 800 and those of the V- and N-equivalent oblate spheroidal volume 

with E = 2.5. It is remarkable that despite a large difference in the shapes of the two volumes 

(Fig. 1), the corresponding scattering matrices are very similar. Both phase functions reveal the 

following common traits: 

 a strong coherent forward-scattering effect in the form of almost identical sharp “diffraction” 

peaks centered at ;0   

 a very smooth and featureless diffuse background at scattering angles extending from 20  to 

;170  and  
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 a coherent backscattering peak centered at .180   

All three traits are discussed in Refs. [1,7] and explained in the framework of the order-of-

scattering expansion of the far-field Foldy equations. Furthermore, the degree of linear polariza-

tion for unpolarized incident light (i.e., the ratio ))(
~

)(
~

1112  FF  exhibits the coherent polari-

zation opposition effect in the form of a narrow minimum at backscattering angles [27]. The 

qualitative explanation of this phenomenon is given in Refs. [8,28]. 

Consistent with their interference nature, all manifestations of coherent backscattering inten-

sify with increasing N. This is illustrated in Fig. 3 displaying the ratio )(
~

)(
~

1112  FF  and the 

quantity .2)](
~

)(
~

[ 2211  FF   The latter describes the angular distribution of the cross-polarized 

scattered intensity in the case of linearly polarized incident light. It is seen indeed that the depth 

of the backscattering polarization minimum doubles as N increases from 400 to 800, while the 

height of the backscattering peak in 2)](
~

)(
~

[ 2211  FF   grows by a factor of 1.8.  

The results of extensive computations for oblate and prolate spheroidal volumes of DRM 

with 800400  N  and 21  E  are quite analogous to those in Figs. 2 and 3 and therefore 

are not shown.  

Despite the somewhat surprising similarity of the E = 1 and E = 2.5 curves in Fig. 2, we can 

clearly identify two additional effects caused by nonsphericity of a particulate volume. First, Fig. 

4 shows that the pronounced interference pattern exhibited by the spherical volume at scattering 

angles ranging from 5  to 20  becomes attenuated with increasing E and essentially vanishes 

for E = 2.5. This smoothing effect can be explained by the continuous change of the geometrical 

projection of a spheroidal volume on a plane normal to the incidence direction during the process 

of averaging over orientations. The range of geometrical projections grows with increasing E, 

which results in progressively smooth “diffraction” patterns outside the main peak centered at 

.0  One can of course expect that averaging the forward-scattering interference pattern of a 

spherical particulate volume over R would have a similar smoothing effect.   

Second, Fig. 5 demonstrates the effect of increasing asphericity of a particulate volume on 

the degree of linear polarization )(
~

)(
~

1112  FF  as well as on the backscattering linear and cir-

cular polarization ratios defined, respectively, by 
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In the exact backscattering direction ),180(   both polarization ratios are equal to zero for a 

single spherical particle, which makes them sensitive indicators of the amount of multiple scat-

tering in groups of particles and the resulting coherent backscattering. It is seen from Fig. 5 that 

both )(L   and )(C   decrease with increasing asphericity, which can easily be explained. In-

deed, the average length of multi-particle sequences contributing to the scattered signal can be 

expected to decrease as the particulate volume becomes progressively flat as a consequence of its 

axis of rotational symmetry becoming significantly smaller than its lateral axes (Fig. 1). This re-

sults in less multiple scattering and thus in weaker L  and C  peaks centered at  180  and 

caused by coherent backscattering. For the same reason, the minimum in the )(
~

)(
~

1112  FF  

curves caused by coherent backscattering (see the upper panel of Fig. 5) becomes shallower with 

increasing asphericity of the particulate volume.       

Thus we can conclude that the superposition T-matrix results for spheroidal particulate vol-

umes fully confirm the robustness of the scattering regimes and optical phenomena exhibited by 

spherical volumes of DRM as well as supports their qualitative and quantitative explanations 

given in Ref. [7] (see also Refs. [29,30]). This conclusion may have practical implications, for 

example in the qualitative interpretation of opposition optical phenomena exhibited by the par-

ticulate icy bodies forming Saturn’s rings [27,31]. Furthermore, increasing nonsphericity of par-

ticulate volumes causes discernable (albeit less pronounced) optical effects that can also be ex-

plained in terms of the interference phenomenon coupled with the order-of-scattering expansion 

of the far-field Foldy equations.  
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Fig. 1.  V-equivalent spherical (panel A) and oblate spheroidal (panels B and C) volumes of dis-

crete random medium populated quasi-randomly by N = 800 identical spherical particles. The 

aspect ratio E is 1.5 in panel B and 2.5 in panel C. The volumes are viewed perpendicularly to 

their short axes. 
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Fig. 2. Elements of the normalized scattering matrix )(
~
F  for spherical and oblate spheroidal 

volumes with E = 1 and 2.5, respectively, each populated by N = 800 identical spherical parti-

cles.  
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Fig. 3. Coherent backscattering features exhibited by oblate E = 2.5 spheroidal volumes populat-

ed by N = 400 and 800 identical spherical particles.  
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Fig. 4. Phase function )(
~

11 F  for spherical and oblate spheroidal volumes with E = 1, 1.5, 2, and 

2.5, each filled with N = 800 identical spherical particles. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 14 

 

 

Fig. 5. Degree of linear polarization and linear and circular polarization ratios for spherical and 

oblate spheroidal volumes with E = 1, 1.5, and 2.5, each populated by N = 800 identical spherical 

particles. 


