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Abstract 24 

The diurnal variation of tropical ice clouds has been well observed and examined in terms of the 25 

occurring frequency and total mass but rarely from the viewpoint of ice microphysical 26 

parameters. It accounts for a large portion of uncertainties in evaluating ice clouds’ role on 27 

global radiation and hydrological budgets. Owing to the advantage of precession orbit design and 28 

paired polarized observations at a high-frequency microwave band that is particularly sensitive to 29 

ice particle microphysical properties, three years of polarimetric difference (PD) measurements 30 

using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) 31 

are compiled to reveal a strong diurnal cycle over tropical land (30S–30N) with peak 32 

amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, 33 

shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice 34 

crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud 35 

occurring frequency and total ice mass by about 2 hours, which strongly implies that 36 

understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and 37 

precipitation processes.  38 

 39 

Plain Language Summary: 40 

Along with the rising and setting of the Sun, our Earth's clouds vary between day and night. For 41 

tropical ice clouds, there are many evidences showing that the cloud cover and thickness change 42 

dramatically during a day (referred to as the "diurnal cycle") but few hints of what happens to 43 

individual ice crystals. Using a new spaceborne satellite instrument called GPM-GMI, we found 44 

that ice crystal size or shape also exhibits a strong diurnal cycle over tropical land but not over 45 



tropical ocean. We can further infer that the microscopic variation of ice crystals may be an 46 

important reason for the change of ice cloud cover and thickness later on. 47 

 48 

1. Introduction 49 

Upper tropospheric ice clouds, namely anvils and cirrus, spread to cover vast areas and persist 50 

for hours to days. They are a major modulator of Earth’s radiation and thus play an important 51 

role in weather and climate changes (e.g., Hartmann et al., 1984; Raymond and Zeng, 2000; 52 

Waliser et al., 2009). Studies have shown that the cloud radiative effect (CRE) of the clouds 53 

strongly depends on physical details, such as cloud top height (Kiehl, 1994), thickness (Hong et 54 

al., 2016; Hartmann and Berry, 2017), overlaying situation (Hartmann et al., 2001), and 55 

microphysical properties (Liou et al., 2002; Zeng et al., 2009a, b; Tang et al., 2017). Fu and Liou 56 

(1993), for example, showed that the radiative heating rate for a layer of ice cloud with a fixed 57 

ice water path could differ by a factor of 10 when the mean effective radius of the ice particles 58 

varies by a factor of 5. Reducing the uncertainty of CRE requires a better understanding of ice 59 

cloud microphysical properties, which is essential not only to remote sensing of the bulk optical 60 

properties but also to the simulation of CRE (Tang et al., 2017). In addition, ice clouds, 61 

especially the anvils and mixed-phase clouds in deep convections, contribute much to tropical 62 

precipitation and vertical circulations (e.g., Raymond and Zeng, 2000; Liu and Zipser, 2008). 63 

Since ice clouds play a critical role in the global water and energy cycles, it is imperative to 64 

determine their microphysical processes as well as their macro-characteristics.  65 

One of the large variabilities of tropical ice clouds is their strong response to the diurnal 66 

variation of solar heating at the Earth’s surface (Yang and Slingo, 2001; Tian et al., 2004; Hong 67 

et al., 2006). The diurnal variations of ice clouds have been observed using various cloud 68 



properties such as occurring frequency, total mass, and cloud cover with a variety of measuring 69 

techniques (e.g., Tian et al., 2004; Liu and Zipser, 2008; Eriksson et al., 2010; Millan et al., 2013; 70 

Jiang et al., 2014) in conjunction with some other key atmospheric variables such as water vapor 71 

(Soden, 2000), surface temperature (Dai et al., 2004) and convective activity (Chung et al., 2007). 72 

These metrics have been extensively studied over the past two decades especially owing to the 73 

rapid advance in spaceborne instrument technology, as well as the increase in a satellite’s spatial 74 

and temporal coverage. However, microphysical properties of ice crystals, such as crystal shape, 75 

orientation, and size distribution, have rarely been investigated, since it is a challenge to observe 76 

ice crystal microphysical properties accurately from space.  Some of the integrated properties 77 

(e.g., effective diameter) are derived products from primary properties, such as mass, coverage, 78 

and type, in most satellite observations (e.g., CloudSat) with arbitrary assumptions. Although 79 

new retrieval techniques such as one-dimensional variation method (1DVAR) and neural 80 

network can retrieve all desired variables together at least theoretically, oversimplified 81 

microphysical assumptions are still required in the retrieval model or training database, which 82 

directly impact their outputs (e.g., Boukabara et al., 2011; Duncan and Kummerow, 2016). 83 

Hence, how to observe and analyze the diurnal variation of cloud ice microphysics from space is 84 

inherently a difficult yet interesting topic.   85 

Polarimetric difference (PD) between paired vertically and horizontally polarized (V-pol and 86 

H-pol hereafter for abbreviation) channels at a fixed incidence angle is a relatively matured 87 

product and can be measured precisely from space. Recently, the polarimetric data have been 88 

used to study ice microphysical properties (e.g., Skofronick-Jackson et al. 2015; Homeyer and 89 

Kumjian, 2015; Hioki et al., 2016). In particular, studies of PD from passive and active 90 

spaceborne measurements at visible and microwave wavelengths show that nonspherical ice 91 



crystals are not randomly oriented but usually horizontally oriented (Prigent et al., 2001, 2005; 92 

Davis et al., 2005, 2007; Zhou et al., 2012; Defer et al., 2014). Gong and Wu (2017) (GW17 93 

hereafter) first identified the similar features from the GPM-GMI 166 and 89 GHz observations. 94 

Taking advantage of GPM’s precession orbit, this paper aims to better understand the diurnal 95 

variation of PDs in the tropics and its implication for ice crystal’s microphysical properties and 96 

how they vary together with macroscopic quantities such as cloud occurring frequency and mass.       97 

 98 

2. Diurnal Variations of 166 GHz Polarimetric Radiance Difference 99 

The GPM core satellite has a dual-frequency precipitation radar (DPR) and a passive GMI 100 

instrument with 13 channels between 10 and 190 GHz (Hou et al. 2014; Skofronick-Jackson et al. 101 

2015). Among the 13 channels, the 10.65, 18.7, 36.5, 89, and 166 GHz channels have V-pol and 102 

H-pol. In this study, only the 166 GHz polarization data are used because this channel is 103 

sensitive to cloud ice scattering and its PD is not sensitive to water cloud emission. Furthermore, 104 

the PD at this channel is least contaminated by surface polarizations in the tropics (GW17). The 105 

GPM core satellite flies at the altitude of 407 km in a non-Sun-synchronized orbit that covers a 106 

latitude range between 68S and 68N. It slowly progresses over the local solar time (LST), 107 

making it ideal to study the diurnal variability of clouds and precipitation. The GMI has a 108 

forward conical scan viewing geometry off-nadir at an angle of 48.5 (see Skofronick-Jackson et 109 

al. 2015 for details). 110 

The current study uses Version 1.4 of Level-1C inter-calibrated GMI brightness temperature 111 

(TB) observations at 166 GHz during February 2014 – December 2016 (GPM X-Cal Working 112 

Group, 2015). The diurnal cycle is not separated further by seasons, as the seasonality in the 113 

tropics between 30S and 30N is small. Furthermore, since it takes approximately 45 days for 114 



the GPM satellite to precess through all LSTs, integration over three years on a time interval of 2 115 

hours can generate robust and useful cloud statistics. The GMI 1833 GHz radiance is used to 116 

screen the “confident cloudy-sky” scenes for estimating the cloud occurring frequency (OF) and 117 

the mean cloudy-sky TB (TBcld). The colder TBcld is, the thicker the ice cloud is. As at 166 GHz, 118 

-TBcld is roughly linearly correlated with the column-integrated ice water path (IWP) as long as 119 

the cloud is not completely opaque (Gong and Wu, 2014). Therefore, -TBcld can be used as a 120 

proxy for IWP along the GMI’s line of sight. Both 166 and 1833 GHz channels belong to the 121 

high-frequency group that scans simultaneously with the same footprint size of 4.2 X 7.0 km
2
. 122 

The “3 cloud detection” threshold is employed to distinguish between clear- and cloudy-sky 123 

scenes, which is identical to Gong and Wu [2014; 2017]. This method first identifies the peak 124 

(TBpeak) and standard deviation () of the probability density function (PDF) of the TB 125 

observations in a given region or a latitude belt over the period of interest, and then the cloudy-126 

sky scene is defined at places where TB < TBpeak - 3. In practice, this procedure is iterated twice 127 

to remove the broadening effect introduced by clouds (i.e., bias in ). Since a large amount of 128 

“possible ice cloud present” scenes with relatively warmer TB is excluded using this method, OF 129 

is much smaller and TBcld is cold-biased. However, to fully describe the ice cloud polarization 130 

feature, it is necessary to account for the polarization signal corresponding to these “warmer ice 131 

cloud” scenes that are in general populated with cirrus and thin anvil clouds. Hence, another 132 

threshold is proposed in the next paragraph to separate the clear-sky and cloudy-sky polarimetric 133 

signatures. 134 

Three years of the 166 GHz observations in the tropics (30S-30N) are sorted to the nearest 135 

LST slot that is separated by a 2-hour interval. Then, the 2D PDF integration is performed for 136 

each of the 12 LSTs according to its V-pol TB (TBV) and PD values. PD is defined as  137 



    𝑃𝐷 ≡ 𝑇𝐵𝑉 − 𝑇𝐵𝐻     (Eqn 1) 138 

A positive PD implies that the upwelling microwave radiation must have a shorter cloud optical 139 

length in V-pol (V) than in H-pol (H) due to either scattering or absorption along the path and 140 

vice versa. Once the PDF is compiled, the mean and standard deviation of the PD value within 141 

each TBV bin is then calculated to draw the final curves shown in Fig. 1a for the oceanic and Fig. 142 

1b for the landmasses, respectively. The cloudy-sky thresholds are drawn in the black dash lines. 143 

Following GW17, the bottom-up bell curve is referred to as the “PD-TB” relationship. The same 144 

as found in GW17, the TBV value corresponded to the peak PD robustly located at approximately 145 

200 K, and the broadness of the spread is strikingly similar across different LSTs. These features 146 

again reveal an apparently nearly universal bell-curve in the PD-TB relationship. These curves 147 

spread out at the peak PD but converge to roughly the same TB values as PD values approach 148 

zero. At the warm TB end when the curves converge, another threshold (dash-dot lines) is set, to 149 

the left of which is considered a full cloudy-sky PD-TB relationship. Since the dynamic range of 150 

TBv for the PD-TB relationship holds the same during a day, the curvature of the curve is solely 151 

determined by its peak value of PD (PDpeak).  152 

The PDpeak from tropical clouds exhibits a clear diurnal cycle over land but not over ocean. 153 

The amplitude of PDpeak variation over land is ~ 38% and that over ocean is only ~ 6%. 154 

Furthermore, the maximum and minimum of PDpeak occur at local morning (9:00 LST) and 155 

afternoon (16:00 LST) over land, while the difference is not statistically significant over ocean. 156 

The general conclusion of local morning maximum and afternoon minimum of PDpeak over land 157 

is robust against using different time intervals (1 hr and 3 hrs), although the exact LST may vary 158 

by +/- 1hr. As will be shown in the next section, PDpeak, or the curvature of the curve, is the key 159 

variable to correspond to the column-integrated optical axial ratio.  160 



The diurnal variation of PDpeak is better exhibited in Fig. 2a (ocean) and 2b (land) where 161 

PDpeak clearly shows an anticorrelation with cloud occurrence frequency and mean cloud TB. 162 

Compared to the diurnal cycle of upper-tropospheric clouds previously identified using Tropical 163 

Rainfall Measurement Mission (TRMM)’s precipitation radar and visible and infrared scanner, 164 

the diurnal cycle of PDpeak also anticorrelates with that of the area and cloud fraction for both 165 

ocean and land surface conditions. In those analyses, over ocean, the diurnal cycle of PDpeak 166 

precedes that of the precipitation rate (PR) by ~ 2 hrs, but for land cases, it lags the PR diurnal 167 

cycle by ~ 2 hrs (reference: Fig. 7 of Hong et al., 2006; Fig. 3 of Liu and Zipser, 2008).  168 

To showcase the direct correlation of the diurnal cycles between PDpeak and the macro-169 

quantities of the same group of clouds, Fig. 2 also displays the time series of PDpeak, OF, and 170 

TBcld. As mentioned previously, to compute the latter two variables, all cloudy-sky scenes with 171 

TB below the “3 thresholds,” shown as the dashed lines in Fig. 1, are used here. In addition, to 172 

remove some casual noise produced by only taking PDpeak values, PD from a relatively small TB 173 

window (180K < TBV < 210K) is averaged (referred to as 𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅), showing that the major 174 

conclusions hold robustly against using 1 hr time interval, as well as against variations of the 175 

thresholds (e.g., using dash or dash-dot lines in Fig. 1 to compute OF and TBcld or using slightly 176 

different windows to compute 𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ ).  177 

 Similar to the findings from TRMM data, the diurnal cycle of 𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ is the opposite of 178 

OF and total mass (-TBcld), while the latter two go together tightly. However, the largest 179 

correlation coefficient is found when 𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ leads the other two quantities by ~ 2 hours, when 180 

the correlation coefficient exceeds -0.9. That is to say, when 𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ reaches its minimum 181 

(maximum) during the day, ice cloud coverage and total ice cloud mass reach their maximum 182 

(minimum) within ~ 2 hrs. This is the first study implying that ice crystal microphysics may play 183 



a key role on the formation/dissipation processes of ice clouds. Furthermore, this leading time of 184 

2 hrs is robust against using a time interval of 1 hr, but it would be “distorted” to 3 hrs if we use 185 

3 hrs as the time interval for the analysis. Such a sensitivity exercise emphasizes the importance 186 

of having enough samples and small enough time steps in order to investigate the diurnal 187 

variation.  188 

          The only exception is between  𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ and OF over ocean where the correlation is the 189 

largest without 5 hour advancement. This result changes with choosing different time interval so 190 

it’s not a roubust result. Since the diurnal cycle of 𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ is too small over ocean to beat its own 191 

variability (error bars on Fig. 2a), the correlation among these three cloud parameters are not 192 

statistically significant over ocean anyway.  193 

 In summary, a strong diurnal cycle of GMI’s 166 GHz PD is found for tropical ice clouds 194 

over land and a much weaker diurnal cycle over the ocean. The diurnal variations of PD lead 195 

those of the total ice cloud coverage and mass by ~ 2 hrs.         196 

 197 

3. Interpretation and Radiative Transfer Model Simulations 198 

As the observed PD is dominantly positive, by definition, ice particles in the ice cloud layer 199 

must possess anisotropic characteristics in terms of the bulk microphysical properties along the 200 

line of sight. In other words, the ice particles within this ice cloud layer must be aspherical 201 

microphysically and, more importantly, also aspherical on an integrated sense. Previous studies 202 

hence proposed that the majority of aspherical ice crystals should have oriented preferably along 203 

the horizontal direction rather than randomly oriented (Prigent et al., 2001, 2005; Davis et al., 204 

2005, 2007; Zhou et al., 2012, 2013; Defer et al., 2014). GW17 too one step further that 205 

explained the entire bottom-up bell curve feature of the PD-TB relationship with a conceptual 206 



model. In this model, when a cloud is optically thick, both V- and H-pol radiations are saturated 207 

at the same level, causing PD to diminish. By applying this hypothesis to a radiative transfer 208 

model (RTM), GW17 simulated the observed PD-TB relationship for 89, 166, and 640 GHz at 209 

the same time by controlling one parameter, called the “optical aspect ratio” (AR), defined as 210 

𝐴𝑅 ≡
𝜏𝑉

𝜏𝐻⁄ . The ratio is not the typical “axial ratio” parameter often used to describe the 211 

eccentricity of an aspherical ice particle; it is the column integrated optical property difference 212 

between V-pol and H-pol at a given frequency, in the present case, 166 GHz. Further, by 213 

adjusting the value of AR, GW17 found the curvature of the PD-TB relationship changes, but the 214 

warm and cold ends remain converging to 0 (as expected theoretically) at roughly the same TBV 215 

values. In other words, PDpeak is directly tied to the value of AR.  216 

Following on the GW17 approach, the observed diurnal variation of the PD-TB relationship 217 

is simulated using different AR values in the same RTM as detailed in GW17. Briefly speaking 218 

about the setup, two parallel simulations are run at the same time; one with a regular extinction 219 

profile and the other profile is arbitrarily multiplied by a fixed AR value. Gamma distribution is 220 

employed for the particle size distribution, with the effective diameter fixed at 160 m. By 221 

varying the cloud optical depth to create the dynamic range of TB, the difference between the 222 

two parallel runs creates the “PD-TB” bell curve observed (c.f., Section 4.2 of GW17). In this 223 

study, AR is changed from 1.0 to 2.0 with increments of 0.02 for each set of simulation. The 224 

“best-fit” AR value is then defined such that the standard deviation between the simulated PD 225 

and the observed counterpart reaches minimum (see Fig. 3a). In this way, the AR value is 226 

“retrieved” for different LSTs and its time series are displayed in Fig. 3b and 3c over the ocean 227 

and land surfaces, respectively. This AR “retrieval” is technically similar to a standard retrieval 228 

process except for no actually retrieving a physical quantity with a set of rigorous algorithms.  229 



As expected, the variation of the “best-fit” AR is tightly correlated with the diurnal variation 230 

of 𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅. When the diurnal variation amplitude is small compared to the internal variability at a 231 

given LST, the “best-fit” AR is insensitive to the small change of 𝑃𝐷𝑝𝑒𝑎𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅. That’s the case over 232 

tropical ocean. On the other hand, when the tropical land convection and the associated anvil and 233 

cirrus clouds start to experience the most dramatic diurnal change from noon to late night, the 234 

“best-fit” AR value also changes accordingly.  235 

The value of AR physically corresponds to an integrated result from a few ice microphysical 236 

parameters that impact 
𝜏𝑉

𝜏𝐻⁄  by definition. 𝜏 = ∫ ∫ 𝑁(𝐷)𝐴(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
𝑑𝑧

𝑧𝑡𝑜𝑝
𝑧𝑏𝑎𝑠𝑒

, where N is the 237 

number density, A is the cross section of the particle size perpendicular to the incoming radiation, 238 

D is the diameter, and zbase and ztop are the cloud base and top heights, respectively (Heymsfield 239 

et al., 2003). With V-pol and H-pol detecting radiation from the surface that penetrates up 240 

through the same ice cloud layer, only the aspherical particle shape and diameter at two specific 241 

directions that are perpendicular to V-pol and H-pol, assuming that the 100% horizontal-242 

alignment is valid. Under this assumption, large (small) AR corresponds to high (low) axial ratio 243 

of the ice particles. That means over land, the majority of ice particles tend to become more and 244 

more sphere-like from morning (9 am) to afternoon (4 pm), and from then on horizontally 245 

oriented non-spherical ice crystals start to dominate the PD signal again.   246 

This proposed diurnal variation of ice crystal orientation is consistent with the physics model 247 

of radiation-induced ice crystal growth (or the radiative effect on microphysics [(e.g., Zeng 248 

2008]). In the physics model, horizontally oriented ice crystals near the cloud top, in contrast to 249 

the vertically oriented ones, emit longwave radiation effectively to space, subsequently have low 250 

surface temperature, and thus can grow to precipitation-sized particles, which explains the 251 

positive value of the PD observed. Meanwhile, ice crystals near the cloud top absorb solar 252 



radiation during daytime and consequently the radiation-induced crystal growth is modulated by 253 

solar radiation, which explains the diurnal variation of the PD shown in Figs. 1 and 2 (Zeng et al., 254 

2016). The model also explains the delay of peak of ice cloud mass and coverage, since 255 

horizontally oriented ice crystals with larger PD (i.e., flatter) tend to quickly grow into 256 

precipitation-sized ones and fall out as precipitation, while ice crystals that are more sphere-like 257 

grow slower and stay as ice cloud for a longer time.  258 

As for the relationship of AR to particle size, GW17 found its relationship to AR is quite 259 

complicated and nonlinear using a fully polarized RTM simulation (see Fig. 9 in GW17). GW17 260 

found that the ice crystal with “column” shape overall matched the best with the observations, 261 

and the curvature of the PD-TB curve rises with the effective radius, But for certain other shapes, 262 

such as rosette with 7 branches, simulation results do not show the clear linear relationship 263 

between PDpeak and effective radius. Therefore, one cannot rush to the conclusion that the 264 

particle size growth exhibits a diurnal cycle. Other factors might also contribute to the diurnal 265 

variation of PD but are likely secondary (e.g., liquid cloud that can damp the PD and TB signals 266 

also exhibit its own diurnal cycle).  267 

The 100% horizontal alignment is unlikely to occur in reality, and the mixing of different ice 268 

particle shapes may also vary diurnally. The better-mixed the shapes are (i.e., more percentage of 269 

random orientation), the smaller the AR value is because AR is expected to vanish for the 270 

extreme situation of 100% random orientation. If the percentage of randomly oriented particles is 271 

the only or major contributor to the diurnal variation of PDpeak, then it indicates that along with 272 

the growth of deep convective systems from late morning to the early evening, ice particles also 273 

tend to become more and more randomly oriented. This makes sense as the vertical motion in 274 

deep convective cores tends to generate and maintain a more turbulent environment than that in 275 



the ambient environment of the anvils and cirrus. However, this could not explain the ~ 2 hrs 276 

delay of the peak/trough of the diurnal cycles of ice cloud mass and coverage. Also, as indicated 277 

in the Appendix A, the PDpeak information indeed mostly comes from the differentiation of V 278 

and H for anvils, instead of from deep convective clouds as 166 GHz quickly saturates at the top 279 

several kilometers of the deep convective core. Therefore, the degree of turbulence, or 280 

randomness, inside the deep convective cloud is not a major contributor to the value of AR or 281 

PDpeak.  282 

  283 

4. Conclusions 284 

High-frequency passive microwave measurements, such as GMI 166 GHz channel, are 285 

sensitive to ice cloud scattering. Vertically and horizontally polarized microwave observations 286 

are found to differ in cloudy-sky because of the disparity of their optical thicknesses through an 287 

ice cloud layer with anisotropic bulk microphysical properties. As a result, the polarimetric 288 

radiance difference, or PD, can be used to infer cloud microphysical properties (i.e., ice crystal 289 

shape, size, and orientation).  290 

The GPM precession orbit provides a valuable chance to study the diurnal variations of PD at 291 

166 GHz in the tropics for the first time. The PD-TB relationship bears with a bottom-up bell 292 

curve that was investigated extensively in an earlier study of Gong and Wu [2017]. All bell 293 

curves can be represented by the peak PD amplitude, called PDpeak, which serves as a good 294 

measure to characterize the diurnal variation of the PD-TB curve. Similar to other macrophysical 295 

quantities like the area of coverage, occurring frequency, and total mass of ice clouds, PDpeak is 296 

found to vary by only 6% over tropical ocean, but vary dramatically (~ 38%) over tropical land. 297 



The maximum and minimum of PDpeak occur at local morning and afternoon over tropical land, 298 

which lead the diurnal cycle of ice cloud mass and coverage by ~ 2 hrs with an opposite sign.  299 

 The observed diurnal variation of the PD-TB relationship can be explained quantitatively 300 

using a set of different AR values, because AR reflects a bulk effect of ice crystal shape and size 301 

in radiative transfer, and the diurnal variation in PD is linked directly to a variation in AR. Other 302 

microphysical properties, however, may also play a role in altering the PD-TB relationship as 303 

observed and need to be explored with more observations and accurate model representations of 304 

ice microphysical properties. Since radiation impacts ice crystal growth via crystal surface 305 

temperature (e.g., Zeng, 2008; Zeng et al., 2016), it can subsequently change AR, which in turn 306 

changes PD. Although we cannot fully understand the delay and anticorrelation of cloud mass 307 

and coverage with respect to PD, the delayed occurrence of ice cloud macro-physical properties 308 

indicates the importance of ice microphysics in formation/decay of ice clouds. It is imperative to 309 

include these processes in models to replicate the realistic cloud diurnal cycle and its radiative 310 

and hydrological effects.  311 

This study exemplifies the power of passive microwave polarimetry in remotely sensing 312 

ice cloud microphysical properties. The 166 GHz is the highest frequency of polarized channels 313 

in GMI. Because ice cloud scattering is more significant at high frequencies, careful fusion of 314 

observations from multi-frequency polarized microwave/IR channels makes it feasible to infer 315 

both bulk ice particle size and shape simultaneously and allows global studies of ice cloud 316 

microphysics on diurnal, seasonal, and interannual time scales. Although it has been well known 317 

that ice microphysics are strongly tied together with the evolution of ice cloud macro-properties, 318 

this work identifies that understanding the variations in ice microphysics are necessary to predict, 319 

infer, and model the bulk properties of the ice clouds and their broader evolution (e.g., 320 



precipitation process).  This study is a good exercise to manifest that new satellite 321 

instrumentation (e.g., GMI) with novel observational techniques (e.g., paired high-frequency 322 

microwave channels) may offer a valuable means to observe and understand the entire cloud-323 

precipitation processes.   324 

 325 

Appendix A: Where does the PDpeak come from? 326 

In Gong and Wu (2017), the bottom-up bell curves of the PD-TB relationship from 89, 166, 327 

and 640 GHz observations are explained by the different penetration depth of V-pol and H-pol 328 

measurements through an ice cloud layer consisting of horizontally oriented nonspherical ice 329 

crystals. In this appendix, we present additional evidence to support this explanation. More 330 

importantly, this exercise answers directly to the types of ice cloud, their vertical levels, and how 331 

they contribute to the largest PD signal (PDpeak). 332 

Two years (2014–2015) of collocated CloudSat-GMI data are compiled together to composite 333 

the Contoured Frequency by Altitude Diagram (CFAD) in Fig. A1b for the clouds that satisfy the 334 

criteria such that 7 K < PD < 20 K and 160 K < TBv < 220 K (enclosed by the red rectangle box 335 

in Fig. A1a). This dataset is produced by Dr. Joe Turk at the Jet Propulsion Lab and details about 336 

this dataset can be found in Turk [2017]. To generate robust statistics, we employed two years of 337 

data since collocated GPM-CloudSat scenes are sparse. For CloudSat, 0 dBZ roughly separates 338 

the thin ice clouds (anvils, cirrus) with low reflectivity from thick ice clouds (thick anvils, deep 339 

convective cores) with high reflectivity. 340 

As shown in CFADs for V-pol and H-pol, the largest disparity comes from clouds with 341 

reflectivity below 0 dBZ and height above 10 km. These clouds are apparently thin anvils (that at 342 

least 166 GHz V-pol can partially penetrate through) and cirrus clouds. When the ice cloud 343 



becomes thicker and lower, 166 GHz passive microwave observations quickly saturates, and 344 

although 166 GHz are still sensitive to these clouds (down to cloud height as low as 2 km and as 345 

strong as 25 dBZ), the PD of 166 GHz no longer shows the disparity.  346 

One possible explanation of the curvature of the PD-TB relationship that is proposed in 347 

GW17 is that turbulence in deep convective cores likely forces the nonspherical ice crystals to be 348 

well mixed (i.e., randomly oriented), in which way the PD eventually vanishes when TB gets 349 

cold. This exercise demonstrates that although this mechanism is quite plausible, 166 GHz PD 350 

measurements cannot identify the turbulence condition in thick ice clouds and therefore cannot 351 

be used to verify such a hypothesized mechanism.  352 

Data Access 353 

GMI Level-1 calibrated radiance data and CloudSat-GPM collocation dataset can be acquired 354 

from the Precipitation Processing System’s (PPS) FTP server at arthurhou.pps.eosdis.nasa. 355 

gov. The radiative transfer model is coded and modified by the authors for this specific study. 356 

Interested readers are encouraged to contact the lead author directly for a copy of the model. All 357 

data used to make the figures in this manuscript are included in the supplementary materials. A 358 

README file illustrates the file format, content, and variable meanings.  359 
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 497 

Figure Titles: 498 

Figure 1: PD-TBv curves at different local solar times (colors) over tropical ocean (a) and land 499 

(b). A curve is a simple connection of the mean values at each TB bin of the 2D PDF integrated 500 

from year 2015 of GMI observations at 166 GHz between 30S and 30N. The black dash lines 501 

indicate the 3 threshold for computing the cloud occurring frequency and mean TB, and dash-502 

dot lines exhibit the threshold for describing the PD-TB relationship.  503 

Figure 2: Top: time series of the mean PD value for clouds with TB in the range of [180, 210] K 504 

(black), mean cloud occurring frequency (OF; red), and mean TB (TBcld; blue; axis value is 505 

upside-down to match the physical meaning of total column ice mass) for clouds below the 3 506 

threshold (red) at tropical ocean (a) and land (b) during 2015. Bottom: lag-correlation between 507 

https://pps.gsfc.nasa.gov/Documents/CSATGPM_COIN_ATBD.pdf


the time series of PD and OF (red) and PD and TBcld (blue) over ocean (c) and land (d). 508 

Positive/negative lag time corresponds to a lead/lag of the former time series to the latter ones.  509 

Figure 3: (a) Example of how simulation compares with observations at 166 GHz. The simulated 510 

166 GHz PD-TBv relationships are shown in black lines with different AR values (AR varies 511 

from thin to bold between 1.0 and 1.5 with an increment of 0.04); the top of the simulated results 512 

shows the mean of the observed ensemble for the entire year of 2015 between the equator and 513 

10N with the variability shown in pink envelope (adapted from Fig. 8b of Gong and Wu, 2017). 514 

The best-fit AR values derived from (a) for each time frame are plotted as stars in (b) and (c) for 515 

ocean and land situations, respectively. Observations are taken from the curves shown in Fig. 1 516 

and color legend is the same as Fig. 1. See the context for the definition of “best-fit”.    517 

Figure A1: (a) Two-dimensional Probability Density Function (PDF) of PD (i.e., TB) and TBv 518 

derived from GMI 166 GHz oceanic measurements during July 2015 collected between the 519 

equator and 10N. This figure is adapted from Fig. 3c of Gong and Wu (2017); (b) CFADs of 520 

clouds selected from the red rectangle box enclosed area in (a). The black and red contours 521 

correspond to 166 GHz V-pol and H-pol CFAD, respectively.  522 
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