# Tropical Cyclone Intensity Estimation Using Deep Convolutional Neural Networks

Manil Maskey, Dan Cecil, Rahul Ramachandran, and JJ Miller NASA Marshall Space Flight Center



33<sup>rd</sup> Conference on Hurricanes and Tropical Meteorology April 20, 2018. Pointe Vedra, FL



#### https://youtu.be/9hOwnUOkNQ8





#### **Overview**

- Deep learning and Convolutional Neural Network
- CNN for Tropical Cyclone Intensity Estimation
- Preliminary results
- Work in progress





# **Deep Learning**

- A subfield of machine learning
- Algorithms inspired by function of the brain
- Scales with amount of training data
- Powerful tool without the need for feature engineering
- Suitable for many Earth Science applications





# **Traditional Image Classification Approach**

- Image Features: Color, Texture, Edge histogram,...
- "Shallow" architecture
- Experts define features







#### "DEEP" Architecture

- Features are key to recognition
- What about learning the features?
- Deep Learning
  - Hierarchical Learning
  - Modeled after human brain
  - Process information through multiple stages of transformation and representation







# **Convolutional Neural Network**

- Input image labeled training data
- Convolution Layers filters are applied across input images (start with random filters)
- Non-linearity a bias function so that the network is not remembering but rather generalizing
- Pooling subsampling of the output so that the images do not grow exponentially
- Final output images are passed through a traditional neural network for classification
- Classification results are compared using a loss function to determine error
- Based on error the weights and filters are adjusted using gradient descent
- Iterate the process until the error is below some threshold





# **Convolutional Layer**

Input (7x7), pad of 1

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 1 | 0 | 1 | 0 |
| 0 | 2 | 1 | 1 | 2 | 1 | 0 |
| 0 | 1 | 2 | 1 | 2 | 2 | 0 |
| 0 | 2 | 2 | 2 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### Kernel (3x3), stride of 2



Output (3x3)



- Stride (s)
  - Jump/step with which filters move across width/height of input volume
- Padding (p)
  - Amount of wrapping used in input
- Output size (W<sub>o</sub>) = (W<sub>i</sub> k + 2\*p)/s + 1



2D Convolution, Single Slice



#### **Network architecture**







# **Tropical Cyclone Intensity Estimation**

#### • The Dvorak technique

- Vernon Dvorak (1970s)
- Satellite-based method
- Cloud system measurements
- Development patterns corresponds to T-number
- Deviation-angle variation technique (DAVT)
  - Piñeros et al. (2008)
  - Variance for quantification of cyclones
  - Calculates using center (eye) pixel
  - Directional gradient statistical analysis of the brightness of images





#### Issues

- Subjective/Uncertainty
- Lack of generalizability
- Inconsistency
- Complexity









### Data

#### • Images

- US Naval Research Laboratory (http://www.nrlmry.navy.mil/tcdat)
- From 1998 to 2014
- Images at 15 minutes interval
- Cyclone data
  - National Hurricane Center (http://www.nhc.noaa.gov) (HURDAT and HURDAT2)
  - Hurricane Research Division (http://www.aoml.noaa.gov/hrd/hurdat/Data\_Storm.html)
  - Every 6 hours
- 98 cyclones collected over Pacific and Atlantic regions
  - 68 from Atlantic
  - 30 from Pacific





#### **Storms**

| Region/Basin | Year | Cyclones                                                                                                                      |  |
|--------------|------|-------------------------------------------------------------------------------------------------------------------------------|--|
|              | 1998 | Mitch                                                                                                                         |  |
|              | 2003 | Isabel                                                                                                                        |  |
|              | 2004 | Ivan                                                                                                                          |  |
|              | 2005 | Emily, Katrina, Rita, Wilma                                                                                                   |  |
| Atlantic     | 2007 | Dean, Felix                                                                                                                   |  |
|              | 2010 | Alex, Bonnie, Colin, Danielle, Earl, Fiona, Five, Gaston, Igor,<br>Julia, Karl, Lisa, Matthew, Nilcole, Otto, Paula, Richard, |  |
|              | -020 | Shary, Tomas, Two                                                                                                             |  |
|              |      | Arlene, Bret, Cindy, Don, Emily, Franklin, Gert, Harvey,                                                                      |  |
|              | 2011 | Irene, Jose, Katia, Lee, Maria, Nate, Ophelia, Philippe, Rina,                                                                |  |
|              |      | Sean, Ten                                                                                                                     |  |
|              |      | Alberto, Beryl, Chris, Debby, Ernesto, Florence, Gordon,                                                                      |  |
|              | 2012 | Helene, Isaac, Joyce, Kirk, Leslie, Michael, Nadine, Oscar,                                                                   |  |
|              |      | Patty, Rafael, Sandy, Tony                                                                                                    |  |
|              | 2014 | Edouard                                                                                                                       |  |
|              | 2002 | Elida, Fausto, Hernan, Kenna                                                                                                  |  |
|              | 2005 | Jova, Kenneth                                                                                                                 |  |
| Pacific      | 2006 | Bud, Daniel, Ioke, John, Lane                                                                                                 |  |
|              | 2007 | Flossie                                                                                                                       |  |
|              | 2008 | Hernan, Norbert                                                                                                               |  |
|              | 2009 | Felicia, Guillermo, Jimena, Rick                                                                                              |  |
|              | 2010 | Celia, Darby                                                                                                                  |  |
|              | 2011 | Adrian, Dora, Eugene, Hilary, Jova, Kenneth                                                                                   |  |
|              | 2012 | Bud, Emilia, Miriam, Paul                                                                                                     |  |





# Data augmentation

- Interpolate to increase even more
- 2 hours interpolated image differences

atl\_ISABEL-A\_2003-09-11:14\_138.33-AND-B\_2003-09-11:16\_141.67k



(a) 2003-09-11:14 (138.33 kt)

(b) 2003-09-11:16 (141.67 kt)





RMSE: 0.06, SSIM:0.78



2 hour interpolated image differences



# Training, test, and validation

- (Training + Validation) 70% 30% (Test)
- (Training) 75% 25% (Validation)

| Hurricane Category | Train | Validation | Test  | Total |
|--------------------|-------|------------|-------|-------|
| H1                 | 3314  | 1104       | 1816  | 6234  |
| H2                 | 1860  | 620        | 994   | 3474  |
| H3                 | 1848  | 616        | 992   | 3456  |
| H4                 | 1886  | 628        | 1032  | 3546  |
| H5                 | 603   | 201        | 306   | 1110  |
| NC                 | 126   | 42         | 54    | 222   |
| TD                 | 6363  | 2121       | 3576  | 12060 |
| TS                 | 9863  | 3288       | 5575  | 18726 |
| Total              | 25863 | 8620       | 14345 | 48828 |





# Visualization

feature map 113





Feature maps from second convolution



# Initial performance

- Model with around 90% of **validation** accuracy
- Tested against 14,345 test images (Atlantic + Pacific)
  - Confusion Matrix
  - Classification Report
  - Accuracy
  - RMS Intensity Error







- Top-1: exact-hits
- Top-2: exact-hits + 2<sup>nd</sup>-hits

|       | <b>Total Counts</b> | Accuracy |
|-------|---------------------|----------|
| Top-1 | 11571               | 80.66%   |
| Top-2 | 13695               | 95.47%   |

| Category | Total | Top-1 | $2^{nd}$ hit | Top-2 |
|----------|-------|-------|--------------|-------|
| NC       | 54    | 32    | 15           | 47    |
| TD       | 3576  | 3174  | 364          | 3538  |
| TS       | 5575  | 4838  | 665          | 5503  |
| H1       | 1816  | 1235  | 432          | 1667  |
| H2       | 994   | 614   | 215          | 829   |
| H3       | 992   | 657   | 212          | 869   |
| H4       | 1032  | 816   | 148          | 964   |
| H5       | 306   | 205   | 73           | 278   |
| Total    | 14345 | 11571 | 2124         | 13695 |





# **Error Metrics**

- Our model
  - Across Atlantic and Pacific
  - Achieved RMSE of 9.19*kt*
- North Atlantic
  - Piñeros et al. (2011): 14.7*kt*
  - Ritchie et al. (2012): 12.9*kt*
- North Pacific
  - Ritchie et al. (2014): 14.3*kt*

| Category      | RMSE  | MAE  |
|---------------|-------|------|
| NC            | 10.14 | 6.19 |
| TD            | 6.59  | 2.18 |
| TS            | 7.68  | 2.71 |
| H1            | 12.17 | 6.59 |
| H2            | 12.43 | 6.82 |
| H3            | 12.44 | 6.31 |
| H4            | 10.50 | 4.09 |
| H5            | 10.08 | 5.32 |
| Total Average | 9.19  | 3.77 |





### Sample correct classifications



(a) NC: ['NC': 99.4]



(b) TD: ['TD': 87.46]

**True Positives** 



(c) TS: [TS: 100]



(d) H1: [H1: 56.8]



(e) H2: [H2: 78.54]



(f) H3: [H3: 95.73]



(g) H4: [H4: 86.04]





#### **Sample incorrect classifications**



DSiG

False Negatives



#### Detailed look: Hurricane Earl, 2010





Adapted from Stevenson et al. (2014). Time series of satellite-derived intensity estimates (circles) for Hurricane Earl (2010), added to best track intensities and lightning flash rate time series.



# Work in progress

- Hurricane intensity estimation portal
- Use of passive microwave dataset
- Use of atmospheric conditions





# Hurricane intensity estimation portal

- Develop a near real-time tropical cyclone intensity estimation services
  - Include additional image datasets
  - Algorithmic enhancements
  - Monitor NHC outlook for "invest" area for trigger
- Perform extensive evaluation with available observations
- Work with NASA/SPoRT to develop a website that will display current "invest" information along with estimated wind speed information and relevant overlays
- Develop OGC services (WFS and SOS): integration with AWIPS/N-AWIPS





### Hurricane intensity estimation portal



http://hiep.surge.sh/storms/9eee5297-d43d-4f84-9931-23bef5fbdbb4

# Thank you.





# **Using Microwave Datasets**

| Instrument (85, 89 GHz) | Coverare years | Total storm centric images |
|-------------------------|----------------|----------------------------|
| SSMI17                  | 2008-2016      | 1715                       |
| SSMI18                  | 2010-2016      | 1378                       |
| TMI                     | 1998-2014      | 3409                       |
| AMSRE                   | 2003-2011      | 2230                       |





#### Network







#### Process

- 1. Collect Storm-centric PM data
- 2. Generate image
- 3. Match up images with NRL goes images
- 4. Add random rotation/flips to images (data augmentation).
- 5. Use corresponding GOES and Microwave images for training.
- 6. Start with 7 categories (ts, td, 1, 2, 3, 4, 5)





#### **Samples**



Source: SSMI18/GOES Wind speed: 125 Hurricane: Matthew Year: 2016







V0 +60 +50 +60 +30



DSiG





Source: TMI/GOES Wind speed: 125 Hurricane: Dean Year: 2007

