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Functions of the Mars ISRU Lander Commercial 0.5%Ru/y-Alumina catalyst
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OVERARCHING PURPOSE CURRENT STUDY PURPOSE
To design a carbon dioxide methanation/Sabatier reaction catalysts able to withstand variable conditions Examine supported Ruthenium as a carbon dioxide methanation catalyst to determine the effects support
including fluctuations in bed temperature and feed flow rates for 480 days of remote operation to produce properties have on the active phase by studying activity and selectivity.
seven tons for methane.
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Catalyst Synthesis Experimental conditions |
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* Incipient wetness Stainless Steel %” Tube In-Situ Reduction: ;‘25 ‘_ ¢ 70 3 performed the best W.Ith the highest 5 0025 o Rugle | | Calcinedsic
impregnation 30 min, H, flow=120mL/min 7 50 60 = conversion and selectivity as well as the largest = :
° > 50 § : C . : &
» Supports used as received e £1s w 3 temperature of reduction indicating 2 . /\
e TiO, —97%Rutile 0.35g Catalyst+0.165g ALO; _ 325°C ~7hr 5 10 ¥ & favorable relationship between this support
. (mesh 50-60) (mesh 40-45) Feed Ratio: 5 20 Non-calcined SiC '
* TiO, —98% Anatase seemare 10 and the catalyst.
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e Non-Calcined Quartz Wool He carrier gas Thermal
XPS (Si2p) 104, sic . . (m_Z) - W )
o £ Calcined SiC has a slightly higher Catalyst Ru Particle Size (nm)  Surface Area g Conductivity\ ) CH, Yield (%)
% / 2'," ! Characterization dispersion than Non-calcined SiC Pre-reaction Post-reaction Pre-reaction Post-reaction
- : v * Hydrogen chemisorption as expected due to the —OH 5%Ru/y-Al,0, 9.0 10.8 176 150 25 29.2
= = == Ru/Non- . . .
L Calcined sic * Nitrogen physisorption (BET) anchoring sites made available 5%Ru/Non-calcined SiC 10.2 12.1 28 27 150 23.7
08 106 104 102 100 s8 %5 o * Temperature-Programmed Reduction (TPR) by the SiO, layer formation. 5%Ru/Calcined SiC 9.7 10.0 28 28 <150 16.8
A thin layer of SiO, on Calcined B-SiC 5%Ru/TiO, (Anatase) 13.8 16.2 134 130 8.3 8.0
K / K 5%Ru/TiO, (Rutile) 11.9 14.0 15 15 8.3 14.6 /
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