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ABSTRACT

Current microwave precipitation retrieval algorithmsliaé the instanta-
neous brightness temperature (TB) to estimate precipitaite. This study
presents a new idea that can be used to improve existingtalgs: using TB
temporal variation4T B) from the microwave radiometer constellation. As a
proof-of-concept, microwave observations from eight polditing satellites
are utilized to derivéAT B. Results show thahT B correlates more strongly
with precipitation rate than the instantaneous TB. Pddity the correla-
tion with precipitation rate improved to -0.6 by usiAd B over the Rocky
Mountains and north of 4B, while the correlation is only -0.1 by using TB.
The underlying reason is thAfT B largely eliminates the negative influence
from snow-covered land, which frequently is misidentifiedpmecipitation.
Another reason is thaT B is less affected by environmental variation (e.qg.,
temperature, water vapor). Further analysis shows thantmgnitude of the
correlation betweedT B and precipitation rate is dependent on the satellite
revisit frequency. Finally, we show that the retrieval les@rom ATB are
superior to that from TB, with the largest improvement in t®m Addition-
ally, the retrieved precipitation rate over snow-covemgions by only using
AT B at 89 GHz agrees well with the ground radar observations;iwbpens
new opportunities to retrieve precipitation in high latias for sensors with
the highest frequency at89 GHz. This study implies that a geostationary
microwave radiometer can significantly improve precipaatretrieval per-
formance. It also highlights the importance of maintairtimgcurrent passive

microwave satellite constellation.
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1. Introduction

Many precipitation retrieval algorithms have been sudcdlgsdeveloped for several passive
microwave sensors, including Special Sensor Microwavagken (SSM/I) and Special Sensor Mi-
crowave Imager/Sounder (SSMIS) (Spencer et al. 1989; Ldi@urry 1992; Petty 1994; Fer-
raro and Marks 1995; McCollum and Ferraro 2003; Sano et dl32%ou et al. 2015), Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager (TMIKgmmerow et al. 2001; Viltard
et al. 2006; Wang et al. 2009; Aonashi et al. 2009; Gopalah 040; Petty and Li 2013; Islam
et al. 2015; Ebtehaj et al. 2015), Advanced Microwave Saupdinit (AMSU) and Microwave
Humidity Sounder (MHS) (Staelin and Chen 2000; Grody et 8012 Chen and Staelin 2003;
Weng et al. 2003; Ferraro et al. 2005; Noh et al. 2006; Suvase® and Staelin 2008; Laviola
and Levizzani 2011; Surussavadee and Staelin 2010; Saalo 2015), Advanced Technology
Microwave Sounder (ATMS) (Surussavadee and Staelin 20bQk&bara et al. 2013; You et al.
2016a), and Advanced Microwave Scanning Radiometer 2 (AMPB@R1eyers and Ferraro 2016).
In addition to algorithms developed specifically for a certensor, there are several more generic
algorithms, which are applicable to multiple sensors (Chea Staelin 2003; Shige et al. 2009;
Boukabara et al. 2011; Kummerow et al. 2015; Kidd et al. 2016)

These algorithms differ in the following three aspectsstia variety of statistical approaches
link the TB with the precipitation rate, including regressiFerraro and Marks 1995; Wang et al.
2009; McCollum and Ferraro 2003), Bayes’ theorem (Kummegbwal. 2001; Sano et al. 2013;
You et al. 2015), neural network (Sano et al. 2015; Islam.€2@G5), and shrunken locally linear
embedding method (Ebtehaj et al. 2015). Second, the heatgiecipitation datasets required are
derived from several sources, including spaceborne rddRiviM precipitation radar, Global Pre-

cipitation Measurement (GPM) dual frequency precipitatiadar, and CloudSat profiling radar)
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(Wang et al. 2009; Kummerow et al. 2015; Surussavadee aetir§2810), ground radar networks
(You et al. 2015), or cloud resolving model output (Kidd et24116). Similarly, the required pre-
cipitation profile information can be derived either frorowtl resolving model simulation (Bouk-
abara et al. 2011; Kidd et al. 2016) or from precipitationaradbservation (Kummerow et al.
2011). Third, radiative transfer simulations are oftenispdnsable for the more generic algo-
rithms since they need to derive the relationships betwd2anid precipitation rate for multiple
sensors, which often have different channels (Shige e0@P2Boukabara et al. 2011; Kummerow
et al. 2015). In contrast, radiative transfer models arenecessarily needed when the retrieval
algorithm is only for one specific sensor.

These precipitation retrieval algorithms over land segfyiare very different. However, they
all share one common feature: using the instantaneous TiBeinetrieval process. The primary
signature is the TB depression at high frequency channgjs 85, 166 GHz) due to ice scattering.

To augment existing retrieval algorithms, this study psg®to use TB temporal variation,
which is derived from eight polar-orbiting satellites (reatetails in data section). It is agreed
that the primary precipitation signal over land is the TB r@sgion at high frequency channels
caused by the ice scattering. The first motivation of usingt@fporal variation is to account
for differences in TB starting values that lead to differesian the TB depression by season. For
example, corresponding to the same surface rain rate (emun/hr), the TB at 89 GHz can
decrease 10 K from 300 K to 290 K in the summer season, whilsat@an decrease 10 K from
280 K to 270 K in the winter season. When TB is directly usechmrietrieval process for these
two situations, it will result in a large retrieval error esk ancillary temperature information
is incorporated in the retrieval process. We will demoristthat using TB temporal variation,
instead of the instantaneous TB, can largely mitigate #8se. Physically, under moderate to

heavy precipitation, the high frequency channets86 GHz) are surface blind. That is, surface
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temperature and emissivity variation are of less impogamuder heavy precipitation scenarios
(Ferraro and Marks 1995; You et al. 2011; You and Liu 2012; ¥pal. 2014). However, the
majority of precipitation is light precipitation. This ispecially true for the precipitation intensity
in the winter season. The background noise can greatly congéde the rather weak ice scattering
signal in winter, which will inevitably result in poor prestation retrieval performance.

To account for environmental temperature variation, sehagorithms incorporate temperature
information from re-analysis datasets in the retrievakpss (Sano et al. 2013; You et al. 2015;
Kummerow et al. 2015). It is shown that incorporating tenapene information improves the pre-
cipitation retrieval performance. We will demonstratetth& temporal variation automatically
accounts for the environmental temperature variatiorhout using the ancillary temperature in-
formation.

Another common and serious issue in the precipitationenedtialgorithm development is the
cold land surface contamination (e.g., snow-covered lantjch is particularly problematic for
rainfall/snowfall retrieval in winter because the colddasurface naturally possesses a signal sim-
ilar to the precipitation signal (You et al. 2015; Chen et24l16). For example, snow-covered
land pixels are frequently misidentified as precipitatimgefs, and therefore resulting in a large
falsely retrieved precipitation rate. It is possible toessr out these snow-covered land pixels us-
ing daily snow-cover maps (Helfrich et al. 2007). Howevee show later that there still exist
some obvious snow-covered pixels even after screeninglb@séaily snow-cover maps. More
importantly, in the winter season, snow accumulation ongifeeind is prevalent. Screening out
these pixels will also discard precipitating pixels, legfdto many missing precipitating pixels.
We will demonstrate that even if the snow-covered pixel isid@ntified as a precipitating pixel,
the retrieved precipitation rate by TB temporal variatiserciose to 0 because that TB temporal

variation is close to 0.
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The objective of this study is to present a new idea for eningngrecipitation retrievals by
using TB temporal variation. We will explain where, when avity TB temporal variation over-
comes some of the limitations of the instantaneous TB focipitation retrievals. This study is
organized as follows. Section 2 describes the passive més® observations from eight polar-
orbiting satellites and the precipitation rate from thewgrd radar observations. Section 3 shows
how to convert TBs from other sensors to Global Precipitaeasurement (GPM) Microwave
Imager (GMI) frequencies by using several statistical mé#h including the Simultaneous Con-
ical Overpass (SCO) technique and Principal Componentysiga(PCA). Section 4 presents the

major results from this study. Conclusions and future waekdiscussed in Section 5.

2. Data

This study uses the microwave radiometer observations &igim polar-orbiting satellites, in-
cluding GMI onboard the GPM core observatory satellite, $5bhboard Defense Meteorolog-
ical Satellite Program (DMSP) F17 and F18 satellites, ATMBaard Suomi National Polar-
orbiting Partnership satellite, MHS onboard NOAA-18, NOAA, Metop-A and Metop-B satel-
lites. We used all high frequency channels 85 GHz) from each sensor. They are 89.0 (V/H),
166.0 (V/H), 183.3-2 (V), and 183.3-7 (V) from GMI, 91.7 (V/H), 150 (H), 183.31 (H),
183.3+3 (H) and 183.3:6.6 (H) from SSMIS, 88.2 (V), 165.5 (H), 183t3 (H), 183.3:1.8
(H), 183.3t3 (H), 183.3t4.5 (H), 183.3-7 (H) from ATMS, 89.0 (V), 157.0 (V), 18381 (H),
183.3+3 (H), and 191.3 (V) from MHS. V and H stands for the verticadl dmorizontal polariza-
tion, respectively. For the cross-track scanning radiensefATMS and MHS), the polarization
(V/H) is valid only at nadir. This information is summarizedTable 1. Low frequency channels
(e.g., 19 and 37 GHz) from GMI, ATMS and SSMIS are not congiden this study because they

are not available from MHS.
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Table 1 also shows the ascending equatorial crossing ti@é&)&s of December 2016 for the
sun-synchronous orbit satellites. The descending ECT-isr Earlier than its ascending counter-
part. The GPM satellite has a precessing orbit, which mdaatdttoverpasses a certain location
at varying times throughout the day. Approximately, therat least one observation in about
3-hr for a certain location from these eight satellites olstgons. That is, the daily re-visit fre-
guency is at least eight times for a certain location overetiigatorial region. We show later that
over the targeted region, the daily re-visit frequencyesifrom 10 to 16 times, because of the
increasingoverlap in adjacent swathsas the satellitegbé=vard.

All these channels have different footprint resolutionsafier et al. 2015). The slightly different
frequencies among them (e.g., 89.0 GHz from GMI vs. 91.7 GHm{fSSMIS) also result in
different TBs for the same observations (Yang et al. 20I%3¥ekction 3, we demonstrate a method
to bring all these frequencies to a similar resolution. Vée abnvert the TBs from SSMIS, ATMS,
and MHS to GMI frequencies, by the SCO technique (Yang etGl12and PCA method (details
in section 3).

The reference precipitation rate data is from Multi-Rallalti-Sensor System (MRMS), which
is at 1-km and 2-minute spatial and temporal resolution (ighet al. 2016). Collocation between
the MRMS precipitation rate and TB is discussed in sectioR1&vious work demonstrated that
the MRMS precipitation rate is less accurate in the mouptamregions due to terrain blockage
and in the cold season due to shallow cloud systems (Chen 2088B; Tang et al. 2014). A
Radar Quality Index (RQI) is developed to represent the MRiviRipitation data quality (Zhang
et al. 2011). This study only uses the precipitation dath WiQI greater than 0.5. This threshold
value (0.5) is chosen by considering the trade-off betwbersample size and the quality of radar

precipitation estimates.
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The National Ice Center’s Interactive Multisensor Snow &e&lMapping System (IMS) daily
snowcover map at 24 km resolution (Helfrich et al. 2007) isdu® determine whether a pixel is
associated with snow cover on the ground. This study doedistguish "snow-covered land”
from "ice-covered land”. We use "snow-covered land” purdy convenience, which includes
both "snow-covered land” and "ice-covered land”. It is algorth mentioning that the "frost”
phenomenon may contribute to false precipitation detedtimam satellite observations. However,
the temporal resolution from these eight satellites (Tablis about 3-hr. Considering the shorter
"frost” life cycle, these satellite observations probatéynhnot account for the "frost” effect.

Data used in this study are all from March 2014 to Decembe628/r the land portion of
(130CW~60°W, 25°N~50°N). We choose this period of time since observations fronafalie-

mentioned eight satellites are available.

3. Methodology

This section first describes a method to bring all channel® fall sensors to a nominal resolu-
tion. Then we discuss how to use the SCO technique (Yang 204l) to obtain the pair pixels
between GMI and other seven sensors, where the GMI is takémeagference. Based on the
SCO pairs, we show how to use the PCA approach to convert s @ther seven sensors to
GMI channels. Further, we define TB temporal variation. Thedr discriminant analysis (LDA)
approach for precipitation screening is discussed. Binak show how to define the "same loca-

tion” observations from these eight polar-orbiting satiedl.

a. Aggregate the higher resolution TB datasets

The mean footprint resolution of GMI, SSMIS, ATMS, and MH$ fioe frequencies used in this

study is listed in Table 1 (Draper et al. 2015). The GMI hagiilglest foot print resolution with 7
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km at 89.0 GHz and 6 km for higher frequencies (166 and 183.3)GFhe SSMIS mean footprint
resolution is 14 km. The footprint resolution from ATMS andH® varied from 14 to 45 km from
nadir to edge, and 17 to 45 km from nadir to edge, respectiféiy study took the SSMIS mean
footprint resolution (14 km) as the nominal resolution. Tingher footprint resolution from GMI
is aggregated to match this resolution, by simply averatieglosest 4 GMI pixels at 89.0 GHz
(14x14/7/7=4), and 6 GMI pixels at 166 and 183.3 GHz x141/6/6=6). For ATMS and MHS,
we keep their original footprint size. The footprint sizeAadMS and MHS at nadir is similar to the
nominal resolution. However, the footprint size over thgee significantly larger. We consider
the varying footprint size from the center scan lines andetthge scan lines when converting the
TBs to GMI channels in the next section.

For the precipitation rate, we simply average the close8i(18x 14=196) 1-km MRMS precip-
itation rate pixels for each TB observation at the closeseti

Better collocation schemes (e.g., weighted average anduBaBilbert method) may further
improve the result presented in this study. However, thelseraes are much more time consuming
than the simple average currently employed in this studynsiering the amount of data from

eight satellites, we choose to utilize the simplest schesree@oof-of-concept.

b. Convert TBs from other sensors to TBs at GMI frequencies

After the footprint sizes of these eight sensors are brotght similar resolution, we convert
TBs from the other seven sensors to TBs at GMI channels. Thédbihnels are taken as the
reference channel because SSMIS, ATMS and MHS are calibagi@inst GMI (Berg et al. 2016).
From Table 1, it is clear that all other sensors have simikguencies with those at GMI. The
channel similarity between GMI and the other seven senswisles us to convert TBs from other

sensors to TBs at GMI frequencies.
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It is worth mentioning that the 150 GHz channel of SSMIS (Hi&3 stopped functioning since
February, 2012. Therefore, for SSMIS (F18), the 150 GHz ohhis not used in the TB con-
version process. Considering the high correlation betwéghGHz channel and 91.7 GHz, and
between 150 GHz channel and 183.3 GHz channels, the absktiee 150 GHz channel likely
does not significantly affect the estimated TBs at GMI fratues.

In the following discussion, we take the GMI and SSMIS (F13)aa example to discuss the
conversion process. SSMIS (F17) frequencies are 91.7 (\/8) (H), 183.31 (H), 183.3t3
(H),183.3:6.6 (H). This study estimates TBs at 89.0 (V/H), 166 (V/H)31&3 (V), and
183.3t7, which are the high frequency channels from GMI, from theeihentioned TBs from
six channels of SSMIS (F17). To this end, we first utilize tineidtaneous conical overpass (SCO)
technique (Yang et al. 2011) to find the SCO pairs between GMISSMIS (F17). Second, we
decompose the GMI TBs from these SCO pairs into Principal @worants (PCs). Third, the SS-
MIS (F17) TBs in these SCO pairs are used to estimate the segeBCs by a linear regression
model. In this study, we select the first five PCs, which actotor about 99.6% of total variance.
The coefficients derived from the SCO pairs are then appbi¢lde whole SSMIS (F17) data. By
doing so, we obtained the estimated PCs from SSMIS (F17)sd R&€s are converted back to
TBs at GMI frequencies.

For the sounders (ATMS and HMS), previous work showed thafltBs from edge and center
scan lines differ (Weng et al. 2003; Yang et al. 2013; You 2@l 6a). To consider the scanning
position effect, for ATMS we group the SCO pairs based on ttandine position into three
categories. Specifically, we group the SCO pairs between @MIATMS into left-edge SCO
pairs (scan position from 1 to 32), center SCO pairs (scaitippsrom 33 to 64), and right-
edge SCO pairs (scan position from 65 to 96). Similarly, t&®$airs between GMI and MHS

are grouped into left-edge (1-30), center (31-60), andttegiye (61-90) SCO pairs. Ideally, one

10
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would group the SCO pairs to 96 and 90 categories for ATMS aktEMwhich fully considered
the scanning position effect. However, due to the limitetigia size for each scan position, we
only group them into three categories. After separatingctrger and edge SOC pairs, similar
procedures between GMI and SSMIS are applied. That is, fon 8O pair (left-edge, center
and right-edge), we derive different regression coeffisiéa converts the TBs into TBs at GMI

channels.

1) SMULTANEOUS CONICAL OVERPASS(SCO)TECHNIQUE

The basic assumption of the SCO technique is that simultangeasurements at a location
from two different sensors at a similar frequency shouldigéllg correlated. This study takes the
GMI observations as the reference. Two satellite measuresnene from GMI and the other one
from any of other seven sensors, are called a SCO pair, iftbigass location is less than one km
and the overpass time is less than five minutes. These thdegidoes (one km and five minutes)
are chosen by considering the trade-off between the sanzglaisd the SCO pair accuracy.

Over the targeted region from March 2014 to December 20ethre 39529 SCO pairs be-
tween GMI and SSMIS (F17), 37285 SCO pairs between GMI andIS$FL8), 16401 SCO pairs
between GMI and ATMS, 12773 SCO pairs between GMI and MHS (RaR), 12979 SCO
pairs between GMI and MHS (NOAA-19), 14011 SCO pairs betwebh and MHS (Metop-A),
and 11576 SCO pairs between GMI and MHS (Metop-B). As disligs the previous section,
the SCO pairs between GMI and each MHS, and between GMI andSA&id equally split into

three categories based on scan positions.

11
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2) PRINCIPAL COMPONENT ANALYSIS (PCA)

In this section, we use SCO pairs between GMI and SSMIS (F4@phaxample to explain the
TB conversion process. The same procedure is applied to S$MI8). For ATMS and each
MHS, this procedure is applied to the three sub-categoasedon the scan positions.

Each of the 39529 SCO pairs between GMI and SSMIS (F17) i<eded with six GMI TBs
(89.0 (V/H), 166 (V/H), 183.3:3 (V), and 183.3-7 (V)) and six SSMIS TBs (91.7 (V/H), 150
(H), 183.3t1 (H), 183.3t3 (H),183.3t6.6 (H)). One possible way to estimate the TBs at GMI
frequencies is to treat the GMI frequencies as independerdbles. For each GMI channel, we
can fit a regression curve with the SSMIS TBs. For examplestimate the GMI TB at 89.0 GHz
(V), we can train a regression curve between GMI TB at 89.0ghMJ SSMIS TB at 91.7 (V).
However, we decide not to do so, because the TBs from 89 t@18Bz are highly correlated.
Therefore, the following approach is selected:

For SCO pairs between GMI and SSMIS (F17), we first decompitee@MI TBs (6 channels)
into six PCs (denoted by, i=1,6). It is noted that the first five PCs accounts for ab®6% of
total variation. In the following calculation, we only ugeetfirst five PCs (i.el; to us).

The first five PCs are estimated by the TBs from SSMIS (F17) at,950.0, 183.31,183.3t3

and 183.36.6 GHz. For example, fa,

6
Uy = a0+2aj><TBj 1)
=

Where j is from 1 to 6 for SSMIS, represented the SSMIS chaninem 91.7 to 183.3 GHz
(see Table 1). The least square method is used to deternmenepdificientsag to ag. Similar

procedures are used to estimaido Us.

12



x  The coefficientsg to ag, derived from the SCO pairs, are then applied to all the SS(ALS)
x Observations. By doing so, we convert the TBs from SSMISH@s (1; to us). Then TBs at GMI
a0 frequencies are re-constructed from the five PCs estimated $SMIS TBs.

- A similar procedure is applied to the other six sensors. Bygleo, it is as if that we have eight
2 Sensors measuring TBs at GMI frequencies, which are 8919)(¥%6.0 (V/H), 183.33 (V), and
s 183.3t3 (V). For convenience, these frequencies are referred W8asH89, V166, H166, V186

- and V190 from now on.

25 C. Definition of TB temporal variation

z  The TB temporal variationXT B) is defined as:

277 AT B - T aO - T a—l (2)

278 At - to—t,]_ (3)

= WhereTB, is the current TB associated with precipitation, ang , is the immediately pre-

= ceding TB at the same location without precipitation. A pirsejudged as a precipitating or
2« Non-precipitating pixel by the LDA approach (Turk et al. 20You et al. 2015) (see the following

x Section for more detailsft is the time difference between these two observations. F@mon,

» theATBat V89, H89, ..., V190 will be referred to #/89,AH89, ...,AV 190 for convenience.

»  We would like to emphasize thAfl Bis not the difference between two temporally consecutive
»s 1B observations. Instead, it is the TB difference betweencilirrent TB associated with precipi-
» tation and the immediately preceding TB at the same locatitimout precipitation. The physical

» meaning of this definition is that: the immediately precediB at the same location without pre-

zs Cipitation is taken as the background. By calculating TBpenal variation in this way, we are

13
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attempting to extract the current precipitation signal bimating the background information.

The idea of looking for the previous non-precipitating sevas also used by Turk et al. (2016)
to obtain the emissivities under precipitating scenaribss shown that emissivities from 10 to
89 GHz under the precipitating scenarios possibly are nbthby looking backward in time for

the most recent TB observations under non-precipitatimglitions at the same location, by using
GMI observations.

Clearly, in this definition, we did not consider the enviraamtal variation (e.g., the temperature
and water vapor) from_1 to to. The change in environmental conditions frém to to can be
rather substantial for convection systems, fast movingtf@nd over the cold/warm air bound-
aries. To consider this information, we need accurate lanfdse emissivity estimation at 89, 166
and 183.3 GHz. However, the accurate estimation of the @ritisat these frequencies is proven
to be very challenging, especially over snow covered regy{diian et al. 2015). Therefore, this

topic is left for future investigation.

d. Linear discriminant analysis (LDA)

To determine the precipitation status of each pixel, we tised DA approach. The six TBs are
combined into a single discriminant index (DI) for precgtibn detection. To put it into perspec-
tive, suppose there exist two training databases (i.ecjgtating vs. non-precipitating databases
in this study), which contain multi-variables(i.e., V89, H89, ..., V190) in each database. Ac-

cording to Wilks (2011) the linear discriminant functiondistinguish these two groups is:

o =a' xx (4)

14



308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

WhereT stands for the transposgis the discriminant vector, calculated in the following way

1 —_— JE—
a—= Srjool(xl — Xz)

Sp _ n—1 n—1
ool ng+np—2 ng+np—2

S (5)

Bold symbols represent vectors.andS (i = 1,2) represents the mean vector and covariance
of each group, respectivel,, is the weighted average of the two sample covariance matrice
from these two datasets; andn; are the samples size in these two groups, respectively.

We choose the DI threshold value for precipitating or nogeppitating situations, correspond-
ing to the false alarm rate (FAR) at 0.10. Choosing other P¢ghold values, corresponding to
different FAR values (e.g., 0.05 or 0.15) will only changerairical values in this study. However,
the conclusions hold. Previous work showed that includangd-scale environmental parameters
(e.g., vertical velocity and relative humidity) can impeahe precipitation detection performance
(You et al. 2015; Behrangi et al. 2015). As a proof-of-cortogprk, we do not include these

parameters in the current study.

e. Definition of the "same location”

The objective of this study is to demonstrAfEB correlates more strongly with precipitation rate
and therefore results in improved precipitation retrisvab this end, we exploited the microwave
observations from eight polar-orbiting satellites. Toide B temporal variation, it is necessary
to determine when the observations from different sagsligire considered as observations for the
same location. This study defines any observation in the €a@% latitude-longitude grid box
as observations with the same spatial location. We cho@s@.#8% grid box because the level-3

merged satellite precipitation products often use thisltg®n. Choosing a different grid size
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(e.g., 0.2 or 0.5’) does not affect the major conclusions of this work (e\J.B correlates more

strongly with precipitation rate than the instantaneous.TB

4. Results

a. Two cases of TB time series

This section shows TB time series over two locations. In easle, we first show time series for
H89, which is the most sensitive channel to the surface cheniatics among the channels used in
this study. As a comparison, time series for V190 are alsavshwhich is less sensitive to surface
features and more sensitive to hydrometeors in the air.

Fig. 1a shows the time series of H89 from March 2014 to Decer2d&6 over the grid box at
(74°W, 43.5N) in New York. From Fig. 1b to Fig. 1h, TB at H89 is estimatedfr ATMS, MHS
(NOAA-18), MHS (NOAA-19), MHS (Metop-A), MHS (Metop-B), 98IS (F17) and SSMIS
(F18), respectively. The sample number from each sensbrsaocation is also shown in Fig. 1
(e.g., N=1097 from GMI in Fig. 1a).

First, itis clear that H89 from these eight sensors havdaiseasonal variation. The dynamical
range also is similar. The cold TBs in the winter season 0624id 2016 (January, February and
December) are obvious from each sensor. The daily snowcoap shows that the majority of
these pixels are associated with snow-covered land. Thrsks are frequently misidentified as
precipitation pixels, which leads to large false precipiia estimation. We show later that using
TB temporal variation can largely mitigate the snow-coddeand contamination. The time series
from each sensor are not identical because each sensoassegthis location at different times.

Second, using all these observations from eight sensongfisantly increases the revisit fre-

guency for this location, which is essential to calculatet€Biporal variation. We demonstrate
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later that the shorter the revisit time, the better the datien between TB temporal variation and
precipitation intensity is, which is especially the caserdhe rapidly changing land surfaces (e.qg.,
snow-covered land).

The time series of V190 in the same period of time at the saegitn is also analyzed. As
expected, V190 has a much smaller seasonal variation (figairghown due to space limitations),
compared with that at H89 (Fig. 1a), because it is less &tkby the surface characteristics than
H89. On the other hand, similar to the H89, V190 from différeensors behaves very similarly.
Figs. 2a and 2b show the combined time series of H89 and V1#iisalocation, respectively.
There are no obvious outliers observed when pooling data & eight sensors together. It
indicates that our method can effectively convert TBs fraheosensors to GMI channels. Similar
characteristics are noticed from other channels (V89, VHI®6, V186).

Another case over the grid box at (88, 30.5N) in Florida also is demonstrated in Figs. 2c
and d. At this location, the seasonal variation is much lesaqunced for both H89 and V190.
In particular, V190 has no noticeable seasonal variatiog. (Ed). Again, there are no obvious
outliers observed in Figs. 2c and 2d, indicating that ourhoeteffectively converted TBs from
other sensors to GMI channels. In next several sectionshawg that TB temporal variation in this
location can significantly alleviate environmental vaaas, and therefore lead to a better correla-
tion between precipitation intensity and TB temporal viaoia compared with the instantaneous
TB.

It is worth mentioning that long spikes (i.e., cold TBs) igFR generally correspond the pre-
cipitation occurrence. However, the snow-covered land eds lead to cold TBs (e.g., the spikes
in January and February over the grid box at°®443.5N) in New York in Fig. 2a). These
pixels often are falsely identified as precipitation pixé\e show later that TB temporal variation

is almost insensitive to the contamination from these snowered pixels.
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To summarize, this section demonstrates that the SCO and &proaches can effectively

convert TBs from other sensors to GMI channels.

b. Correlation between TB temporal variation and precipaa intensity

Fig. 3 shows the correlation coefficients of precipitatiotensity with the instantaneous TB
(V89, H89, ..., V190) and\T B at the corresponding chann&\(89, AH89, ...,AV190). It is
immediately clear that usin§T B improve the correlation with the precipitation intensity ll
channels, which is particularly evident over regions witldcsurfaces (e.g., Rocky mountains
and north of 48N). For example, the correlation between V89 and precipitatate (Fig. 3a)
over the Rocky mountains and northeast of the targetednegjiabout 0.1. This positive correla-
tion is a false signal, which does not mean V89 increasesapestipitation effect. Instead, we
demonstrate below that this positive correlation is calgeaisidentified snow-covered pixels. In
contrast AV89 dramatically improve the correlation with the precipda rate. Specifically, the
correlation over the aforementioned two regions improeealtout -0.6. The negative correlation
basically means that the precipitation results in a TB depon at V89 due to the ice scatter-
ing effect, which has been realized from the very beginnihgassive microwave observations
over land (Spencer et al. 1989). We demonstrate below teabétter correlation fromV89 is
becausé\V89 almost eliminates the cold surface contamination, wiaabften misidentified as
precipitation signal.

The superiority of thé\T B is further demonstrated by the scatter plot in Fig. 4, whicbves
the correlation coefficients from the instantaneous TB &edcbrresponding T B. For example,
the x-axis in Fig. 4a represents the correlation betw®é89 and precipitation rate, and the y-

axis represents the correlation between V89 itself andgtaton rate. For all six channels, the
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magnitude of the correlation coefficient froiT B is larger than that from TB over about 92.0%
of grid boxes for all channels.

For the rest grid boxes (about 8.0%); B has a slightly lower correlation to MRMS precipitation
rate than the instantaneous TB. Further analysis showghbae grid boxes are all located in
coastal regions. Coastal pixels cause problemaAid8 computations that are not reflected in the
instantaneous TB. For example, pixel A from GMI in a coastal ¢ox is judged as a raining
pixel. To compute th&H89 for this pixel, the immediately preceding TB at this 0.88d box is
from SSMIS (F17) (referred to as pixel B). Although pixel Bimsthe same grid box as pixel A,
pixel B is contaminated by the ocean surface, therefore H88uch lower due to the low ocean
surface emissivity. Using pixel B’s information, thi¢189 is indirectly contaminated by the ocean
surface. On the other hand, the ocean surface contamirfedionpixel B has no influence at all
on pixel A when directly using TB. This problem can be rectifissing high-resolution land-water

masks, and this work is left as a future refinement to the pobaboncept demonstrated here.

1) SNOW-COVERED LAND EFFECT

This section uses the data from the previously mentionatilgpk at (74W, 43.5N) in New
York to explain whyAT B correlates much more strongly with precipitation rate than

As shown previously, this location frequently experiensesw accumulation over the ground
in the winter season. The correlation betwégi89 and precipitation rate is -0.66 (Fig. 5a). On
the other hand, H89 correlates with precipitation rate \pEgrly with a correlation coefficient at
-0.27 (Fig. 5b).

Observations can be further divided into non-snow-coveegd and snow-covered data. For the
non-snow-covered data, the correlation betw&EI89 and precipitation rate is improved slightly

from -0.66 to -0.71 (Fig. 5c). However, the correlation betw H89 and precipitation rate is
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dramatically improved from -0.27 to -0.57 (Fig. 5d). The mumproved correlation from H89
itself by using the non-snow-covered data is clearly dueteening out the snow-covered pixels.
In fact, this issue is well known, and precipitation retakalgorithms often include snow-cover
screening steps (Ferraro et al. 1998; Kummerow et al. 2001 g¥al. 2016b). However, it is noted
that even after using the daily snow-cover map to screenhmupossible snow-covered pixels,
there still exist some pixels with snow-cover contaminaiibig. 5d, pixels with no precipitation
and H89 about 250 K). In contrast, the snow-covered contatioim is largely eliminated when
usingAH89 (Fig. 5c). This result further demonstrates the addedevaf AT B relative to the
instantaneous TB.

For pixels over snow-covered land, the correlation betwd¢89 and precipitation is -0.34 (Fig.
5e), while there is weak positive correlation at 0.08 betwid89 and precipitation rate (Fig. 5f).
The positive correlation is caused by the falsely identipeetipitation pixels over snow-covered
land with very cold TBs. It is worth mentioning that one cansinply discard the pixels over
the snow-covered land. By doing so, pixels over snow-cal&rd with precipitation also are
discarded and will lead to missing precipitation pixels.

The red, green and magenta curves from Fig. 5a to Fig. 5f gression lines derived from
the least-squares approach. Fig. 5g shows that the regmezasives from the entire dataset (red
line), non-snow-covered subset (green line) and snowredveubset (magenta line) are almost
identical, which essentially means that the relationslapwieenAH89 and precipitation rate is
largely independent of the snow-cover accumulation on tharg. In contrast, the snow-covered
pixels can alter the relation between H89 and precipitatd®, as indicated by three very different
regression curves in Fig. 5h.

The relative independence AH89 to the snow-covered contamination implies that the gsnso

with the highest available frequency @B9 GHz (e.g., Advanced Microwave Sounding Unit-A
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[AMSU-A] and AMSR-2) can be used to retrieve precipitatiorep cold surfaces. This is in
contrast to the generally accepted practice that theseseimave poor capability for precipitation
retrieval in the winter season due to the cold surface contion (Fig. 5f). Our analysis shows
that usingAT B at ~ 89 GHz to retrieve precipitation over cold land surfacesmwinter season
overcomes these limitations from the satellite constelgperspective.

We further analyzed the snow-covered land contaminatif180 (Fig. 6). Similarly,AV190
outperforms V190, as indicated by the larger correlatioaffoent. As expected, V190 is less
affected by the surface characteristics. However, thelleegist noticeable difference among
these three regression curves from all data, non-snowred\data, and snow-covered data (Fig.

6h), while regression curves are almost identical baseti90 (Fig. 69).

2) ENVIRONMENTAL VARIATION EFFECT

This section focuses on data from the grid box at{8630.5N) in Florida to explain why even
in a rarely snow-covered regioAAT B still adds information relative to the instantaneous TB.

To demonstrate the effects of environmental (e.g., tentpexahumidity) variation, we analyze
the relationships between precipitation rate &1, and between precipitation rate and TB, in
winter and summer. The correlation betwégth89 and precipitation rate (Fig. 7a) is -0.74, which
is only slightly larger than that between H89 and precimtatate at -0.69 (Fig. 7b). It is noted
that data in both winter and summer are used in these two figiig. 7a and Fig. 7b). When the
data are divided into summer and winter subsets, similaetairons with precipitation rate based
on either H89 oAH 89 are found (cf. Fig. 7c and Fig. 7d, cf. Fig. 7e and Fig. 7f).

As stated in the introduction, the problem is that the sigrtialues from which H89 decrease
are different in summer and winter. In the summer season, d¢€9eased from about 282 K

(green curve in Fig. 7d), as opposed to 268 K in winter (mageutve in Fig. 7f). However, the
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AHB89 is almost un-affected by environmental variation froomswer to winter. Th&H89 in both
season decreases from about -2 K. Fig. 7g shows that thesedinrves based on both winter and
summer data, or based on summer or winter only data, are tidergical by usingAH89. On
the contrary, the relations between H89 and precipitagt@using data in winter and summer are
quite different (Fig. 7f). For V190, environmental var@tihas much less influence, compared
with H89 (not shown due to space limitations). However, foisnd thatAV 190 is less affected by
the seasonal environmental variation, compared with V190.

In summary, this section shows thst B correlates more strongly with precipitation rate than
the instantaneous TB. This, combined with the analysiserptievious section, shows thist Bis
much less affected by snow-covered land contaminationaésulless sensitive to environmental

variation. These two factors account for th€B's superior performance.

c. Correlation seasonal variation

This section analyzes the seasonal variation of the ctioelbetween TBs themselves and pre-
cipitation rate, and betweeXil B at the corresponding channel and the precipitation ratpurés
are not shown not shown due to space limitations.

In spring, the largest correlation improvement is obsenxest Rocky mountain regions and the
areas north of 49\. This improvement is more obvious for V89 and H89. Simikeatires are
observed in fall. In summer, the correlation improves véthelby usingAT B. As mentioned pre-
viously, the primary reason whyT B improves the correlation is because of the mitigation ofllan
surface contamination. In summer, there is almost no snawraglation in the targeted region.
Therefore, we did not observe much improvement. Howeverstiow-covered land contamina-
tion remains an issue in the higher latitude region even mrsar (e.g., Alaska). Therefore, the

AT Bis expected to perform better in the higher latitude regeren in the summer season.
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=  The largest improvement is observed in the winter seasonenwitie snow accumulation on
= the ground is prevalent. In this situatioi] B can significantly alleviate surface contamination,
« and therefore result in a much stronger correlation withpreipitation rate. Obviously, there
« Still exist false positive correlations in Montana, WyomgitNorth Dakota and South Dakota, even
« USINGAT B. The misidentified snow-covered pixels cause this problBEllustrate this point, we
«s Choose the grid box at (11w, 47°N) at Missoula, Montana, where one of the Next-Generation
« Radars operates.

s  Fig. 8a shows that the correlation between H89 and pretigitaate is 0.15. It is worth men-
«s tioning that almost all the pixels in this location in wintme associated with snow accumulation
« 0N the ground, as determined by the IMS daily snow-cover mhp.positive correlation is clearly
« caused by the misidentified snow-covered pixels, which sse@ated with no precipitation. Us-
= 1INng AH89 can mitigate the snow-covered pixels’ influence to sontergxas indicated by the
s Smaller positive correlation at 0.04 (Fig. 8b). By only sihe pixels with the time difference
s« less than 24-hift < 24), the correlation betweexH89 and precipitation rate is improved to -0.19
< (Fig. 8c). Itis further improved to -0.34 when only usingalatith the time difference less than
s« 6-hr (At < 6) (Fig. 8d). This phenomenon indicates tiAdd 89 is less affected by snow-cover
s« CcOntamination with a shorter time difference between theetu precipitating pixels and the im-
« mediately preceding non-precipitating pixels at the samgation. In other words, the shorter the
s« time difference AH89 contains more signal from the current precipitation,thetcontamination
< signal (e.g., the surface emissivity variation due to sremimelt and refreezing, or new snow
s accumulation on the ground). Another possible reason isvifih a shorter time difference, the
= environmental parameters (e.g., temperature profiles)destty andt_; are more similar. This
s0 Ccase study demonstrates that evenAld is strongly affected by snow-covered pixels when pre-

s Cipitation intensity is light (less than 3 mm/hr in this case
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d. Time difference influence

The objective of this study is to shaW Bis better correlated with the precipitation rate than the
instantaneous TB. Observations from a potential geosiatyomicrowave radiometer (Lambrigt-
sen et al. 2006; Gaier et al. 2016) would be ideally suitedfigrapproach due to the much higher
temporal resolution and fixed time interval between two olet@ns. However, a spaceborne
geostationary microwave radiometer is currently not avdd. Therefore, we must exploit obser-
vations from eight polar-orbiting satellites. By doingghtheAt defined in Eqg. 3 is highly variable.
We have already demonstrated in the previous section (FritpaBthe correlation betwee¥H89
and precipitation rate is dependent on fftevariation. This section further demonstrates the effect
of variableAt on the correlation betweghl B and precipitation rate.

Table 2 shows the observation number from each sensor frornhVE914 to December 2016
in the targeted region. GMI has the smallest sample size ¥@tA1 million observations, due
to the relatively narrow swath coverage. For the other seemsors, each has about 30 million
observations. On average, the revisit frequency for angaes less than two times daily. By
combining observations from all eight sensors, the refiisquency is greatly improved. The re-
visit frequency is improved to X016 times daily, depending on the latitude (Fig. 9). A muchenor
frequent revisit for a certain location leads to a much shdxt, which is critical for correlation
betweemAT B and precipitation rate.

Fig. 10 shows the histogram of the time difference (¢),from eight sensors and from GMI
only. Again, we emphasize that is not the time difference between two consecutive observa-
tions. Itis the time difference between the current preatpig pixel and the immediately preced-
ing non-precipitating pixel at the same location. With theservations from eight sensors (Fig.

10a), the vast majority dkts (91.10%) are less than 24-hr. It basically means that fdr0®4 of
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precipitating pixels, it is possible to find the immediatpheceding non-precipitating observation
within a 24-hr window. In contrast, when only using the GMbkebvations, only 37.26 % dts
are less than 24-hr. The surface characteristics are mucé likely to vary due to the larger
At. Therefore AT B more likely includes other information (e.g., new snow analation on the
ground, snowpack melt and refreezing) in addition to theenirprecipitation signal.

To show the variablét effect, the observations are divided into different categgabased oAt.
Fig. 11a shows thaiT Bfrom V89, V166 and V190 more weakly correlates with the gogation
rate asAt increasesAT B for other channels behaves similarly. As mentioned preshoAT Bis
more likely to contain other signals besides the currertipi&tion signal with largeft. Similar
analysis is performed over the Northeast regionn\(8580°W, 37°N~47°N) and Southeast region
(8O°W~90°W, 30°N~35°N). Fig. 11b shows that the correlation between precipitatate and
AT B remains relatively unchanged witti less than 24-hr. It is worth mentioning that by using
eight sensors, the vast majorityafis less than 24-hr (Fig. 10a). The magnitude of the cor@tati
sharply decreases to O witkt varying from 24-hr (1-day) to 72-hr (3-day). This impliesatho
effectively use thé\T B signal, eight sensors are necessary over this region.

Over the Southeast region, the correlation is almost inulégat from theAt variation. This
feature implies that over this region observations from satellite are sufficient to derive the
ATB. The physical reason is because the surface backgrounthiveehomogeneous and less
variable, compared with that over the Northeast region.

In a post-processing mode, it is possible to find the closastprecipitating scene by checking
the succeeding observations. By doing so, it can furthertshadt, thereby obtaining a more
accurateAT B. It is found that by choosing the non-precipitating pixelistmshorter time either
from the preceding observations or from succeeding obsens the correlation betweekl B

and precipitation rate can be further improved. Specifycalbout 80.35% (91.33%) of grid boxes
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have a stronger negative correlation when consideringfreiteding and succeeding observations
for AT B computation, compared with only considering precedingg¢eading) observations.

To summarize, this section demonstrates that observations these eight satellites signifi-
cantly increase the revisit frequency, which is crucial éffectively exploiting the signature of

AT B, especially over frequently snow-covered regions.

e. One sensor vs. eight sensors

It is found in the previous section that is much larger when only GMI observations are used.
The much largeAt can negatively affect the correlation between precigtatate and\T B. This
brings the question as to whether one shouldABB when a precipitation algorithm is developed
for a single sensor. This section demonstrates the caoelag¢tween precipitation rate and TBs at
each GMI channel, between precipitation rate Aid of GMI based only on GMI observations,
and between precipitation rate aAd B of GMI based on observations from eight sensors. We
choose GMI since it has the least observations (Table 2).

The first column of Fig. 12 shows the correlation betweenipration rate and GMI TB for its
six channels. In the second column, we show the correlagtwden precipitation rate adx B
at the corresponding channdlT B here is computed using GMI only observations. It is notetl tha
even using GMI observations onl¥T B significantly improves the correlation with precipitation
rate, which is particularly evident in regions with cold fawes (e.g., Rocky mountains and north
of 45°N) at 89 GHz (cf. Fig. 12a and Fig. 12b). Based on this result,iecommended th&T B
is preferred when retrieval algorithm is developed for @l&rsensor.

Next, we compute the correlation between precipitatioa etdAT B, which is based on eight
sensor observations. By using observations from these segisorsAT B performance is fur-

ther improved. For example, the correlation between pittipn rate and\V 89 based on eight
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sensors is about -0.6 over most of the Rocky Mountain regmehNortheast region (Fig. 12c).
In contrast, the much smaller correlation at about -0.1 lyidgists over the aforementioned two
regions fromAV89 based on GMI only (Fig. 12b). A similar phenomenon is obserat other
frequencies.

In summary, it is demonstrated thsE B based only on one sensor is more highly correlated with
precipitation rate than the instantaneous TB, especialér cegions where snow accumulation
is frequent in the winter season. In addition, we show thatdbrrelation betweeATB and

precipitation rate is further improved when observatiagnateight sensors are utilized.

f. Retrieval performance

Previous sections have demonstrated that precipitatteriganore highly correlated withT B
than the instantaneous TB. In this section, we utilize a Brinpear regression retrieval as a proof-
of-concept to demonstrate the potentiadiB in a retrieval algorithm. Specifically, in each 0725
grid box, a linear regression model is established, eitleévéen precipitation rate and TB, or
between precipitation rate ariif B. Data in 2014 and 2015 are used as the training dataset,
and data in 2016 are taken as the validation. We would likemplasize that more advanced
statistical techniques (e.g., neural networks and Bayesrem) may further improve the retrieval
performance. As a proof-of-concept, here we use the simm@ai regression approach.

As mentioned previously, there are several sensors withitfteest possible frequency ai89
GHz (e.g., AMSU-A and AMSR-2). Therefore, we first apply thisple linear regression algo-

rithm to V89 only, and then TBs at all frequencies are useetioave the precipitation rate.
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1) RETRIEVAL RESULTS FROMV89 ONLY

Fig. 13 shows the simple single-channel retrieval perfarceaover the entire region, Northeast
(65°W~80°W, 37°N~47°N) and Southeast (8W~90°W, 30°N~35°N) regions. The retrieval
over the entire region based &v89 (Fig. 13b) clearly outperforms that from V89 itself (Fig.
13a). Specifically, the correlation, root-mean-squarerdRMSE) and bias for the 2016 validation
period fromAV 89 are 0.64, 1.63 mm/hr and -7.20%. In contrast, they are 0.BB and -38.92%
from V89 itself. The largest improvement is for the relatiight precipitation with intensity less
than 4 mm/hr. Itis pointed out earlier that the surface &f@® at 89 GHz to a larger extent under
a light precipitation scenatrio.

Using V89 itself, the simple regression retrieval perfonceis very poor over the Northeast
region with the correlation of 0.33, RMSE of 1.45 m/hr andslwé-59.41% (Fig. 13c). However,
these statistics are significantly improved fr&wi89 (Fig. 13d). The correlation increases from
0.33t0 0.63, RMSE decreases from 1.45 m/hr to 1.18 mm/hrifantias reduces from -59.41%
to -13.98%.

In the Southeast region, the improvement is not as largeatter the Northeast region (cf.
Fig. 13e and Fig. 13f). However, we indeed notice that thezdaage improvements in the lower
end of the precipitation intensity distribution from 0.2Zon/hr. In this range, thAV 89 clearly
has smaller over-estimation, which contributes to the Enhblas at -0.83% bAT B.

In summary, this section shows that the simple single-chlamyression retrieval results from
AV 89 is much better than that from V89 itself. More importantlyer frequently snow-covered
land regions AV 89 performs very well. This opens new opportunities to usesees with the
highest possible frequency at89 GHz to retrieve precipitation at high latitudes (e.g.rthmf

45°N) in the winter season.
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2) RETRIEVAL RESULTS FROM ALL CHANNELS

This section builds on the previous section and applies di4tiuhnnel regression retrieval to
demonstrate the value AfT B. We first show a blizzard case over the Mid-Atlantic and Neait
United States on January 23 2016. All eight sensors obsé#niseevent at different overpass times.

Fig. 14 and Fig. 15 show the geospatial distribution of theeeed precipitation rate from each
of the eight sensors. Each row of Fig. 14 and Fig. 15 shows tR&8 observed precipitation,
the retrieved precipitation from all TBs (V89, H89, ..., \Jor each sensor, and the retrieved
precipitation from alAT Bs (AV89,AH89, ...,AV190) for each sensor. The overpass time for each
sensor is shown in the title of each figure.

For GMI, it is noted that the retrieval results froffT B (Fig. 14c) are able to better capture
the heaviest precipitation center located around the bayndmong West Virginia, Maryland
and Pennsylvania. More importantly, the over-estimatiaseldl on TB (Fig. 14b) is obvious from
northern Pennsylvania to New York . This over-estimatigorisarily caused by cold land surface
contamination, which is largely alleviated By B.

For ATMS (second row of Fig. 14), retrieval results from b@ (Fig. 14e) and\T B (Fig. 14f)
captures the heavy snowfall center. However, the ovemesitbon around the heavy snowfall center
based on TB is evident (cf. Fig. 14d and Fig. 14e). This og&ir&tion is largely eliminated
from theAT B result. Similar features are observed for MHS (NOAA-18)r(thhow of Fig. 14),
MHS (NOAA-19) (fourth row of Fig. 14), SSMIS (F17) (third roaf Fig. 15), and SSMIS (F18)
(fourth row of Fig. 15). For MHS (Metop-A) (first row of Fig. }&nd MHS (Metop-B) (second
row of Fig. 15), both TB andT B severely underestimated the precipitation rate (e.gFigf. 15a

and Fig. 15b).
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The value ofAT B-based retrieval is further demonstrated through the escptots in Fig. 16.
The most striking feature in the scatter plots is that the-estimation with reference MRMS
precipitation rates less than 2 mm/hr is greatly allevidte@ll sensors (e.g., cf. Fig. 16a and Fig.
16b). Improvement for heavier precipitation rate2(mm/hr) is also clearly noticeable for GMI
(cf. Fig. 16a and Fig. 16b), MHS (NOAA-18) (cf. Fig. 16e ang Fi6f), SSMIS (F17) (cf. Fig.
16m and Fig. 16n), and SSMIS (F18) (cf. Fig. 160 and Fig. 16p).

The correlation, RMSE and bias for each sensor from thistemenlisted in Table 3. Better
statistics fromAT B are observed for all sensors with bias for MHS (Metop-A) agareption,
which is explained below. Specifically, for GMI, the corrida increases from 0.27 based on TB
to 0.76 based oAT B, RMSE reduces from 1.34 mm/hr to 0.72 mm/hr, and the biascesifrom
40.04% to 8.03%. Similar degrees of improvements are obdairom SSMIS (F17) and SSMIS
(F18). For ATMS, the bias is greatly improved from 30.36%sduhen TB to -4.36% based on
ATB.

Marked improvement also has been found for multi-chanrmgiession retrieval performance
based omAT B from MHS (NOAA-18), MHS (NOAA-19) and MHS (Metop-B). As maohed
previously, the magnitude of the bias based/XdnB from MHS (Metop-A) is larger than that
based on TB, although the correlation and RMSE is improvedD. The reason is that the
over-estimation for precipitation rates less than 2 isgatited (cf. Fig. 16i and Fig. 16j). However,
the under-estimation with precipitation rates larger tBanm/hr is not improved. Therefore, it
ends up with a larger negative bias (-40.09%).

Next, the retrieval performance is assessed over the whglen, Northeast and Southeast re-
gions. Fig. 17a and Fig. 17b show the overall retrieval tesubm TBs and\T Bsin the targeted
region. It is clear that the performance fraki Bsis superior, as indicated by better statistics.

Specifically, the correlation, RMSE and bias based on thenstantaneous TB (Fig. 17a) are
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0.58, 1.75 mm/hr and -13.50%, respectively. UsigB, these statistics are improved to 0.65,
1.64 mm/hr and -3.86% (Fig. 17b). Similar to the V89 only iextal result over the Northeast
region, much larger improvement has been noticed (cf. Fig.ahd Fig. 17d). In this region, by
usingAT B the correlation improved from 0.44 to 0.61, RMSE reducedfth35 mm/hr to 1.22
mm/hr, and the bias decreased from -14.18% to -8.38%. Wii&outheast US, improvement is
more noticeable for precipitation intensities less thann2/nm (cf. Fig. 17e and Fig. 17f).
Seasonal retrieval performance is also evaluated. Figueasot shown due to space limitations.
Retrieval results fromAT Bsare better over all the regions in all four seasons, as itelicay the
better statistics. The improvement for the intensity frono @ mm/hr over the Southeast region
is especially obvious in the winter season, because thepgegmon signal is weaker in winter
(compared with that in summer), and any contamination dubdcnvironmental variation will

negatively impact the results to a larger degree.
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5. Conclusions and Discussions

This study proposes a new approach to improve precipitaite retrievals over land: using
TB temporal variation&4T B). We test this idea by using observations from eight sermasard
polar-orbiting satellites in the current GPM microwaveicageter constellation, including GMI,
SSMIS (F17), SSMIS (F18), ATMS, MHS (NOAA-18), MHS (NOAA-LMHS (Metop-A), and
MHS (Metop-B). MRMS precipitation rate over the land pontiaf (130W~60°W, 25°N~50°N)
from March 2014 to December 2016 is the reference data ferstuidy. In this study, only the
high frequency channels from 89 GHz to 183.3 GHz are usea shray are commonly available
in all aforementioned eight sensors.

We first developed a method to convert TBs from other senso@MI| channels. Time series
analysis shows no obvious bias from this conversion. By gleo, the observation frequency
is significantly increased. Specifically, the revisit fregay for any single senor in the targeted
region is less than two times daily. By combining all the alsagons from these eight sensors,
the revisit frequency is increased to~106 times daily, depending on the latitude. Further anal-
ysis shows that the much more frequent revisit for a certaation is crucial to obtain stronger
correlation betweeAT B and precipitation rate.

We demonstrate th&T B correlates more strongly with precipitation rate than tistantaneous
TB for all channels. The largest improvement in correlai®m the winter season. The primary
reason is that misidentified pixels with snow accumulatioh@ ground have much less influence
on AT B, while these pixels can significantly alter the relatiorman the instantaneous TB and
precipitation rate AT B also is relatively insensitive to the environmental vaoiat(e.g., temper-

ature and humidity variations from summer to winter), whis (especially TB at 89 GHz) are
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affected by environmental variation. This is the reason e¥sn in the Southeast United States,
AT B outperforms the instantaneous TB.

Further analysis shows that the correlation betw&&m and precipitation rate is highly de-
pendent on the time differencét). AT B correlated more strongly with precipitation rate/sts
decreases. The longer t¢, the more likelyAT Bs include other information (e.g., new snow
accumulation on the ground, snow melt and refreezing, dbegides the current precipitation
signature.

A simple single-channel regression precipitation retlgroof-of-concept shows that by only
usingAV 89 the retrieved precipitation results agree very well whnreference MRMS precipita-
tion rate. On the other hand, V89 itself performs much wordgs result opens new opportunity
for the sensors with the highest frequency-&9 to retrieve precipitation in snow-covered regions,
which is currently avoided in practice by algorithms that tise instantaneous TB.

Analysis from a 2016 blizzard case over the United Sates dstraies that the major limitation
of using TB directly is the over-estimation at the low intéypend of the precipitation rate distri-
bution, where surface contamination plays a larger rolealli, it is shown that a multi-channel
regression retrieval based on All Bs (AV89,AH89, ...,.AV190) is superior to that based on all
TBs (V89, H89, ..., V190), as indicated by better statistigainst the MRMS reference data. The
improvement is particularly evident over frequently snowwered regions.

One key step of this study is to identify the precipitatioatss for each observation, which
directly affects theAT B computation. This study only uses the TBs for precipitasoreening.
Previous work (You et al. 2015) showed that detection paréorce can be further improved by
including ancillary information, e.g., land surface cléieation, lower tropospheric relative hu-

midity and vertical velocity from reanalysis data, whichea for future work.
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Not only does this study highlight the importance of maimitag the current microwave con-
stellation, it also implies that a geostationary microweadiometer can significantly improve the
precipitation retrieval over frequently snow-coveredioag, by capitalizing on the surface and
atmosphere "background” information contained in TB tenapw@ariation.

Future work seeks to (1) extend this work to the GPM covered legions (655~65°N),
through incorporation oAT B in the Goddard profiling algorithm (GPROF), where the GPMIdua
frequency precipitation radar observations can be takeheaseference; (2) extend this work to
the ocean surface. Over the ocean surface, it is plannedrtpute TB temporal variation for both

the high frequency and low frequency channels.
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900 TABLE 1. Characteristics of each sensor used in this study. Theoseemployed the cross-track scanning
« Scheme is indicated by the superscript ™. For the croaskrscanning sensors, the polarization (V/H) is valid
«2 ONly at nadir. The ascending equatorial crossing time (E€®s of December 2016 for the sun-synchronous
w3 Orbit satellites. The GPM satellite has a precessing onitch means that it overpasses a certain location at

w4 Varying times throughout the day.

Satellite name  Radiometer name  Frequency  Frequency Fregue Resolution ECT
GPM GMI 89.0 (V/H) 166.0 (V/H) 183.33,47 (V) Gor7km  *

F17 SSMIS 91.7 (V/H)  150.0 (H) 183431, +3, +6.6 (H) 14 km 18:26
F18 SSMIS 91.7 (V/H) 150.0 (B)  183.3t1,+3,+6.6 (H) 14 km 18:45
NPP ATMS 88.2 (V) 165.5 (H) 183.31,+1.8,43,4+4.5,+7 (H) 14~45km 13:31
NOAA-18 MHS* 89.0 (V) 157.0 (V) 183.31, 43 (H); 191.3 (V) 1740km  18:33
NOAA-19 MHS* 89.0 (V) 157.0 (V) 183.31, 43 (H); 191.3 (V) 1740km  15:59
Metop-A MHS 89.0 (V) 157.0 (V) 183.31,+3 (H); 191.3 (V) 17~40km  21:29
Metop-B MHS 89.0 (V) 157.0 (V) 183.31,+3 (H); 191.3 (V) 17~40km  21:32

aThe 150 GHz channel on F18 has stopped functioning sincaiBahr2012, which is not used in this study.
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905 TABLE 2. Sample size of each sensor from March 2014 to December&@1L.85 resolution in the targeted

ws  region (L30W~60°W, 25°N~50°N).

Satellite name  Radiometer name  Obs. # (Million)  Percentége

GPM GMI 19.01 8.25

F17 SSMIS 32.76 14.21
F18 SSMIS 30.22 13.11
NPP ATMS 30.27 13.13
NOAA-18 MHS 28.95 12.56
NOAA-19 MHS 29.72 12.89
Metop-A MHS 29.76 12.91
Metop-B MHS 29.83 12.94
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007 TABLE 3. Correlation, root-mean-square error (RMSE) and biasdas TB and\T Bfrom each of the eight

«s Sensors, for the blizzard case over the Mid-Atlantic andtihNgast United States on January 23 2016.

Correlation ~ Correlation ~RMSE (mm/hr)  RMSE (mm/hr)  Bias (%)Bias (%)
B ATB TB ATB TB ATB

GMI (GPM) 0.27 0.76 1.34 0.72 40.03 8.03
ATMS (NPP) 0.72 0.76 0.83 0.69 30.36 -4.36
MHS (NOAA-18) 0.50 0.69 0.99 0.75 39.98 14.36
MHS (NOAA-19) 0.59 0.68 0.89 0.79 12.48 -9.90
MHS (Metop-A) 0.25 0.51 0.94 0.83 11.00 -40.09
MHS (Metop-B) 0.12 0.48 1.06 0.82 24.21 -18.04
SSMIS (F17) 0.39 0.75 111 0.61 49.72 16.40
SSMIS (F18) 0.20 0.73 0.94 0.57 38.79 0.85
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Precipitation retrieval performance in 2016 by using V8@ &v89. (a) Density scat-
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the whole area. (b) Scatter plot between MRMS (referencel) refrieved precipita-
tion rate fromAV89 over the whole area. (c) Same as (a), except over the North-
east region (6BN~80°W, 37°N~47°N). (d) Same as (b), except over the Northeast
region (65W~80°W, 37°N~47°N). (e) Same as (a), except over the Southeast re-
gion (8CW~90°W, 30°N~35°N). (f) Same as (b) except over the Southeast region
(80°W~90°W, 30°N~35°N). . . o

Case stuy of the blizzard case over the Mid-Atlantic and Neast United States on January
23 2016. Each row shows the MRMS observed precipitation réfrieved precipitation
from TBs themselves for each sensor, and the retrievedptaiion fromAT Bsfor each
sensor. The overpass time for each sensor is shown in teeofittach figure. First row:
GMI; Second row: ATMS; Third row: MHS (NOAA-18); Fouth row: NIS (NOAA-19).

Same as Fig. 14, execept for sensors of MHS (Metop A) MHSt(thkB) SSMIS (Fl?)
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Scatter plots between MRMS precipitation rate and retderecipitation rate from all eight
sensors based on all TBs, and between MRMS precipitatierarad retrieved precipitation
rate from all eight sensors based on &llBs (AV89, ...,AV190), for the blizzard event
over the Mid-Atlantic and Northeast United States on JanQar2016. Only the correlation
coefficientis labeled in the figure due to space limitatiddgot-mean-square error (RMSE)
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Precipitation retrieval performance in 2016 by using alsTB'89, ..., V190) and alAT Bs
(AV89, ...,AV190). (a) Density scatter plot between MRMS (reference)retrieved pre-
cipitation rate from all TBs over the whole area. (b) Scattet between MRMS (reference)
and retrieved precipitation rate frof\T Bs over the whole area. (c) Same as (a), except
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096 FiG. 4. (a) Scatter plot based on correlation betwAg189 and precipitation rate (x-axis), and correlation
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FiG. 5. Case study over the grid box at (¥4, 43.5N) in New York. (a) Scatter plot between precipitation
rate andAH89. (b) Scatter plot between precipitation rate and H89S@e as (a), except that only the non-
snow-covered data are used. (d) Same as (b), except thahentpn-snow-covered data are used. (e) Same as
(a), except that only the snow-covered data are used. (fgSanb), except that only the snow-covered data are

used. (g) The regression curves from (a), (c) and (e). (f)régesssion curves from (b), (d) and (f).
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FiG. 7. Case study over the grid box at (86 30.5N) in Florida. (a) Scatter plot between precipitation rate
andAHB89. (b) Scatter plot between precipitation rate and H89.S@he as (a), except that only the data in
summer are used. (d) Same as (b), except that only the datenimer are used. (e) Same as (a), except that
only the data in winter are used. (f) Same as (b), except thigittbe data in winter are used. (g) The regression

curves from (a), (c) and (e). (f) The regression curves frojn(@) and (f).
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1009 Fic. 8. Case study over the grid box at (2¥ 47°N) at Missoula, Montana. (a) Scatter plot between
w0 Precipitation rate and H89. (b) Scatter plot between pratipn rate anddAH89. (c) Same as (b), except that
o ONly the data witht < 24-hr is used. (d) Same as (b), except that only the dataAwvith 6-hr is used.
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1014 FiGc. 10. (a) Histogram of the time differencét(in Eq. 3) when using eight sensors, including GMI, ATMS,
ws  SSMIS (F17), SSMIS (F18), MHS (NOAA-18), MHS (NOAA-19), MKi8etop-A), and MHS (Metop-B). (b)
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1021 FiG. 12. Left column: correlation between the instantaneouadprecipitation rate, using GMI observation
w22 only. Center column: Correlation between precipitaticie @ndAT B at the corresponding channel, where the
s AT Bis derived from GMI observations only. Right column: Coatén between precipitation rate and B at

102 the corresponding channel, where tXiEB is derived from all eight sensor observations.
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13. Precipitation retrieval performance in 2016 by usir@P\andAV89. (a) Density scatter plot be-

tween MRMS (reference) and retrieved precipitation ratenfl/89 over the whole area. (b) Scatter plot be-

tween MRMS (reference) and retrieved precipitation ratenfAV89 over the whole area. (c) Same as (a),

except over the Northeast region (§8~80°W, 37°N~47°N). (d) Same as (b), except over the Northeast region

(65°W~B8C°'W, 37°N~47°N). (e) Same as (a), except over the Southeast regictW8®0°W, 30°N~35°N).

(f) Same as (b), except over the Southeast regiotMBAI0°W, 30°N~35°N).
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(a) MRMS observed precip. at 12:35 (b) GMI retrieved precip. by TB at 12:35 (c) GMI retrieved precip. by ATB at 12:35
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(d) MRMS observed precip. at 7:09 (e) ATMS retrieved precip. by TB at 7:09 (f) ATMS retrieved precip. by ATB at 7:09
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(9) MRMS observed precip. at 11:58 (h) MHS (NOAA-18) retrieved precip. by TB at 11:58 (i) MHS (NOAA-18) retrieved precip. by ATB at 11:58
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(j) MRMS observed precip. at 18:22 (k) MHS (NOAA-19) retrieved precip. by TB at 18:22 (I) MHS (NOAA-19) retrieved precip. by ATB at 18:22
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FiG. 14. Case stuy of the blizzard case over the Mid-Atlantic Blodtheast United States on January 23
2016. Each row shows the MRMS observed precipitation, threeved precipitation from TBs themselves for
each sensor, and the retrieved precipitation f@hBsfor each sensor. The overpass time for each sensor is
shown in the title of each figure. First row: GMI; Second rowt MS; Third row: MHS (NOAA-18); Fouth
row: MHS (NOAA-19).
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(a) MRMS observed precip. at 15:20 (b) MHS (Metop-A) retrieved precip. by TB at 15:20 (c) MHS (Metop-A) retrieved precip. by ATB at 15:20
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(d) MRMS observed precip. at 14:34 (e) MHS (Metop-A) retrieved precip. by TB at 14:34 (f) MHS (Metop-A) retrieved precip. by ATB at 14:34
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(h) SSMIS (F17) retrieved precip. by TB at 12:04 (i) SSMIS (F17) retrieved precip. by ATB at 12:04
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1036 FiG. 15. Same as Fig. 14, execept for sensors of MHS (Metop-A)SMMetop-B), SSMIS (F17), and
ez SSMIS (F18), respecitively.
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FiG. 16. Scatter plots between MRMS precipitation rate andenetd precipitation rate from all eight sensors
based on all TBs, and between MRMS precipitation rate anmabved precipitation rate from all eight sensors
based on alAT Bs (AV 89,

on January 23 2016. Only the correlation coefficient is lath@h the figure due to space limitations. Root-mean-
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square error (RMSE) and bias are listed in Table 3.
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.,AV190), for the blizzard event over the Mid-Atlantic and Nadist United States




1043

1044

1045

1046

1047

1048

1049

64

i

6l

0.5

Precip. rate from TB (mm/hr)
N

0.2

0.05
0.05

Corr=0.58 © Whole region -

. - o
RMSE=1.75 mm/hr 2 Boplon
Bias=-13.5%

(@)

8 16 32 64

02 05 1 2 4
MRMS precip. rate (mm/hr)

64

16

0.5

Precip. rate from TB (mm/hr)
N

0.2

0.05
0.05

Corr=0.44 : VNortheast region ya
RMSE=1.35 mm/hr o

Bias=-14.18% 1 - ™ - - -n- = g 2 -

EI.

= ©

8 16 32 64

02 05 1 2 4
MRMS precip. rate (mm/hr)

64
32

N

0.5

Precip. rate from TB (mm/hr)

0.2

0.05
0.05

Corr=0.62 7 Southeast region a
RMSE=2.18 mm/hr ' ' :

. .
Bias=2.70% s, ‘= " %m 25

aa (e)
02 05 1 2 4 8 16 32 64

MRMS precip. rate (mm/hr)

10000

8000

6000

4000

2000

1200

1000

400

100

Precip. rate from ATB (mm/hr) Precip. rate from ATB (mm/hr)

Precip. rate from ATB (mm/hr)

64 = 10000
22 Corr=0.65 © Whole region
. -
RMSE=1.64 mm/hr T,
16 | Bias=-3.86% 8000
8
4 6000
2
1 4000
0.5
0.2 2000
0.05 1
0.05 02 05 1 2 4 8 16 32 64
MRMS precip. rate (mm/hr)
64 1200
32 Corr=0.61 ~Northeastregion -~ |
RMSE=1.22 mm/hr o
. . M 1000
16 | Bias=-8.38% * ,* "
=
8 g s .
. 800
400
.
2 : 600
1 . "
05 e e 400
= " .
A e |
02 . 200
P
. C)
0.05 u 1
0.05 02 05 1 2 4 8 16 32 64
MRMS precip. rate (mm/hr)
64 T 400
2 Corr=0.66 7 Southeast region 4
RMSE=2.06 mm/hr j. ' ' f_-
16 [ Bias=2.67% 5.1 a's b H
. 300
8 _l Ly
4 1
- -
2 = 200
H
1 -, -
‘.-‘-‘ L]
0.5 2 [P
. ' 100
=
0.2 R
i
y .
)
0.05 1
0.05 02 05 1 2 4 8 16 32 64

MRMS precip. rate (mm/hr)

FiG. 17. Precipitation retrieval performance in 2016 by usihdBs (V89, ..., V190) and alAT Bs (AV 89,

...,AV190). (a) Density scatter plot between MRMS (reference)ratribved precipitation rate from all TBs

over the whole area. (b) Scatter plot between MRMS (refexpand retrieved precipitation rate frofiT Bs

over the whole area. (c) Same as (a), except over over thé@&ast region (6W~80°W, 37°N~47°N). (d)

Same as (b), except over the Northeast regioABE580*W, 37°N~47°N). (e) Same as (a), except over the

Southeast region (8W~90°W, 30°N~35°N). (f) Same as (b), except over the Southeast regiotVBeOW,

30°N~35°N).



