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1 Introduction 
rajectory-based Operations (TBO) are a key component of the Next Generation Air Transportation 

System (NextGen) [1, 2].  TBO are based on the premise that, in the near future, aircraft operating in 

the National Airspace System (NAS) will be managed more strategically based on a four-dimensional 

trajectory (4DT).  A 4DT defines the lateral, vertical, and temporal path of an aircraft and can be computed 

by automation, computed by the aircraft, or synchronized between these two agents.  TBO extends this 

premise by providing separation, sequencing, spacing, and merging services to flights based on these 4DTs, 

thus providing efficiency, capacity, and safety benefits [2]. 

A critical component of TBO is the ability for a consistent and accurate 4DT representation to be shared 

and synchronized between airborne and ground systems as well as amongst various ground automation 

systems.  Sharing of the 4DT is important to ensure that all stakeholders of a given flight have a common 

baseline from which to build situation awareness of the present and future states of any aircraft at any time 

during the flight.  Additionally, through management and sharing of the 4DT, preferences regarding how 

the trajectory of a given flight should be modified can be developed and shared with other stakeholders of 

the flight.  Furthermore, for the Air Navigation Service Provider (ANSP), sharing the 4DT amongst various 

ground-based automation platforms assists in system-wide benefit realization by considering the 

widespread system-level impacts that result from specific decisions. 

In today’s NAS, no comprehensive trajectory information is broadcast from the flight deck to ground-

based automation systems.  Several ground-based automation platforms have independent, domain-specific 

trajectory generators that build trajectory representations based on constraints in the NAS.  These systems 

typically do not share their trajectory representations, and if they do, the information that is passed to other 

systems is usually inadequate (constraints with insufficient detail) and is only passed in one direction with 

no opportunity for negotiation.  This leads to un-coordinated decision making without the input of all 

stakeholders.  

The Aeronautical Telecommunication Network—Baseline 2 (ATN-B2) standard [3] defines the 

Extended Projected Profile (EPP) trajectory that can be sent via Automatic Dependent Surveillance-

Contract (ADS-C) from an aircraft to ground automation.  The EPP trajectory message contains a 

representation of the reference trajectory from an aircraft’s Flight Management System (FMS).  The EPP 

is included in the ATN-B2 standard as one method for facilitating trajectory synchronization between 

airborne and ground systems.  The ATN-B2 standard has been mandated by EUROCONTROL [4], but not 

by the Federal Aviation Administration (FAA). 

Several studies [5, 6, 7, 8, 9] have demonstrated potential uses for, and illustrated shortcomings of, the 

data contained within the EPP trajectory.  However, none of these studies has attempted to characterize the 

EPP error that results from an aircraft’s own trajectory prediction error.  The objective of this analysis and 

paper is to produce an initial characterization of the accuracy of the EPP message under a limited set of 

conditions.  This is intended to be an initial characterization that produces an order of magnitude 

understanding about the potential limitations in the use of the shared EPP trajectory information.  In 

addition, a parametric error model is identified that could serve to support fast-time predictive analyses on 

a larger number of use cases.  

This report is organized as follows.  Section 2 describes the content of the EPP message and explains 

anticipated uses and limitations of the EPP as found in literature.  Section 3 describes the design of the EPP 

error characterization analysis, the simulation approach used, and the calculation methodology of the error 

metrics.  Section 4 discusses the qualitative EPP error characterization, with the associated experiment 

figures presented in Appendix A-Appendix F.  Section 5 describes the development of the parametric error 

model, with associated model calibration and validation figures shown in Appendix G, while section 6 

presents the conclusions for this analysis.  
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2 Background 
This section of the document provides an overview of how ADS-C contracts and reports are initiated 

and operationally executed, discusses the contents of the EPP message, and highlights potential uses of the 

EPP message.  It also discusses the identified shortcomings of the EPP message found in the literature.  

2.1 ADS-C Operational Overview  
ADS-C is an application that provides automatic reports from an aircraft’s FMS to an ANSP.  ADS-C 

reports can be requested by the ANSP in one of three types of contracts – an on-demand one-time report, a 

periodic contract, and an event-driven contract.  The aircraft system is capable of providing ADS-C reports 

to support contract requests.  The ADS-C report’s content, and the conditions under which the report is 

sent, vary depending on the type of contract request and the conditions specified in the request [3]. Figure 

1 illustrates how an ADS-C contract is originated and executed.  

A contract is initiated through a request sent from the ANSP (Air Traffic Service Unit, or ATSU, in the 

figure) to the aircraft’s FMS.  The aircraft’s FMS sends a message that either accepts the request, partially 

accepts the request, or rejects the request, at which point the controller is notified.  Once the ADS-C contract 

is no longer required, a cancellation message is sent from the ANSP to the aircraft’s FMS [3]. 

Only one contract of a given type can be set up per aircraft with any given ANSP.  When the ANSP 

sends a request to an aircraft system for a periodic or event contract, and either of these two contracts is 

already in place with that aircraft, the new contract will override the previous contract for that type.  An 

ADS-C contract may be established between an aircraft and an ANSP prior to the entry into the ANSP’s 

airspace, and an ADS-C contract may remain in effect after an aircraft has exited an ANSP’s airspace [3]. 

 
Figure 1.  ADS-C operational diagram [3]. 

2.2 EPP Message Elements 
The EPP message provides a set of trajectory points that are a representation of the aircraft’s four-

dimensional FMS reference trajectory.  It extends and improves upon the Intermediate Projected Intent (IPI) 

trajectory downlink message, which was available in Future Air Navigation Systems (FANS) 1/A.  The 

EPP message contains information based on the route and performance data that has been entered into the 

aircraft’s Flight Management System (FMS), including up to 128 trajectory change points (TCPs) and 

constraints (e.g., altitude, time, etc.) at each waypoint [3, 7].  Figure 2 defines the data contained in the EPP 

message.  Note that the minimum required set of data for an EPP trajectory point is the latitude and longitude 

position. 
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Figure 2.  ADS-C EPP message contents [3]. 

2.3 Anticipated Uses of the Extended Projected Profile Message 
Data contained within the EPP message are anticipated to facilitate trajectory synchronization between 

aircraft and ANSP automation, as well as to provide data required for automated conformance monitoring.  

As stated by Bronsvoort, et al in [10], “The goal of air-ground trajectory synchronization is to produce 

trajectories in disparate systems whose discrepancies are operationally insignificant, increasing the 

likelihood of flying the planned conflict-free and preferred trajectories.” Trajectory synchronization is 

anticipated to occur through several means, including augmentation of ground-based trajectory generation 

systems with FMS-calculated and inferred intent data from the EPP message, and calibration of the ground-

based trajectory generators utilizing data contained within the EPP message.  Once the trajectories are 

synchronized, they can be used for conformance monitoring. 

2.3.1 Augmentation of Ground-Based Trajectory Generators 
Decision Support Tools (DSTs) serve many functions in air traffic management, including separation 

assurance, forecasting of sector loading [6], supporting time-based metering into terminal areas, and 

updating flight route information in ground systems [9], among others.  A common requirement among all 

of these DSTs is the ability to accurately, and timely, predict an aircraft’s future state.  Ground-based 

trajectory predictors and generators are used by several DSTs in order to model the aircraft’s anticipated 

future path.  Paglione, et al, provide an example of a generic trajectory prediction and generation process, 

noting that some trajectory predictors may require more, different, or less information that the example.  In 

general, the trajectory predictor requires the flight plan, flight number, the aircraft type, the filed cruise 

speed, and the desired cruise altitude.  Additionally, the trajectory predictor will have an estimate of the 

initial condition from surveillance data.  With the route from the flight plan converted from named 

waypoints and procedures (e.g., jet routes, Standard Terminal Arrival Routes (STARs)) into a series of 

latitude/longitude points, the initial condition is joined to the converted route.  Once the lateral path is 

ascertained, procedural altitude and speed constraints are added at different points along the route (e.g., 

speed and/or altitude constraints at waypoints on the STAR).  Finally, the trajectory prediction process 

involves the calculation of the trajectory using physics-based modeling.  During this step, the lateral and 

vertical paths, and speed profile, are merged to reproduce the predicted behaviors identified in the previous 

steps (i.e., following the converted route, meeting specified constraints) while following appropriate aircraft 
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dynamics and reflecting environmental effect, such as wind.  The output of this process is an aircraft’s 

predicted flight path with respect to time [11]. 

Ground-based trajectory generators must overcome several impediments in order to provide an accurate 

representation of an aircraft’s intent.  Regarding lateral uncertainty, as mentioned in the previous paragraph, 

the flight plan is used to determine the lateral path of the aircraft.  Yet, as the aircraft executes its trajectory, 

unforeseen conditions such as weather or the actions of traffic aircraft may affect the flight and require 

changes to the lateral path.  Common examples of these are vectors and direct-to maneuvers, which are 

communicated verbally between the ANSP and flight crew, and often are not captured by ANSP automation 

systems.  Mondoloni and Bayraktutar state that the intent error caused by vectoring is among the highest-

impact factors that affect prediction accuracy, due to the significant effects on cross-track and along-track 

error [12].  In a study published by MITRE, the author states that only approximately 30 percent of the 

lateral maneuvers were entered into the ANSP automation within an en route facility [13].  Furthermore, 

regarding longitudinal uncertainty, ground-based trajectory generators often have inadequate knowledge of 

an aircraft’s speed schedule and weight, which results in inaccuracies in the climb and descent portions of 

the flight [6, 14]. 

In order to address trajectory uncertainty, work conducted by Paglione, et al [11], and Bronsvoort, et al 

[15], demonstrated that ground-based trajectory generation systems can benefit significantly from using 

data from the aircraft’s FMS-generated trajectory (e.g., via the EPP message).  Bronsvoort, et al [10], 

describe two approaches for using such information.  The first approach is to directly employ the EPP 

message as the trajectory to be used by ANSP DSTs; however, arguments have shown that this is not the 

most practical use for the EPP message (see Section 2.4.2).  The second approach is to augment the data 

used for ground-based trajectory generation with data contained in the EPP message.  Because the FMS is 

the most accurate source of aircraft intent and other parameters required for trajectory generation, it follows 

that trajectory predictors in ground systems can improve accuracy when using EPP-derived intent and 

parameters [10]. 

Haugg, et al [8], state that the most beneficial data taken directly from the EPP message for a ground-

based trajectory generator is the speed profile, especially the climb Calibrated Airspeed (CAS) or Mach 

number.  Additionally, the use of the climb and descent profile data, along with the time prediction data 

from the EPP, would further improve ground-based trajectory generation.  A ground-based trajectory 

generator may also benefit to a certain extent from a better air-ground trajectory synchronization if, for 

example, the aircraft’s preferred Top of Descent or Top of Climb points are known in advance and are 

dynamically updated. 

Šošovička, et al [5], re-iterate the findings of Haugg, et al, and posit that the highest benefit for the 

ground-based trajectory predictors occurs when the aircraft-derived data from the EPP message is used in 

conjunction with knowledge of how the aircraft is handled in any given sector (e.g., hand-off altitudes, 

entry/exit points).  The authors add that, since ground-based trajectory generators do not have accurate 

knowledge of the weight of the aircraft, weight information available in the EPP can increase the accuracy 

of ground-based trajectory predictions.  

In addition to the aforementioned direct use of data elements in the EPP message in ground-based 

trajectory generation systems (e.g., speed data, climb/descent profile data, weight), an additional use is to 

derive aircraft intent information from the EPP message and use it when building a trajectory in a ground-

based trajectory generator.  Bronsvoort, et al [7], propose a method that uses the EPP message to reconstruct 

the commands, guidance modes, and control strategies available to the FMS to plan the trajectory to be 

followed.  These are modeled using the Aircraft Intent Description Language (AIDL) [16, 17], which is a 

formal language designed to express aircraft intent in a rigorous and standardized manner.  In a recent 

example, the aircraft intent was used as input to a trajectory predictor used by Airservices Australia.  The 

study determined that the proposed method can be used to achieve air-ground trajectory synchronization, 

based on an example flight, but there were some notable shortcomings to this approach (discussed in Section 

2.4).  
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2.3.2 Calibration of Ground-based Trajectory Generators 
In addition to its usefulness in deriving aircraft intent, the EPP can be used to calibrate aircraft 

performance characteristics unknown to the ground-based trajectory generator.  This allows for 

synchronization of the current trajectory with the trajectory prediction process [10].  This calibration can 

be sufficiently accurate if the provisional solutions do not deviate too far from the intent associated with 

the original EPP.  Bronsvoort, et al [9], demonstrated that the EPP message could be successfully used to 

determine an aircraft performance model calibration function that accounts for any variables not specifically 

recorded in the EPP.  

With trajectory predictor calibration, a ground-based trajectory predictor can perform high accuracy 

“what-if” computations that anticipate the FMS behavior upon changes in aircraft intent.  These “what-if” 

trajectories are essential for successful trajectory negotiation.  In addition, re-computing the trajectory on 

the ground by a calibrated trajectory predictor provides superior trajectory information between the EPP 

TCPs rather than using basic interpolation [10]. 

2.3.3 Conformance Monitoring 
A recognized feature of TBO is that, by using 4DTs to manage the flight, it should be possible to generate 

more efficient solutions to strategic traffic flow management and separation management problems.  

Correspondingly, the use of 4DTs in these scenarios results in a higher likelihood of using the more complex 

clearances in congested airspace.  Complex clearances – typically composed of lateral, vertical, and 

temporal dimensions of the aircraft’s trajectory – may be too detailed for human conformance monitoring.  

Therefore, a need exists for automated conformance monitoring – both on the flight deck and for the ANSP.   

The EPP can play a crucial role in this conformance monitoring.  An envisioned ANSP conformance 

monitoring DST uses surveillance reports and alerts the controller when the aircraft is outside the 

conformance margins allowed by the clearance.  Some clearances may involve the use of procedures that 

have well-defined tolerances (e.g., clearances involving Required Navigation Performance (RNP) and 

Required Time of Arrival (RTA)).  It is impractical to ask a human controller to monitor conformance for 

errors at the level of precision required for 4DTs.  The EPP is required for the conformance monitoring 

function because it defines the aircraft’s intent in complying with a clearance, and can be easily used within 

a DST. 

2.4 Identified Shortcomings of the Extended Projected Profile Message 
Although the EPP message is regarded in the literature as the practical solution for achieving trajectory 

synchronization, there are some shortcomings within the message standard.  These deficiencies may lead 

to inaccurate trajectory synchronization, which, as Bronsvoort, et al state, can lead to unnecessary tactical 

intervention [10], thus likely causing a loss of efficiency.  In the following sections, the identified 

inadequacies of the EPP message – both in terms of useful data missing from the message standard and of 

possible misuse of the data contained within the EPP message – are discussed. 

2.4.1 Missing Data from the EPP Message 
While the EPP message contains sufficient data to perform the functions outlined in the previous section, 

there are some data elements missing from the ADS-C standard that would increase the accuracy of 

trajectory synchronization between the aircraft’s FMS and ground-based trajectory generators.  This section 

discusses these elements and the implications of not having them as part of the standard.  

The EPP message contains turn geometry information for fly-by turns and supports Radius-to-Fix (RF) 

legs.  However, it does not contain turn geometry information for fly-over waypoints.  Mondoloni and 

Bayraktutar include turn modeling in their list of high-impact factors that affect prediction accuracy [12].  

Bronsvoort, et al [7], discuss the impacts of the lack of turn radii for a fly-over waypoint in the EPP message 

standard.  Typically, a fly-over waypoint contains two turns with different radii – the first (R1 in Figure 3) 

when overflying the waypoint, WP1, to turn in the direction of the next waypoint, WP2, and a second (R2 in 

Figure 3) to intercept the track between WP1 and WP2.  PA represents the point where the first turn ends and 

the next begins, PB represents the point where the second turn ends and the aircraft is on track to WP2, and 

the red line indicated by ∆d0 is the track that the aircraft intends to follow. 
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Figure 3.  Lateral profile of a fly-over maneuver [7]. 

Because the turn radii information is not in the EPP message for fly-over waypoints, assumptions need 

to be made when generating the lateral trajectory, and resulting lateral trajectories produced by disparate 

ground-based trajectory generation systems.  The lack of this information may result in significantly 

different lateral paths (e.g., ∆d1 or ∆d2 in Figure 3).  These assumptions introduce both lateral and 

longitudinal trajectory errors due to ambiguities in the distance flown between WP1 and WP2.  Bronsvoort, 

et al [7], concluded that the knowledge of the turn radii for fly-over waypoints is therefore crucial for 

unambiguous definition of the lateral path. 

Additionally, while the EPP message includes data regarding the aircraft’s current gross mass (i.e. the 

mass of the aircraft at the time when the reference trajectory used for the EPP message was generated), it 

does not provide information about predicted fuel burn.  Mondoloni and Bayraktutar also include lack of 

aircraft weight in their list of high-impact factors that affect prediction accuracy [12].  Between subsequent 

EPP messages, the gross mass of the aircraft decreases due to fuel burn.  If the periodicity of the EPP reports 

is large (i.e., a large time interval between subsequent EPP reports), significant differences may exist 

between the ground-based trajectory generation system’s prediction of the gross mass and the actual gross 

mass of the aircraft.  These errors affect the vertical trajectory, especially during the climb phase of flight, 

but less-so during the descent phase of flight [6, 9, 10]. 

The EPP message does not include information about the temperature and wind forecast that the FMS 

used for trajectory calculations, nor does it include the actual temperature and winds that the aircraft is 

experiencing at the time the trajectory calculation is performed [9, 10].  Mondoloni and Bayraktutar include 

lack of wind forecast and wind gradient modeling in their list of high-impact factors that affect prediction 

accuracy [12].  Complicating matters further, Bronsvoort, et al, describe the differences between weather 

information accessible by ground-based trajectory generators and the FMS, as well as differences between 

airline forecasting methods, data sources, and FMSs manufactured by different companies: 

The ground system has access to a complete weather grid that is updated every hour, 

whereas the FMS is limited in the number of wind points that it accepts and it may not be 

updated as frequently, at least for most current FMS implementations.  Additionally, 

airlines are inconsistent with different practices and procedures for handling the wind data 

that is provided to the aircraft.  The sources of weather data used by the airline may also 

be different than ATC.  To complicate matters, different FMS manufacturers have different 

approaches to process wind data and to blend forecast with sensed wind [10]. 

Inconsistencies also exist in the FMS’s calculations of the Estimated Time of Arrival (ETA) at waypoints 

along the trajectory due to errors in the predicted groundspeeds that result from differences between actual 

and forecast winds [6].  It was proposed to include wind information in the EPP message; however, the 

proposal was rejected to reduce complexity and to limit bandwidth requirements [9].  These discrepancies 

and lack of information cause errors between the trajectory calculated by an FMS and a trajectory calculated 

by a ground-based trajectory generator with respect to the longitudinal and time components of the 

trajectories. 

The EPP message does not provide a direct representation of user preference [10].  Most FMSs perform 

cost trade-offs in the form of selecting a Cost Index (CI) to attribute a fuel-cost to time.  The cost index is 
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typically specific to an airline and considered “sensitive” information; therefore, operators are reluctant to 

make the information available to the ground via data-link.  While this information would not necessarily 

be useful for trajectory generation, it would be beneficial for ANSP DSTs used in separation assurance for 

ranking conflict resolution advisories, and in traffic flow management for delay allocation [10]. 

Finally, Bronsvoort, et al [10], state that in order to conduct accurate trajectory synchronization as 

described in the concepts in Section 2.3, a key element is missing in the EPP – an error estimate or Figure 

of Merit (FOM) associated with the EPP that informs ground automation the expected accuracy of the 

prediction.  This information could be used by the ground system to determine the level of reliability of the 

EPP and thus decide whether to map the EPP directly onto a native trajectory, or to re-compute a new 

trajectory. 

2.4.2 Misuse of Data Contained within the EPP Message 
The EPP message provides ground-based trajectory generators with a standardized, un-matched 

representation of the FMS reference trajectory.  The current concepts of use in Section 2.3 are predicated 

on the philosophy that the airborne trajectory computation process is superior and, hence, the effectiveness 

and feasibility of any constraints imposed by the ANSP are checked with the FMS in the loop.  The most 

trivial approach to the trajectory synchronization problem is for the ground to use the EPP trajectory directly 

in ANSP DSTs.  

Klooster, et al [18], provide several arguments against the direct use of the EPP trajectory.  The most 

impactful reason is that a direct overwrite of the ground-computed trajectory with the airborne trajectory 

representation can lead to instabilities and inconsistencies due to differences in the trajectory computations 

by each trajectory generator.   

The EPP only provides a representation of the active reference trajectory within the FMS based on the 

current active flight plan, implying that the EPP is only valid for the current clearance held by the aircraft 

when it is in a coupled path guidance mode (i.e., coupled Lateral Navigation (LNAV) and Vertical 

Navigation (VNAV)) [10].  Haugg, et al, reiterate this point, stating that it is important to consider the 

guidance mode, which is indicated in the EPP trajectory status portion of the message, because predictions 

may not be relevant when not in a coupled path guidance mode [8]. 
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3 Analysis Design 
The literature discusses different ways that information from an EPP trajectory can be used in ground-

based trajectory prediction.  However, there is no known effort that has attempted to characterize a Figure 

of Merit (FOM) or an error estimate for the EPP message under a given set of conditions.  The objective of 

this analysis was to produce an initial characterization of the accuracy of the EPP message under a limited 

set of conditions.  This was intended to be an initial characterization to produce an order of magnitude 

understanding, identify further limitations in the use of the shared EPP trajectory information, and to 

provide a preliminary method for calculating error estimates for the EPP message points. 

As stated in the previous section, the EPP message provides a set of trajectory points that are a 

representation of the aircraft’s four-dimensional FMS reference trajectory.  Under the assumption of “good 

FMS trajectory prediction,” and without any atmospheric uncertainty (no wind), the as-flown trajectory 

should follow the FMS reference trajectory closely.  In fact, the error between these two could be 

characterized as the guidance and control error and can be easily quantified within a simulated environment.  

Then, the remaining difference between the as-flown trajectory and the EPP data can be denoted as the 

error associated with the EPP representation of the reference trajectory.  The EPP error can be characterized 

against the as-flown trajectory (which includes the guidance and control error), or directly against the 

FMS’s reference trajectory.  In this analysis, we primarily focus on the EPP error against the as-flown 

trajectory but also compare the differences between the FMS reference trajectory and the EPP trajectory. 

The EPP message is a sampling of the FMS reference trajectory.  As such, we can characterize error 

with respect to the reported points easily.  However, characterizing error at positions between the reported 

points requires making assumptions about how to estimate the aircraft’s position at any time between those 

reported points.  The EPP trajectory reports on lateral trajectory change points (e.g., flight pan waypoints), 

vertical trajectory points (i.e., the top-of-descent and the Mach/CAS crossover altitude), and speed change 

points.  In this analysis, we consider only the errors at the EPP reported points and do not consider the speed 

change points. 

The approach used in this analysis was to simulate a set of scenarios using a medium-fidelity simulation 

and compare the EPP and FMS trajectories to the as-flown trajectories.  A set of independent variables were 

selected to try to generate trajectory differences that could try to answer the following set of research 

questions:  

 What are the differences between an FMS reference trajectory and the EPP trajectory for a set of 

common trajectory points? 

 How do the EPP trajectories compare to the realized trajectories as a function of look-ahead time? 

 What parameters contribute to EPP trajectory error? 

 Can parametric error models be identified for the EPP message? 

3.1 Simulation Environment 
NASA’s Airspace and Traffic Operations Simulation (ATOS) platform was used as the simulation 

environment for this study.  The ATOS platform contains a network of real-time simulators that can be used 

for batch studies and real-time human-in-the-loop experiments [19].  Each Aircraft Simulation for Traffic 

Operations Research (ASTOR) aircraft within the ATOS platform utilizes a high fidelity six degree-of-

freedom dynamics model, an emulated flight management system, and an emulated auto-throttle system.  

The ASTOR is also equipped with a pilot model that can simulate the actions of a human pilot in executing 

a flight plan through climb, cruise, and descent phases. 

The Research Prototype Flight Management System (RPFMS) of the ASTOR was modified to include 

the ADS-C and EPP messaging capability of ATN-B2.  The RPFMS is a high-fidelity FMS simulation with 

added research capabilities, such as a multiple RTA capability.  The RPFMS was modified to include the 

ability to receive an ADS-C contract request for periodic EPP trajectory information, the ability to respond 

to and execute the ADS-C contract request, and the ability to encode the FMS reference trajectory into an 

EPP trajectory, based on the ATN-B2 specification.   

Table 1 shows an example of the EPP trajectory data from one of the experiment scenarios used in this 

study.  The basic information for each reported point includes: the point sequence number; the latitude and 



 

9 

longitude position; the altitude in 10’s of feet; the waypoint name where applicable; the estimated time; the 

estimated speed; the vertical and lateral types, to include the fly-by radius in tenths of a nautical mile (NM) 

where applicable; and the speed, altitude, or time constraints applicable to that point.  The gray entries in 

Table 1 (e.g., sequence 7, 8) indicate the speed change points that were not considered in this analysis. 
Table 1.  Example EPP message contents. 
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1 N40040458W107554962 3500 EKR 181 M801 
 

515 64 
   

2 N40209575W106299611 3500 
 

741 M801 2 
     

3 N40216178W106264949 3371 
 

763 K280 256 
     

4 N40230153W106191248 3181 CSPAD 811 K280 
  

64 27000A 
  

5 N40266847W105595400 2674 FRNCH 945 K280 
 

103 64 21000A 
  

6 N40237803W105410735 2196 SKARF 1079 K280 
  

64 17000A 
  

7 N40222137W105312534 1934 
 

1154 K280 32 
     

8 N40214045W105262175 1900 
 

1195 K250 64 
     

9 N40214045W105262175 1900 TOMSN 1195 K250 
  

64 19000B17000A K250B 
 

10 N40197262W105139473 1647 
 

1304 K250 32 
     

11 N40173840W104570970 1300 
 

1477 K210 64 
     

12 N40173840W104570970 1300 BEOND 1477 K210 
  

64 13000 K210B 
 

13 N40168210W104531685 1228 SWAYN 1522 K210 
  

64 12000A 
  

14 N40158058W104461062 1100 KAILE 1603 K210 
 

66 64 11000 K210B 
 

15 N40145178W104425038 1050 BJETN 1648 K210 
 

28 64 10500A 
  

16 N40124355W104409922 1000 JEEPR 1683 K210 
 

32 64 10000 
  

17 N40096990W104410242 1000 JOBOB 1723 K210 
  

64 10000 
  

18 N40073004W104410521 937 
 

1758 K210 32 
     

19 N40058310W104410692 899 
 

1781 K202 64 
     

20 N40058310W104410692 899 KUURT 1781 K202 
  

64 9000A 
  

21 N40058310W104410692 899 
 

1781 K202 32 
     

22 N40019682W104411140 800 
 

1844 K181 64 
     

23 N40019682W104411140 800 KIKME 1844 K181 
  

64 8000A 
  

24 N40019682W104411140 800 
 

1844 K181 32 
     

25 N39588175W104411505 700 
 

1901 K164 64 
     

26 N39588175W104411505 700 LEETS 1901 K164 
  

64 7000A 
  

27 N39588175W104411505 700 
 

1901 K164 32 
     

28 N39569639W104411720 641 
 

1939 K138 64 
     

29 N39538222W104412083 541 R-16L 2014 K138 
  

64 
   

                                                      
1 Relative to EPP message computation time. 
2 Vertical types: 2 – ToD, 256 – xOVER, 32 – speed change begin, 64 – speed change end.  Speed change points not 

considered in this analysis. 
3 Lateral types: 64 – flight plan waypoint. 
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The ATOS platform was used to simulate a set of ASTORs executing a set of flight plans while 

providing EPP trajectory reports at a pre-defined interval.  As will be discussed in more detail later in this 

section, three flight plans were chosen to represent short, medium, and long flights across the NAS.  Each 

flight was initiated at the start of the cruise phase of flight and flew the flight plan, through the descent 

phase, and terminated just prior to reaching the destination.  Each flight was providing EPP trajectory 

information at a 60-second interval.  The frequent EPP trajectory report interval provided a large amount 

of EPP trajectory samples while also matching the FMS trajectory update interval.  The choice to begin 

each scenario at the start of the cruise phase of flight was selected because the aircraft is not using a VNAV 

path guidance and is therefore not attempting to adhere to the vertical path in the EPP trajectory during the 

climb phase of flight.  This is one limitation for the use of the EPP trajectory. 

The ASTOR state trajectory data, FMS reference trajectory data, and EPP trajectory data were collected 

for each scenario.  For each flight, the as-flown trajectory was gathered at a 1-Hertz frequency, a complete 

FMS trajectory prediction was gathered every 60 seconds during the cruise phase of flight, and a complete 

EPP trajectory was gathered every 60 seconds throughout the flight.  These trajectories were used in post-

processing to extract the EPP error information. 

3.2 Independent Variables 
In order to address the research questions, the research team chose a set of five independent variables.  

The independent variables selected were route length, route type, wind magnitude error, wind direction 

error, and RTA condition.  The independent variables are discussed in the following sections and were 

selected based on surveys of the literature and subject matter expertise, and directly affect the trajectory in 

different, quantifiable ways.  

3.2.1 Route Length and Route Type Conditions 
The two independent variables that relate to the route of flight are the route length and the route type.  

The route length was chosen to help identify whether longer flight plans have the same or different EPP 

error characteristics when compared to shorter flight plans.  The route type is used to distinguish between 

a full route and a sparse route, where a sparse route will have significantly fewer flight plan waypoints than 

a full route, and may have different EPP error characteristics. 

Three route lengths and two route type conditions were chosen as independent variables in order to 

characterize the accuracy of the EPP message.  This section describes assumptions made when looking for 

and generating the scenario flight plans, a description of the independent variables, the route generation 

process, and the details of each route used in this study.  The STAR charts and approach plates used in 

developing these routes can be found in Figure 124 through Figure 131 located in Appendix I. 

3.2.1.1 Route Design Considerations 

Two considerations were made for this study concerning route design.  The first consideration is that all 

routes are fully connected from their respective initialization points to their respective runways (i.e., there 

are no route discontinuities in the FMS).  This is done in order to calculate a trajectory from the aircraft’s 

current position to the runway threshold so that the trajectory representation provided by the EPP message 

is complete.  The second consideration is that the researchers desired for all of the flights to travel in the 

same general direction so that one scenario could contain three aircraft flying different routes based on 

length while utilizing a common wind field with some desired nominal headwind component.  The direction 

chosen for the flights was from West to East. 

3.2.1.2 Description of Independent Variables 

The route length was chosen to be one of three conditions – long, medium, or short.  These are 

represented as conditions RL1, RL2, and RL3, respectively, as seen in Table 2.  The long route length (RL1) 

is represented by a flight plan from Los Angeles International Airport (KLAX) to Washington Dulles 

International Airport (KIAD).  The medium route length (RL2) is represented by a flight plan from Las 

Vegas McCarran International Airport (KLAS) to Chicago O’Hare International Airport (KORD).  The 

short route length (RL3) is represented by a flight plan from San Francisco International Airport (KSFO) 

to Denver International Airport (KDEN).  The details of the route design for these flights, including details 
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about each route’s waypoints, can be found in Appendix H.  A schematic of these three flight plans for the 

full route conditions can be seen in Figure 4. 

 
Figure 4.  Long, medium, and short routes and their lateral waypoint locations. 

The route type was chosen to be either a full route (i.e., a route similar to what an aircraft would fly on 

a normal day) or a sparse route (i.e., a route with a minimal set of waypoints in the cruise phase of flight).  

The full route was designated the condition name RT1 while the sparse route was designated the condition 

name RT2.  The details of the differences between the full route waypoints and the sparse route waypoints 

can also be found in Appendix H. 

 
Table 2.  Flight route length and type independent variables. 

Route Length Route Type 

Condition Name Value Condition Name Value 

RL1 Long (approx. 2,400 NM) RT1 Full 

RL2 Medium (approx. 1,600 

NM) 
RT2 Sparse 

RL3 Short (approx. 1,000 NM)   

 

3.2.2 Wind Conditions 
Wind forecast error is widely known to be a significant contributor to trajectory prediction error.  In this 

study, nine wind conditions were chosen to demonstrate the impact of both wind forecast magnitude error 

and wind forecast direction error.  These wind forecast errors affect the FMS trajectory predictions, which, 

in turn, affect the EPP trajectories.  In this section, the assumptions made regarding wind conditions are 

presented, the methodology for selecting winds is discussed, and a description of the wind conditions used 

in this study is provided.  
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3.2.2.1 Assumptions Made Regarding Wind Conditions 

In this study, variations in wind direction within each scenario (i.e., headwind, crosswind, tailwind) as 

a function of latitude, and longitude were not considered.  A single direction wind field was used at all 

altitudes.  This was done primarily for data analyses purposes – the objective was to maintain a constant 

wind direction in order to quantify the impacts of wind direction on the EPP trajectory.  The majority of 

scenarios tested feature wind conditions with a headwind component, with a subset of scenarios featuring 

a crosswind or tailwind condition. 

It should be noted that the impact of a headwind component was assumed equivalent to the impact of a 

tailwind condition, with the exception of the direction of the error.  For example, it is postulated that the 

impact of a stronger that forecast headwind will cause the time error at a waypoint to be positive (i.e., the 

aircraft will arrive at the waypoint later than its estimated time of arrival).  Conversely, the impact of a 

similar magnitude, stronger than forecast tailwind would likely produce a similar magnitude negative time 

error at that waypoint.  In order to minimize the number of scenarios in this study, we focused our scenarios 

around a headwind condition. 

Finally, the temporal effects of wind were disregarded.  While, in the physical world, the magnitude and 

direction of the wind varies as a function of time, this would make this initial data analysis more 

complicated.  Thus, the wind field direction and magnitude is held constant throughout each scenario. 

3.2.2.2 Methodology for Selecting Wind Magnitude and Direction 

The wind magnitudes used in this analysis we selected using the analysis presented in Appendix J.  For 

wind magnitude, the desire was to have one condition with no wind magnitude forecast error, one condition 

with wind forecast magnitude greater than true wind magnitude, and one condition with wind forecast 

magnitude smaller than true wind magnitude.  Thus, the magnitude conditions of 25th percentile, 50th 

percentile, and 75th percentile wind magnitude from Appendix J were chosen, with the 50th percentile 

magnitude selected as the true wind magnitude condition. 

The selection of wind direction error was guided by the desire to have a transition between a nearly pure 

headwind condition and a nearly pure tailwind condition.  Using the 50th-percentile wind magnitude 

condition, the wind directions of 080, 110, 140, 170, 215, and 260 degrees were selected as the wind forecast 

direction conditions.  Those are equivalent to 0, 30, 60, 90, 135, and 180 degrees of wind forecast direction 

error, respectively, given that the true wind direction is from 080 degrees in all scenarios. 

3.2.2.3 Description of Wind Conditions 

The nine wind conditions in this study consisted of: one condition with no winds, one condition with 

perfect knowledge of the winds, two wind forecast magnitude error conditions, and five wind forecast 

direction error conditions.  The nine wind conditions are presented in Table 3. 

The first wind condition (WC0) was that of no winds at all.  This condition was chosen to allow the 

research team to identify errors between the aircraft’s reference trajectory and the EPP trajectory due to the 

different trajectory representations.   

The second wind condition chosen for this study is a perfect knowledge wind condition (WC1).  In this 

condition, the wind magnitude and wind direction are the same between the true wind and the forecast wind.  

Even in this perfect wind condition, there can be trajectory prediction errors in the FMS because the FMS 

only samples the wind forecast at the waypoints of the flight plan, and only at a few altitude levels.  

Furthermore, the FMS uses wind blending between the sensed winds and the forecast winds to create wind 

predictions.  Thus, this wind condition allowed for potential rounding, translation, and wind-blending 

impacts on the EPP errors to be assessed. 

The third (WC2) and fourth (WC3) wind conditions simulated featured wind forecast magnitude errors, 

prompting quantifiable errors into the FMS reference trajectory.  In each of these conditions, the direction 

of the truth wind (i.e., the wind that the aircraft dynamics model physically experienced) and the direction 

of the forecast wind (i.e., the wind data used by the FMS for wind prediction computations) remained the 

same across all conditions (i.e., wind from 080 degrees).  However, the magnitudes changed between the 

25th percentile, 50th percentile, and 75th percentile, where the 50th percentile represented the true wind 

magnitude condition.  The wind forecast magnitude conditions are shown in Figure 5.  
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The fifth through ninth wind conditions (WC4-WC8) simulated featured wind direction forecast errors, 

also inducing quantifiable errors into the FMS reference trajectory.  In each of these conditions, the 

magnitude of the truth wind and the magnitude of the forecast wind remained the same across all conditions 

(i.e., at the 50th percentile magnitude).  However, the direction of the wind in the forecast varied from 080 

degrees (the truth wind direction) to 260 degrees (180-degree wind forecast direction error).  The wind 

forecast direction conditions are shown in Figure 6. 

 
Table 3.  Scenario wind conditions. 

Condition 

Number 
Qualifier 

Truth 

Wind  

Magnitude 

Percentile 

Truth 

Wind 

Direction 

Forecast 

Wind 

Magnitude 

Percentile 

Forecast 

Wind 

Direction 

WC0 No Wind N/A N/A N/A N/A 

WC1 Perfect Knowledge (Truth = Forecast) 50th From 080° 50th From 080° 

WC2 Positive Magnitude Error (Truth > Forecast) 50th From 080° 25th From 080° 

WC3 Negative Magnitude Error (Truth < Forecast) 50th From 080° 75th From 080° 

WC4 30° Direction Error 50th From 080° 50th From 110° 

WC5 60° Direction Error 50th From 080° 50th From 140° 

WC6 90° Direction Error 50th From 080° 50th From 170° 

WC7 135° Direction Error 50th From 080° 50th From 215° 

WC8 180° Direction Error 50th From 080° 50th From 260° 
 

 
Figure 5.  Wind forecast magnitude description. 

 
 

 
Figure 6.  Wind forecast direction description. 
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3.2.3 RTA Conditions 
The use of an RTA waypoint on a route is expected to have an impact on the EPP error characteristics.  

In order to understand this impact, four RTA conditions were tested.  The first condition (No RTA) involved 

no RTA on the route.  The second condition (RTA1) involved an RTA waypoint near the end of the cruise 

segment for each flight.  In this condition, an RTA was assigned to the waypoints WOJOW, KEOKK, and 

EKR of the long, medium, and short routes, respectively.  The third condition (RTA2) involved an RTA in 

the descent portion of the flight, just after the top-of-descent point.  In this condition, an RTA was assigned 

to the waypoints HESEE, BDF, and TOMSN of the long, medium, and short routes, respectively.  The 

fourth condition (RTA3) involved an RTA to a waypoint at the entry to the terminal area (defined as a point 

just prior to reaching 10,000 feet).  In this condition, an RTA was assigned to the waypoints KILMR, 

BENKY, and KAILE of the long, medium, and short routes, respectively. 

In each RTA condition, an RTA tolerance of +/- 30 seconds was used.  It is important to note that the 

RPFMS used in this analysis has dynamic RTA tolerances that can result in internal tolerances of up to 120 

seconds when far from the RTA waypoint and 30-second tolerance as the flight approaches the RTA point. 

 
Table 4.  Scenario RTA conditions. 

Condition Description 

None No RTA constraint 

RTA1 An RTA constraint en route at a waypoint just prior to top of descent 

RTA2 An RTA constraint in descent at a waypoint just after the top of descent 

RTA3 An RTA constraint in descent at a waypoint close to the terminal area 

 

3.3 Test Scenarios 
A select combination of the conditions of each independent variable above resulted in the experiment 

matrix, shown in Table 5.  The experiment matrix consists of 13 scenario runs, each consisting of one long, 

one medium, and one short route length flight simulated simultaneously.  That equates to 39 flight datasets 

of as-flown trajectories, FMS trajectories, and EPP trajectories. 

 
Table 5.  Test matrices. 

Scenario 

Number 
Route Length Route Type 

Wind 

Condition 

RTA 

Condition 

1 RL1, RL2, RL3 RT1 WC0 No RTA 

2 RL1, RL2, RL3 RT1 WC1 No RTA 

3 RL1, RL2, RL3 RT1 WC2 No RTA 

4 RL1, RL2, RL3 RT2 WC2 No RTA 

5 RL1, RL2, RL3 RT1 WC3 No RTA 

6 RL1, RL2, RL3 RT1 WC4 No RTA 

7 RL1, RL2, RL3 RT1 WC5 No RTA 

8 RL1, RL2, RL3 RT1 WC6 No RTA 

9 RL1, RL2, RL3 RT1 WC7 No RTA 

10 RL1, RL2, RL3 RT1 WC8 No RTA 

11 RL1, RL2, RL3 RT1 WC2 RTA1 

12 RL1, RL2, RL3 RT1 WC2 RTA2 

13 RL1, RL2, RL3 RT1 WC2 RTA3 

 

The test matrix was devised to achieve the following data comparisons: 
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 Compare the EPP trajectories to the FMS trajectories (scenario 1) 

 Investigate the impact of wind forecast sampling by the FMS (scenario 2 vs. scenario 1) 

 Compare the EPP errors of the full routes with those of the sparse routes (scenario 3 and 4) 

 Investigate the impact of wind forecast magnitude error on EPP errors (scenarios 2, 3, 5) 

 Investigate the impact of wind forecast direction error on EPP errors (scenarios 2 and 6-10) 

 Investigate the impact of RTA constraints on EPP errors (scenarios 2 and 11-13)  

The above list corresponds to the analysis presented in sections 4.1-4.6. 

Each scenario in Table 5 resulted in three flown trajectories and multiple EPP and FMS trajectories 

because the FMS and EPP trajectories were recorded approximately once-per-minute for each flight.  As 

an example of the output data of each scenario, scenario 1 resulted in 219, 135, and 84 FMS trajectories for 

the long, medium, and short routes, respectively.  Scenario 1 also had 236, 158, and 102 EPP trajectories 

for those same three route lengths.  The number of EPP trajectories for each flight, in general, exceeded the 

number of FMS trajectories because the FMS trajectory in the RPFMS were not updated after top-of-

descent but the EPP trajectory continued to be generated using the last FMS reference trajectory. 

3.4 Dependent Variables 
The dependent variables for the EPP error analysis were the cross-track error, vertical error, and time 

error.  The three dependent variables were computed based on the state data point closest to the trajectory 

reported point. 

Figure 7 illustrates the method used to determine the closest state data point for a given trajectory point.  

The determination was done with respect to the closest lateral position in the latitude-longitude plane.  Point 

𝑃3 represents the latitude, longitude, altitude, and time of a reported EPP trajectory point.  Point 𝑃3 may 

also have an associated non-zero fly-by radius, 𝑅, and may or may not be associated with a two-dimensional 

waypoint position, 𝑊𝑃𝑇𝑖, such as a flight plan waypoint.  Given the position, 𝑃3, and the radius, 𝑅, the 

position of the geometric middle-of-turn (MOT), 𝑃2, was computed using Great-Circle distances and the 

track angle change, 𝜃, associated with the difference between the track-in and track-out of the point 𝑃3.  

The distance, 𝑑, between the points 𝑃3 and 𝑃2 is given by: 

 

Once the point 𝑃2 had been computed, the closest state data point, 𝑃1, was identified.  Finally, the point 𝑃1′ 
was estimated by intersecting the perpendicular line at the middle-of-turn with the line between the two 

closest state data points as shown in Figure 7.  Note that the point 𝑃2 inherits the same altitude and time as 

that reported in the EPP point 𝑃3. 

The closest interpolated state data point, 𝑃1′, is a 4-dimensional point in latitude, longitude, altitude, and 

time from the state data.  The cross-track error for the 𝑖𝑡ℎ trajectory point can thus be defined as, 

 

where 𝐺𝐶𝐷 is a positive-definitive Great-Circle distance function.  The vertical error is defined as,  

 

and the time error can be defined as, 

 

 𝑑 = 𝑅 (
1

𝑐𝑜𝑠 (
𝜃
2)

− 1) (1) 

 
𝐸𝑥𝑡𝑟𝑘,𝑖 = 𝐺𝐶𝐷(𝑃2,𝑖, 𝑃1,𝑖′) 

 
(2) 

 𝐸𝑣𝑒𝑟𝑡,𝑖 = 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑃1
′,𝑖 − 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑃2,𝑖 (3) 

 𝐸𝑡𝑖𝑚𝑒,𝑖 = 𝑇𝑖𝑚𝑒𝑃1
′,𝑖 − 𝑇𝑖𝑚𝑒𝑃2,𝑖 (4) 
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The cross-track error is computed in units of feet as is the altitude error.  The time error is computed in 

terms of seconds. 

 
Figure 7.  Middle-of-turn estimation and closest state data determination on the latitude-longitude plane. 

The point 𝑃2 must be estimated for the EPP trajectory.  As was described above, to estimate this point, 

the track-in and track-out for point 𝑃3 is required.  This track in and out must be estimated given the other 

points provided in the EPP trajectory because the EPP trajectory does not directly provide track information.  

One area where this is problematic is for the first point in the EPP trajectory, which, in general, is a point 

somewhere ahead of the aircraft’s current position.  Thus, the track into this first EPP point must be assumed 

to be from the current aircraft position, which may not necessarily be an accurate assumption.  Note that, 

in the case of the FMS trajectory, the point 𝑃2 is estimated and available and does not need to be re-

computed for this error analysis. 

3.5 Data Processing 
The data processing of each scenario involved computing the EPP error metrics of cross-track, vertical, 

and time error for each point in each EPP and each FMS trajectory.  Each EPP and FMS trajectory contained 

a set of trajectory points ahead of the aircraft and all the way to the destination airport.  As the flight 

sequenced a waypoint, these trajectories became smaller in terms of number of trajectory points.  The error 

metrics were only computed for the lateral type points, plus the top-of-descent (label name “ToD” in the 

data) and crossover altitude (label name “xOVER” in the data) vertical type points.  The error metrics were 

only computed to a point on the trajectory close to the scenario termination altitude of 6000 feet.  These 

waypoints were MAAAY, MONKZ, and LEETS for the long, medium, and short routes, respectively. 

As an example, Scenario 1 of Table 5 consisted of 7457 analysis points from the FMS trajectories and 

7740 analysis points from the EPP trajectories.  That consisted of 3590 data points for the long route, 2467 

data points for the medium route, and 1400 data points for the short route from the FMS trajectories.  

Similarly, this consisted of 3647 data points for the long route, 2554 data points for the medium route, and 

1539 data points for the short route from the EPP trajectories.  Each of the experiment scenarios consisted 

of approximately the same number of analysis data points for the EPP cross-track, vertical, and time errors. 

In much of the figures and discussion of Section 4, the EPP error metrics are presented as a function of 

the time horizon.  The time horizon refers to the difference between the estimated time-of-arrival at a 

waypoint and the time the trajectory was generated.  Some may also refer to this as the “time-to-go” to that 

waypoint at trajectory generation time. 
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4 EPP Error Preliminary Analysis 
In this section, a preliminary characterization of EPP trajectory errors is presented.  The characterization 

is a qualitative discussion of the EPP trajectory errors observed in the simulated scenarios.  In section 4.1, 

a baseline scenario with no wind is used to compare the EPP and FMS trajectory errors.  Section 4.2 

compares the no-wind condition scenario with the perfect wind forecast condition scenario to assess the 

impacts of FMS wind sampling.  Section 4.3 looks at the impact of long flight segments by comparing the 

full and sparse route scenarios.  In section 4.4, the impacts of wind forecast magnitude error on EPP 

trajectory errors are discussed.  Section 4.5 discusses the EPP error impacts resulting from wind forecast 

direction error.  Finally, section 4.6 investigates the effects of RTA waypoints on the EPP errors.  For ease 

of reading, the figures associated with this section’s analysis and discussion are presented in Appendix A-

Appendix F. 

4.1 No Wind Baseline Scenario – EPP and FMS Comparison 
The baseline scenario with zero wind magnitude [RL1-RL3, RT1, WC0, No RTA] allows for the 

comparison of the EPP error data against the FMS error data.  The FMS error here represents the 

combination of the trajectory prediction error and the guidance error in following the desired flight plan.  

The EPP error is a combination of this FMS error, the error associated with transforming the FMS reference 

trajectory into the EPP format, the error associated with computing the geometric middle-of-turn, and the 

error that results from the EPP message itself being “stale.”  Staleness here refers to an EPP message that 

may not be a representation of the most recent FMS reference trajectory (assuming that the EPP message 

update interval is larger than the FMS trajectory’s update interval).  

4.1.1 Cross-Track Error 
The FMS cross-track error is a function of the error in the prediction of the MOT point for a fly-by 

waypoint combined with the fact that the middle-of-turn point is, itself, not a point that the guidance 

algorithm is targeting.  The FMS computes a MOT point along a constant radius turn using the estimated 

groundspeed at a fly-by waypoint and assuming a constant bank angle for that turn.  In some cases, such as 

with very small track angle changes (~1-2 degrees or smaller), the FMS will not compute a turn radius or 

MOT point, thereby adding to the cross-track error at those points.  The EPP, because it is generated from 

the FMS reference trajectory, necessarily inherits this guidance and prediction error.  In addition to these 

errors, the EPP, in general, will have higher cross-track errors because the EPP message does not contain 

the FMS’s estimated MOT point.  Instead, the EPP trajectory contains the waypoint’s position and a 

predicted fly-by radius that must be used to estimate this point.  The EPP message also limits the resolution 

of this reported fly-by radius to the nearest 1/10th of a NM, thereby creating additional possibility for errors. 

Figure 8 shows the EPP cross-track error for the no wind baseline run as a function of the time horizon.  

Figure 9 shows the FMS cross-track error for the same run.  The figures show the EPP or FMS cross-track 

errors for each point of each EPP or FMS reference trajectory, respectively, for each route length of the 

baseline run.  The largest value of time horizon for any given point’s error profile is representative of how 

far in time that point is in the flight plan relative to the scenario starting position.  The time horizon 

represents the difference between the predicted waypoint crossing time in the EPP or FMS trajectory and 

the computation time of the EPP or FMS trajectory.  Both figures indicate a steady cross-track error for 

each waypoint throughout the scenario run, which is expected when there is no wind error affecting the 

trajectory predictions of the FMS.  However, the scale of the cross-track error does show a larger cross-

track error for some of the EPP points as compared to the same points in the FMS cross-track error.  This 

is due partially to the resolution of the EPP reported turn radius, which is reported to the nearest 0.1 NM.  

However, this fly-by radius resolution contributes minimally to the cross-track error difference for small 

track angle change turns as can be seen in Figure 133.  The worst-case error difference due to the radius 

resolution will be more evident for larger track angle changes and can be even worse if a floor or ceiling 

rounding approach is used for composing EPP radius values. 

Figure 10-Figure 12 show the comparison of the cross-track median error and median error difference 

for each of the trajectory points in the EPP and FMS trajectories for the long, medium, and short routes, 
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respectively, in the no wind baseline scenario.  For the long route (RL1), the median error difference is 

largest at the points NOOTN, HYS, FLM and HVQ in the en route phase of flight, and at the point BBONE 

in the descent phase of flight.  For the medium route (RL2), the median error difference is largest at the 

point PUB in the en route phase of flight, and at the points BDF and PETAH in the descent phase of flight.  

For the short route (RL3), the median error difference is largest at the points INSLO and EKR in the en 

route phase of flight, and at the points BJETN, JEEPR in the descent phase of flight.  The majority of these 

points are associated with either very large fly-by radii (as seen in Figure 13), or very small track angle 

changes (as seen in Figure 14), or both.  Large radius and small track angle change turns will have the 

highest sensitivity to the method used to estimate the MOT point that is subsequently used to compute the 

cross-track error.  Figure 15 and Figure 16 show the FMS cross-track error as a function of the fly-by radius 

and the track angle change, respectively.  The cross-track error for most of the FMS trajectory points in the 

no wind baseline scenario is less than 20ft with the exception of the points NOOTN, FLM, PUB, and 

PETAH. 

4.1.2 Vertical Error 
The vertical error is the difference between the actual crossing altitude at a point and the predicted 

altitude in each EPP or FMS trajectory.  Figure 17 shows the vertical error for the EPP trajectory points 

versus time horizon for the no wind baseline scenario [RL1-RL3, RT1, WC0, No RTA] while Figure 18 

shows the vertical error for the same FMS trajectory points.  While the two datasets show similar 

characteristics, there are two distinguishing features when comparing these two figures.  First, the EPP error 

data has trajectory errors all the way down to zero time horizon for all points whereas the FMS error data 

terminates just prior to zero time horizon for some of the trajectory points.  This is because, in the prototype 

FMS used in this analysis, the FMS reference trajectory is not re-computed in the descent phase of flight 

(the last reference trajectory is computed prior to top-of-descent) while that same FMS reference trajectory 

is used to generate EPP trajectory reports in the descent phase.  Second, there is some level of “noise” in 

the EPP error data, which is attributed to truncation or rounding of the reported altitude to increments of 10 

feet. 

The vertical error profiles of both the EPP and FMS show relatively constant error profiles with the 

exception of a few points.  The points BURTT, ToD, and xOVER in the long route show some variation in 

their vertical error with time horizon.  This variation is due to re-computations and updates to the descent 

profile as the flight progresses, where the inflection points in the error data represent the sequencing of a 

flight plan waypoint.  Note also that BURTT happens sequentially after the ToD and before the xOVER 

points in the flight, and that the ToD and xOVER points have dynamically generated positions based on the 

descent profile computations, which explains why the predicted altitude at BURTT is changing. 

Figure 19 shows the median vertical error for the EPP and FMS trajectory points of the long route as 

well as the magnitude of the difference between the EPP median vertical error and the FMS median vertical 

error.  The largest median vertical errors occur at the points ToD, BURTT, xOVER, KILMR, OTTTO, and 

MAAAY.  With the exception of the ToD point, all points have a median vertical error of less than 50 feet 

magnitude.  The ToD point has a median vertical error of ~160 feet, which is a direct result of the way this 

point is defined in both the EPP trajectory and the FMS trajectory.  The ToD point is defined by the 

intersection of the cruise altitude with the descent path.  The implication of this definition is that the aircraft 

has already begun intercepting the descent path as it sequences the predicted latitude and longitude position 

of the ToD point, leading to a below-path (negative) vertical error.  The difference between the EPP and 

FMS vertical error median at all points is less than 10 feet, which is the resolution of the EPP trajectory 

point altitudes. 

Figure 20 shows the median vertical error for the EPP and FMS trajectory points of the medium route 

as well as the magnitude of the difference between the EPP median vertical error and the FMS median 

vertical error.  The largest median vertical errors occur at the points ToD, DRAMS, xOVER, and BENKY.  

The ToD median vertical error indicates just over 200 feet below path while DRAMS shows approximately 

60 feet above path for both the EPP and FMS data.  Both xOVER and BENKY are within 50 feet median 
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vertical error and the vertical median error difference is within the 10-foot resolution between the EPP and 

FMS for all points. 

Figure 21 shows the median vertical error for the EPP and FMS trajectory points of the short route as 

well as the magnitude of the difference between the EPP median vertical error and the FMS median vertical 

error.  The largest median vertical errors occur at the points ToD, xOVER, TOMSN, JEEPR, and JOBOB.  

The ToD median vertical error also indicates just over 200 feet below path while xOVER, TOMSN, JEEPR, 

and JOBOB show less than 100 feet median vertical error.  All other points are within 50 feet median 

vertical error and the vertical median error difference is within the 10-foot resolution between the EPP and 

FMS for all points. 

4.1.3 Time Error 
The time or temporal error is the difference between the actual crossing time at a point and the predicted 

time in each EPP or FMS trajectory.  Figure 22 shows the temporal error for the EPP trajectory points 

versus time horizon for the no wind baseline scenario [RL1-RL3, RT1, WC0, No RTA] while Figure 23 

shows the temporal error for the same FMS trajectory points.  There are two characteristic differences 

between the EPP and FMS temporal errors.  First, the EPP temporal errors exhibit a “stair-stepping” pattern 

when compared to the FMS temporal errors.  This is the result of the resolution of the time component in 

the EPP trajectory points (1-second resolution).  The RPFMS reported trajectory points were provided as 

floating point numbers with a ten-millisecond resolution.  This is confirmed in Figure 24 where the 

distribution of the time error difference between the EPP trajectory times and their source FMS trajectory 

times is within this 1-second resolution.  Second, as discussed previously, FMS trajectories are not re-

computed beyond the top-of-descent point so the error data appears to end prior to zero time horizon for 

some points.  In fact, the FMS computed error would be constant if computed and shown for time horizons 

after the top-of-descent (similar to the trends in the EPP error data).  This lack of ETA updates beyond the 

top-of-descent point, however, is an artifact of the RPFMS simulation and may not be consistent with how 

operational FMSs handle trajectory updates.  

The FMS error data shows discontinuities, or “jumps,” in the temporal error data at different points in 

the time horizon.  These discontinuities represent a new FMS trajectory prediction (typically associated 

with the sequencing of a waypoint) where the RPFMS re-computes the FMS trajectory instead of simply 

updating ETA information.  The linear decrease in the temporal error as the time horizon decreases 

represents the FMS trajectory prediction error that is reduced as the aircraft gets closer to sequencing a 

trajectory point.  In general, this particular FMS and aircraft simulation combination has trajectory 

predictions that are biased towards earlier than actual waypoint crossing predicted times; other FMS/aircraft 

combinations may exhibit the opposite behavior.  Trajectory points with temporal error that does not 

converge to zero error represent points in the descent phase of flight where the FMS trajectory is not being 

updated. 

4.1.4 EPP and FMS Comparison Findings 
In comparing the EPP and FMS trajectories in the no wind baseline scenario, we have shown the level 

of error that can be expected in composing an EPP trajectory from an FMS trajectory.  These cross-track, 

vertical, and time error differences are attributed to the limited resolution of the EPP trajectory point 

information as well as the assumptions made in re-constructing certain points not reported with the EPP 

trajectory, such as the MOT point.  Specifically, the encoding of the turn radius information with 1/10th 

nautical mile resolution for an EPP fly-by trajectory point only adds a small amount of error for small track 

angle change turns but the estimation of the MOT point can be problematic, especially if the turn radius is 

very large.  The vertical and temporal errors in the EPP data follow the FMS error data closely and the 

errors are primarily due to the 10-foot and 1-second resolutions for these two parameters, respectively.  

When compared to the standard separation criterion of 5 nautical miles and 1000 feet, the cross-track and 

vertical errors are both within approximately 0.1%, which could be considered negligible for most purposes.  

The temporal error is within one second. 

The scenario used here also defines the trajectory prediction error of the RPFMS in the absence of wind.  

These errors are small for most FMS trajectory points: less than 50 feet cross-track error, less than 10 feet 
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vertical error, and a conservative time error within 30 seconds inside two hours of time horizon.  The outlier 

points for error occur at the top-of-descent and altitude crossover points (where the lateral position is 

dynamically computed) as well as other trajectory points close to these vertical points.  

4.2 Baseline Scenario – No Wind versus Perfect Wind 
The comparison of the baseline run with no wind [RL1-RL3, RT1, WC0, No RTA] against the baseline 

run where the wind forecast is perfect [RL1-RL3, RT1, WC1, No RTA] (referred to here as the “perfect 

wind” baseline scenario) is intended to highlight any differences in the EPP and FMS trajectories in the 

presence of a non-zero wind field.  This comparison is important because the FMS only samples the forecast 

wind at discrete points of the flight plan (namely, at the flight plan waypoints and at a few discrete altitudes 

for the descent phase).  In addition, the FMS uses wind blending (where the aircraft-sensed wind 

information is blended with the upstream forecast wind) to compute wind predictions for waypoints within 

some distance from the aircraft’s current position.  As such, the FMS trajectories will have some non-zero 

prediction error that results from this sampling and blending of the wind information and will affect the 

EPP trajectory data.  The comparison is also important because it allows us to see the impact on the EPP 

trajectories of the nominal headwind that is used in the perfect wind scenario, which is the baseline scenario 

used for all of the comparisons that follow. 

4.2.1 Cross-track Error 
Figure 25 shows the EPP cross-track error for the perfect wind baseline scenario [RL1-RL3, RT1, WC1, 

No RTA] as a function of the time horizon.  Figure 26 shows the FMS cross-track error for the same run.  

The figures show the EPP or FMS cross-track errors for each point of each EPP or FMS reference trajectory, 

respectively.  Qualitatively, the cross-track errors show the same type of pattern between the EPP and FMS 

errors as in the no wind baseline scenario.  Namely, the EPP errors are larger than the FMS errors as 

expected.  The EPP median cross-track errors and the cross-track error differences between the perfect wind 

scenario and the no wind scenario are shown in Figure 27, Figure 28, and Figure 29 for the long, medium, 

and short route points, respectively.   

The EPP errors are smaller in the perfect wind scenario (Figure 25) versus the no wind scenario (Figure 

8) for most trajectory points.  For example, the waypoint PUB has approximately 150 feet cross-track error 

in the perfect wind scenario as compared to approximately 225 feet in the no wind scenario.  The smaller 

cross-track errors appear to be a result of the smaller turn radii predicted in the perfect wind scenario.  In 

this scenario, the wind is nearly pure headwind, which results in smaller groundspeed for the same airspeed 

and requires a smaller turn radius for a given turn, as shown in Figure 30.  Figure 31 shows that there exist 

some turn radii that produce better cross-track performance (e.g., the executed turn is the closest to the 

predicted turn) with respect to the FMS predictions.  Turns with larger and smaller radii are likely to have 

higher cross-track errors.  For the perfect wind baseline run in the presence of a headwind, this minimum 

cross-track error occurs for points with predicted fly-by-radius around 40 nautical miles, as can be seen in 

Figure 31 for the FMS trajectory points. 

4.2.2 Vertical Error 
Figure 32 shows the vertical error for the EPP trajectory points versus time horizon for the perfect wind 

baseline scenario [RL1-RL3, RT1, WC1, No RTA].  Qualitatively these vertical errors are close to the 

vertical errors in the scenario with no wind.  Figure 33, Figure 34, and Figure 35 show the comparison of 

the median vertical error and the median error difference between the no wind baseline scenario and the 

perfect wind baseline scenario and the long, medium, and short routes, respectively.  Most of the errors are 

close to zero, or within 15 feet, with the exception of BURTT, BBONE, and KILMR on the long route.  

These three points have median error differences under 100 feet, although their median error magnitudes 

are nearly identical and of opposite sign, indicating an above-path or a below-path sequencing of the 

waypoint, or vice versa.  Nonetheless, the vertical error profiles show just over 200 feet as the worst-case 

median error in both baseline scenarios, which occurs at the ToD point. 
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4.2.3 Time Error 
Figure 36 shows the temporal error for the EPP trajectory points versus time horizon for the perfect wind 

baseline scenario [RL1-RL3, RT1, WC1, No RTA].  Qualitatively these temporal errors are not much 

different from the temporal errors for the no wind baseline scenario [RL1-RL3, RT1, WC0, No RTA] 

(Figure 22).  The means and standard deviations of the time errors were binned by time horizon; these are 

shown in Figure 37 in order to compare the two scenarios.  The temporal error data shows smaller standard 

deviations for the scenario with perfect wind as compared to the scenario with no wind, but the differences 

in the temporal error curves are not statistically significant.  The slightly better performance in the scenario 

with wind could be attributed to the wind blending between the sensed and forecast wind used by the FMS 

in trajectory prediction, but the actual reason is not clear from this data. 

4.2.4 Summary 
As expected, there do not appear to be any major differences between the baseline scenario with no wind 

and the baseline scenario with perfect wind, with respect to the cross-track, vertical, and temporal errors in 

the EPP trajectory data.  The observed differences in errors are related to the presence of a headwind in one 

scenario but not the other, which affects the predicted groundspeed at the trajectory points. 

4.3 Impact of Sparse Versus Full Routes 
In this section, the differences between the full routes scenario [RL1-RL3, RT1, WC2, No RTA] and 

the sparse route scenario [RL1-RL3, RT2, WC2, No RTA] are compared.  Note that the scenarios were 

both run in the presence of a true wind with magnitude larger than the forecast magnitude (WC2) in order 

to assess the impact of the forecast winds on a flight plan with long legs (e.g., the sparse flight routes).  Any 

significant differences in EPP errors profile will manifest themselves in the cruise phase of the flight 

because the descent portion of both scenarios is identical in terms of the flight plan waypoints. 

4.3.1 Cross-Track Error 
The EPP cross-track errors for the full routes scenario [RL1-RL3, RT1, WC2, No RTA] can be seen in 

Figure 38.  Figure 39 shows the EPP cross-track errors for the sparse routes scenario [RL1-RL3, RT2, WC2, 

No RTA].  Qualitatively, there are some differences between the two figures.  First, the sparse route does 

not contain some of the waypoints of the full route, e.g., FLM, which in intentional.  Second, the error 

magnitudes of some of the points are significantly different, as is the case with NOOTN.  To compare the 

differences in the errors, we plot the median errors for each point. 

Figure 40, Figure 41, and Figure 42 show the median cross-track error (top) and the median cross-track 

error difference (bottom) for the waypoints common to both the full and the sparse routes scenarios, and 

for the long, medium, and short routes, respectively.  The median cross-track error appears to be the largest 

at the waypoint NOOTN for the long route (Figure 40).  A closer look at the data revealed that the difference 

is linked to different turn radii at the point NOOTN resulting from different track angle change to go direct 

to HVQ in the sparse routes scenario (~7 degrees) versus the track angle change to go directly to PUB in 

the full routes scenario (~3 degrees).  A similar phenomenon with large median error differences occurs at 

the point HVQ, the effective end of the sparse en route portion of the flight plan.  All other points on the 

long route have a median error difference less than 15 feet cross-track error.  Similar median cross-track 

error differences are observed at the end point of the medium sparse route, IRK, in Figure 41, although the 

start of the sparse route at DVC does not have as large of a median cross-track error difference as in the 

long route.  All other points on the medium route are within 10 feet for median cross-track error difference.  

For the short route in Figure 42, there is no significant difference in the median cross-track error and all 

points have median cross-track errors within 10 feet.  Qualitatively, with the exception of the start and end 

waypoints of the sparse routes, the cross-track error profiles of the full and sparse routes are similar. 

4.3.2 Vertical Error 
The EPP vertical error for the points of the full routes scenario [RL1-RL3, RT1,WC2, No RTA] can be 

seen in Figure 43.  Figure 44 shows the vertical error for the points of the sparse routes scenario [RL1-RL3, 

RT2, WC2, No RTA].  Qualitatively, there is very little difference between these two vertical error profiles.  
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We do note, however, the discontinuity that appears in the vertical error of some of the route points, both 

on the full routes and the sparse routes.  This discontinuity is due to the piece-wise linear FMS wind 

blending function, which triggered a significant update to the vertical profile as the wind predictions 

changed when the flight sequenced one of the route’s en route waypoints.  The points with the large 

discontinuity in vertical error are those on the descent profile without any hard “AT” altitude constraints, 

where an update to the predicted winds can have a significant impact on the predicted crossing altitudes.  

These types of error discontinuities are governed by the algorithms that each FMS uses to convert a wind 

forecast into a set of wind predictions along the route. 

Figure 45, Figure 46, and Figure 47 show the median vertical errors (top) and the median vertical error 

difference (bottom) for the waypoints common to both the full and the sparse routes scenarios, and for the 

long, medium, and short routes, respectively.  In all instances, the vertical error profiles are the same and 

the median vertical error difference is within 10 feet, which is the EPP reported altitude resolution.  This is 

to be expected because the primary difference between the full and the sparse routes is in the en route phase 

of flight where the aircraft is level at the cruise altitude and no significant difference would be expected in 

the EPP reported altitudes. 

4.3.3 Time Error 
The EPP time error for the points of the full routes scenario [RL1-RL3, RT1,WC2, No RTA] can be 

seen in Figure 48.  Figure 49 shows the time error for the points of the sparse routes scenario [RL1-RL3, 

RT2, WC2, No RTA].  Qualitatively, there are differences between the two temporal error profiles, 

particularly with respect to the magnitude and slope of the time error after approximately 5000 seconds of 

time horizon.  The EPP time error for the sparse routes scenario shows smaller temporal error and a 

relatively constant slope in this region of time horizon.  These differences can also be seen in Figure 50, 

which shows the binned mean and standard deviation of the time error as a function of each route length 

and route type, and the time horizon for all route points. 

The time error differences between the full routes and the sparse routes are the combined result of two 

different aspects of trajectory prediction used by the FMS.  First, the FMS only implements wind 

information at discrete waypoints.  As such, the sparse routes have less en route waypoints and, thus, less 

wind information.  For example, in the sparse long route, the FMS has wind information for the waypoints 

NOOTN and HVQ, which are approximately 1500 nautical miles apart, whereas, in the full long route, the 

FMS has wind information at six additional waypoints between NOOTN and HVQ.  This explains the 

smoother time error profiles of the sparse routes in Figure 49 as compared to the error profiles of the full 

routes in Figure 48.  The second aspect of FMS trajectory prediction that contributes to the time error 

differences is the wind blending.  As described before, the wind blending blends the true winds with the 

forecast winds out to approximately 700 nautical miles ahead of the aircraft, where, at that horizon, the 

predicted winds are equal to the forecast winds.  In the case of the sparse routes, there are less opportunities 

for the wind blending to include wind forecast errors in the wind predictions during the long route legs.  

This explains why the time error profiles converge at or below approximately 5000 seconds time horizon 

as this horizon is where the impact of wind blending begins to include wind forecast data that may exist for 

the scenarios we have tested here.  

The FMS wind blending is intended to improve trajectory predictions in the presence of wind forecast 

error.  In this particular set of runs, the wind blending made the time error in the trajectory predictions 

worse, as evidenced by the sparse routes scenario.  In that scenario, the very long route legs led to the true 

wind information being used for a longer period where there were no downstream waypoints within the 

wind-blending horizon.   Because the true wind field used in the scenario was uniform and static for any 

given altitude, the time error is smaller for the sparse routes in time horizons outside the wind-blending 

horizon.  This may not have been true, however, if the true wind field were not uniform. 

4.3.4 Summary 
The differences between the EPP errors of a sparse route and a full route can be attributed primarily to 

the wind predictions that an FMS generates given its wind blending scheme.  The higher the number of 

waypoints in a flight plan, the higher the number of wind data points.  When those waypoints fall within 
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the wind blending horizon of the FMS, the wind predictions are a blend between the aircraft’s current sensed 

wind and the forecast wind at that point.  The predicted wind has an impact on the predicted groundspeed, 

which in turn has an impact on the predicted turn radius.  The predicted wind also has an impact on the 

descent profile and the location of the top-of-descent point.  Cross-track errors are impacted by the 

differences in turn radii between the full and sparse route scenarios.  The vertical errors between the full 

routes and sparse routes scenario are nearly identical because the sparseness portion of the routes only 

affected the en route phase of flight where the altitude is constant for the scenarios tested.  Wind blending 

can lead to discontinuities between subsequent trajectory predictions in the FMS, which can lead to 

discontinuities in the vertical errors.  EPP time errors are also impacted by the wind predictions generated 

by an FMS’s wind blending scheme.  Wind blending may have a negative impact on the EPP time errors in 

some circumstances. 

4.4 Wind Magnitude Error Effects 
Wind magnitude error effects were investigated using a set of three scenarios.  These scenarios represent 

the conditions where: the true wind magnitude was equal to the forecast wind magnitude [RL1-RL3, RT1, 

WC1, No RTA], the true wind magnitude was larger than the forecast wind magnitude [RL1-RL3, RT1, 

WC2, No RTA], and the true wind magnitude was smaller than the forecast wind magnitude [RL1-RL3, 

RT1, WC3, No RTA].  In all scenarios, the true and predicted wind direction was from 080 degrees, or 

nearly pure headwind. 

4.4.1 Cross-Track Error 
Figure 51 shows the cross-track errors for all route lengths and all route points of the three wind 

magnitude conditions tested: truth equal to forecast (WC1), truth greater than forecast (WC2), and truth 

less than forecast (WC3) [RL1-RL3, RT1, No RTA].  The cross-track errors from these three wind 

conditions indicate nearly symmetrical error profiles with respect to the perfect wind conditions.  For 

example, at long time horizons, the EPP reported waypoint FLM has approximately 90 feet cross-track 

error in the perfect wind condition (WC1), approximately 101 feet cross-track error in the under-forecast 

wind magnitude case (WC2), and approximately 78 feet cross-track error in the over-forecast wind 

magnitude case (WC3).  At zero time horizon, these cross-track errors all converge to 96.3 feet cross-track 

error.  This symmetry is seen with many of the EPP reported points and is to be expected because the wind 

forecast error tested was also symmetric. 

The cross-track error symmetry described above is not necessarily present for all points with a fly-by 

radius, as seen in Figure 52 for the points FLM and WOJOW of the long route.  In this case, WOJOW has 

an asymmetric error profile when compared to the perfect wind condition.  This asymmetry is related to the 

cross-track error being reported as a magnitude only; that is, we do not differentiate between left or right of 

course with positive and negative values in this metric.  In fact, the points exhibiting this asymmetry indicate 

points where the fly-by radius was over-predicted in one case and under-predicted in the other, when 

compared to the average fly-by radius that would produce zero cross-track error. 

One other major difference between the points FLM and WOJOW is the magnitude of the fly-by radius; 

FLM has a reported fly-by radius of 92 NM compared to the WOJOW reported fly-by radius of 17.1 NM, 

in the perfect wind condition case.  FLM also had a reported fly-by radius as large as 96.3 NM in the WC2 

condition and as low as 87.5 NM in the WC3 condition whereas, WOJOW only had a reported fly-by radius 

as large as 17.1 NM and as low as 16.3 NM in those same two conditions.  Given that WOJOW has a track 

angle change of approximately 18 degrees, we also see “stair-stepping” in the WOJOW cross-track error 

profile in increments of approximately 7 feet, which is a function of the EPP radius resolution consistent 

with the chart in Figure 133. 

The convergence of the cross-track errors at zero time horizon is a result of the wind blending where, as 

the aircraft gets closer to a specific waypoint, the wind blending is helping to reduce the amount of wind 

prediction error and the predicted turn radius is changing.  Trajectory points whose errors do not converge 

are those in the descent phase of flight, where the trajectory re-computations are suppressed in this FMS 

simulation. 
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Figure 53, Figure 54, and Figure 55 show the boxplots of the cross-track error data for each waypoint 

of the long, medium, and short routes, respectively, for the three wind conditions tested.  The figures 

indicate that the cross-track error differences between the magnitude error scenarios are more distinct to 

the en route waypoints.  For example, for the long route points in Figure 53, the points SELLS, HYS, FLM, 

HVQ, and WOJOW have the most variation in the cross-track error for these three wind conditions.  Along 

with NOOTN, these are also the en route points of the long route that have a track angle change significant 

enough to report a fly-by radius value; other en route points of the long route do not contain a fly-by radius 

value in the EPP message.  Similar characteristics are observed in Figure 54 and Figure 55 for the points 

DVC, PUB, SLN, and IRK of the medium route, and the points INSLO and EKR of the short route.  Once 

again, these en route points are also the ones that have the largest reported fly-by radius so a higher level 

of cross-track error can be expected due to the MOT point estimation. 

4.4.2 Vertical Error 
Figure 56 shows the EPP vertical errors for all route lengths and all route points of the three wind 

magnitude conditions tested: truth equal to forecast (WC1), truth greater than forecast (WC2), and truth 

less than forecast (WC3) [RL1-RL3, RT1, No RTA].  As expected, the differences in vertical error between 

these runs can be seen at the points that are in the descent profile and prior to the first hard altitude 

constraint.  This can be seen more clearly in the boxplots of Figure 57, Figure 58, and Figure 59.  The first 

waypoints with a hard “AT” altitude constraint on the descent profiles of the long, medium, and short routes 

are KILMR, BENKY, and BEOND, respectively.  As such, we note that the points between the ToD point 

and these points exhibit some vertical error variation due to wind blending as well as the trajectory update 

that occurs with the discontinuity of each point’s error profile at approximately 1800 seconds time horizon.  

This discontinuity is an artifact of this simulation and is the consequence of the simultaneous sequencing 

of the waypoint, FLM, on the long route, and the update to the wind predictions due to wind blending, 

which caused a discontinuity in the wind magnitude prediction of approximately four knots between 

subsequent trajectory updates.  What this discontinuity does show is that, there can be a high sensitivity in 

the vertical error to the wind magnitude prediction.  As expected, the variation decreases as the points 

approach the hard “AT” altitude constraint points. 

4.4.3 Time Error 
Figure 60 shows the EPP time errors for all route lengths and all route points of the three wind magnitude 

conditions tested: truth equal to forecast (WC1), truth greater than forecast (WC2), and truth less than 

forecast (WC3) [RL1-RL3, RT1, No RTA].  As expected, the time errors are nearly symmetrical, with 

respect to the perfect wind condition, and decrease as the aircraft approaches each point.  The time errors 

reach a non-zero constant value for waypoints in the descent phase of flight due to the lack of FMS 

trajectory updates in this region, as seen in Figure 61.  This non-zero error is 15 seconds or less for the 

condition with truth wind magnitude greater than forecast (headwind stronger than forecast leads to late 

actual waypoint crossing times) and greater than -25 seconds for the condition with truth wind magnitude 

smaller than forecast (headwind weaker than forecast leads to early actual waypoint crossing times).   

4.4.4 Summary 
Symmetric wind magnitude error affected the cross-track, vertical, and time errors in a nearly symmetric 

way with respect to the baseline perfect wind condition tested here.  The predicted cross-track error is 

related to the predicted fly-by radius, which changes as the predicted wind at a point changes, especially in 

the wind-blending region of the trajectory.  As discussed before, large turn radius values coupled with small 

track angle changes can have a significant impact on the cross-track error.  The vertical errors are more 

prevalent at waypoints in the descent profile without any hard “AT” altitude constraints where the predicted 

crossing altitude is free to change as the predicted winds also change.  The time error is directly related to 

the over- or under-prediction of the headwind magnitude and approaches zero as the time horizon to a 

waypoint decreases. 
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4.5 Wind Direction Error Effects 
The impacts of wind direction error on EPP errors is described in this section.  Five scenarios for wind 

direction forecast error were investigated and compared against the scenario with perfect wind forecast.  

The wind direction error scenarios [RL1-RL3, RT1, No RTA] were: no direction error (WC1), 30 degrees 

direction error (WC4), 60 degrees direction error (WC5), 90 degrees direction error (WC6), 135 degrees 

direction error (WC7), and 180 degrees direction error (WC8).  These scenarios, as listed, span the realm 

of conditions from perfect knowledge of a nearly pure headwind (WC1) to a 180-degree wind direction 

error indicating a nearly pure forecast tailwind (WC8). 

4.5.1 Cross-Track Error 
The cross-track errors for the six wind-direction error conditions can be seen in Figure 62.  For the 

majority of the points, the cross-track errors are larger at large time horizons as the wind direction error 

increases.  As the time horizon decreases, the cross-track errors converge to the cross-track error in the 

perfect wind condition.  This convergence is the result of the FMS wind blending, which corrects for the 

wind forecast error as the flight approaches a waypoint.  The cross-track error trends seen in Figure 62 are 

caused by the prediction error in the groundspeeds at each waypoint, which, in turn, affect the predicted 

turn radius for those points.  As an example, WOJOW has a predicted turn radius of 17.1 NM and a cross-

track error of less than 10 feet in the perfect wind condition case.  In the condition with 180 degrees of wind 

direction error, WC8, WOJOW has a reported turn radius of 22.4 NM and cross-track error of 397 feet at 

long time horizons that converge to the radius and cross-track error of the perfect wind condition.  The 

difference in radius for this 17.7-degree turn at the long time horizon between these two conditions can 

contribute approximately 388 feet of additional cross-track error, per equation (11) and Figure 133.  The 

cross-track errors are also smaller for lower altitude points with speed constraints, where the groundspeed 

predictions have smaller magnitude errors. 

4.5.2 Vertical Error 
The vertical errors for the six wind-direction forecast error conditions can be seen in Figure 63.  The 

trends in the vertical profile error are similar to those seen in the cross-track error, where the larger wind 

direction errors lead to the largest vertical errors.  We do note that, for some points, such as BURTT and 

PHOOW, the vertical errors for the 135-degree direction error condition are slightly larger than the vertical 

errors for the 180-degree direction error condition.  This is because that portion of the long route is better 

aligned with the 135-degree error wind direction thereby resulting in slightly higher forecast tailwind than 

in the 180-degree direction error condition.  

The vertical errors are largest for the descent points just prior to the first “AT” altitude-constrained 

waypoint.  The different wind-direction error forecasts result in different forecast tailwind magnitude, 

which affect the groundspeed predictions and vertical path predictions at those un-constrained waypoints.  

The vertical errors in the constrained portion of the vertical path are small and nearly identical in all wind 

direction error conditions.   

In the wind conditions tested, the vertical error is positive in the long time horizon because the wind 

forecast simulates increasing tailwind as the wind direction error increases.  The increasing tailwind has the 

effect of moving the predicted top-of-descent point earlier in the flight, thereby resulting in a predicted path 

that is below the actual path flown in the presence of the true winds. 

4.5.3 Time Error 
The time errors for the six wind-direction forecast error conditions can be seen in Figure 64.  As the 

wind-direction forecast error increases from zero to 180 degrees, the error at long time horizons also 

increases.  Similar to the vertical error trends, this is due to the increasing forecast tailwind that produces 

decreasingly earlier predicted crossing times at each waypoint as compared to the actual waypoint crossing 

times.  As such, the time errors are generally positive, indicating later waypoint crossing times when 

compared with the predictions. 

Figure 64 shows a nearly linear increase in time error as the time horizon increases.  This is especially 

true for regions outside any wind blending horizon (time horizon greater than ~5000 seconds).  The time 
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errors approach zero as the time horizon approaches zero for en route waypoints.  Descent waypoints reach 

a non-zero time error that is the time error at the last trajectory prediction just prior to the top-of-descent 

point. 

The “lobes” observed on the 180-degree wind direction forecast error are an artifact of the FMS’s wind 

blending.  They occur when the current track of the aircraft causes a wind direction interpolation that is to 

the right of course in on one leg and to the left of course on the next leg.  This causes a discontinuity in the 

predicted wind magnitude that results in the discontinuity observed in the time errors and is a simulation 

artifact. 

4.5.4 Summary 
Wind direction forecast error has a direct impact on the FMS predicted trajectories and EPP trajectories 

that is related to over- or under- predicted headwind or tailwind components at each waypoint.  These over-

or under-predicted along-track winds result in groundspeed prediction errors that affect the cross-track 

errors, vertical errors, and time errors in the EPP message.  The groundspeed predictions affect the predicted 

fly-by radius, the vertical path predicted altitudes for unconstrained waypoints, and the predicted waypoint 

crossing times, all of which manifest themselves in the EPP trajectory. 

4.6 Impact of Time Constrained Routes 
In this section, we investigate the impact of RTA waypoints on the EPP errors.  Three different 

conditions were tested with each of the route lengths and compared with the equivalent non-RTA scenario: 

an RTA just prior to the top-of-descent point (RTA1), and RTA just after the top-of-descent point (RTA2), 

and an RTA close to the terminal area (RTA3, just prior to reaching 10,000 feet).  The baseline scenario 

for comparison is the scenario with a wind magnitude greater than the forecast magnitude [RL1-RL3, RT1, 

WC2, No RTA]. 

The RTA capability of the RPFMS, and the assumptions of that capability, have an impact on the EPP 

errors.  In the absence of an RTA, the FMS updates the reference trajectory at frequency of once per minute.  

This update to the reference trajectory assumes the aircraft is following the FMS programmed speed profile.  

However, when an RTA exists on the active route, the reference trajectory is updated much less frequently, 

and each update reflects a change to the FMS speed profile necessary to correct any RTA error.  The 

reference trajectory is only updated when a provisional trajectory prediction indicates that the estimated 

time at the RTA point is outside the allowable tolerance.  This less frequent update to the reference 

trajectory in the presence of an RTA serves as a dead-band to prevent reactionary speed changes from 

occurring too frequently as the result of wind prediction and guidance errors, and to reduce the number of 

changes in the descent vertical path.  In the ATOS simulation used here, the EPP message is composed 

from this infrequently updated reference trajectory, which leads to significant differences in the EPP error 

characteristics for a scenario with an RTA waypoint as compared to a scenario without an RTA waypoint.  

4.6.1 Cross-Track Error 
Figure 65 shows the cross-track errors as a function of time horizon for the long route points and the 

baseline wind condition with no RTA [RL1, RT1, WC2, No RTA] as well as the condition with an RTA 

just prior to the top-of-descent point [RL1, RT1, WC2, RTA1].  For the later scenario, the RTA waypoint 

is WOJOW.  We can see that the condition with RTA has cross-track error profiles with long regions of 

constant cross-track error that are not seen in the baseline condition with no RTA.  As explained above, this 

is related to the FMS’s limited update rate for the reference trajectory, which leads to several EPP messages 

being generated from the same reference trajectory.  In Figure 66, we can see this reduced reference 

trajectory update from the cross-track errors for the FMS’s reference trajectory with and without RTA.  For 

example, we note that the waypoint FLM only has two updates in the reference trajectory in the RTA 

condition scenario: one at 7870 and one at 3301 seconds time horizon. 

We note that the magnitude of the cross-track error for the waypoint WOJOW at long time horizons is 

larger in the scenario with an RTA when compared to the no RTA scenario.  In both scenarios, the cross-

track error converges to less than 8 feet as the time horizon approaches zero.  This larger error at long time 

horizons is related to a larger prediction error in the fly-by radius.  The turn radius prediction at WOJOW 
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in the RTA condition scenario increases from 17.3 to 19.5 NM as the time horizon increases.  

Comparatively, in the non-RTA condition, the fly-by radius decreases from 17.9 to 17.1 NM as the time 

horizon increases.  In the non-RTA condition, the fly-by radius variation comes purely from groundspeed 

prediction error due to the wind forecast error in the presence of constant indicated cruise speed.  In the 

RTA condition, however, the speed profile is allowed to vary to achieve the RTA and, combined with the 

wind forecast error, can lead to larger groundspeed variations that consequently produce larger fly-by radius 

variations.  For example, in the non-RTA condition, the cruise speed is a constant Mach 0.801, whereas, in 

the RTA condition, the initial Mach is 0.787 to meet the RTA but increases to Mach 0.843 just prior to 

crossing WOJOW to correct for the stronger than forecast headwind. 

FLM also appears to have larger cross-track errors when there is an RTA at WOJOW as compared to 

the cross-track errors with no RTA.  From Figure 67, we see that the points NOOTN, SELLS, HYS, FLM, 

HVQ, WOJOW, and BBONE have the largest cross-track error differences between the no RTA condition 

and the RTA condition scenarios.  With the exception of BBONE, these are the en route points with reported 

fly-by radii that would be susceptible to groundspeed prediction error due to RTA speed adjustments and 

wind forecast error. 

In Figure 68 we see the cross-track errors as a function of time horizon for the long route points and the 

baseline wind condition with no RTA [RL1, RT1, WC2, No RTA] as well as the condition with an RTA 

just after to the top-of-descent point [RL1, RT1, WC2, RTA2].  In this RTA condition, the RTA waypoint 

is HESEE.  Figure 69 shows a comparison of the cross-track errors at each of the route points for these 

same two conditions.  The same set of points, NOOTN, SELLS, HYS, FLM, HVQ, WOJOW, and BBONE, 

show the largest variation in cross-track error due to changes in the reported fly-by radius.  There is also a 

large cross-track error at the xOVER point in the RTA condition at long time horizons because, in those 

trajectory predictions, the xOVER point falls on the arc of the turn at WOJOW and has cross-track error 

magnitudes close to those reported for WOJOW.  We also note that the cross-track error at the RTA 

waypoint, HESEE, is small and constant for both conditions because HESEE has a track angle change of 

less than one degree and no reported fly-by radius. 

Figure 70 shows the cross-track errors as a function of time horizon for the long route points and the 

baseline wind condition with no RTA [RL1, RT1, WC2, No RTA] as well as the condition with an RTA in 

the terminal area [RL1, RT1, WC2, RTA3].  In this RTA condition, the RTA waypoint is KILMR.  Figure 

71 shows a comparison of the cross-track errors at each of the route points for these same two conditions.  

These figures show the same trend seen in the RTA1 and RTA2 conditions, where the en route points with 

reported turn radius have the largest cross-track error variations.  WOJOW shows up again as the point with 

the largest cross-track error variation because it has the largest track angle change in the points for the long 

route.  Note that KILMR’s cross-track error remains below 10 feet with only minor variation resulting from 

EPP trajectories where KILMR is the first trajectory point and the cross-track error computation can be 

somewhat noisy. 

Figure 72 - Figure 83 show the cross-track errors as a function of time horizon and for each point of the 

medium and short routes with the baseline wind condition with no RTA [RL2-RL3, RT1, WC2, No RTA] 

as well as the three RTA conditions [RL2-RL3, RT1, WC2, RTA1-RTA3].  These figures show that, in the 

case of the medium route (RL2), the cross-track errors have the largest variation for the en route waypoints 

with a fly-by radius in the case of the cruise RTA (RTA1).  That variation is smaller in the condition with 

the RTA after top-of-descent (RTA2) and almost non-existent in the condition with the RTA close to the 

terminal area (RTA3).  In the case of the short route (RL3), cross-track errors are comparable with and 

without RTA with the exception of the point FRNCH, which shows very large cross-track error in the RTA 

conditions.  This large error is due to the change in speed profile computed to achieve the RTAs, which 

translates to changes in the predicted turn radius at a descent point that does not have a speed constraint.  

For example, in the RTA1 condition of Figure 78, the initial turn radius prediction at FRNCH is 11 NM 

whereas the final prediction just before reaching FRNCH is 14.1 NM.  The difference in these two radii for 

this 25-degree turn can produce approximately 470 feet of cross-track error. 
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4.6.2 Vertical Error 
Figure 84-Figure 89 show a comparison of the vertical errors between the baseline wind condition with 

no RTA [RL1-RL3, RT1, WC2, No RTA] and the condition with an RTA in the cruise phase of flight [RL1-

RL3, RT1, WC2, RTA1], for all three route lengths.  Figure 90-Figure 95 show a comparison of the vertical 

errors between the baseline wind condition with no RTA [RL1-RL3, RT1, WC2, No RTA] and the 

condition with an RTA just after the top-of-descent [RL1-RL3, RT1, WC2, RTA2], for all three route 

lengths.  Figure 96-Figure 101 show a comparison of the vertical errors between the baseline wind condition 

with no RTA [RL1-RL3, RT1, WC2, No RTA] and the condition with an RTA close to the terminal area 

[RL1-RL3, RT1, WC2, RTA3], for all three route lengths.  There does not appear to be any clear distinction 

between the vertical errors when the RTA is in cruise versus when the RTA is in the descent portion of the 

flight.  The primary difference between the no RTA condition and the RTA conditions is that the RTA 

conditions have higher levels of variation in vertical error for the waypoints in descent just prior to the first 

hard “AT” altitude constraint.  This is a result of the RTA capability’s adjustment of the cost index, and 

subsequent change of the FMS speed profile, to meet the required waypoint crossing time as the wind and 

trajectory predictions change.  Note also that, in the RTA conditions, the vertical error for these 

unconstrained waypoints is, larger than in the condition without RTA, especially at longer time horizons.  

4.6.3 Time Error 
Figure 102-Figure 104 show a comparison of the time errors between the baseline wind condition with 

no RTA [RL1-RL3, RT1, WC2, No RTA] and the condition with an RTA in the cruise phase of flight [RL1-

RL3, RT1, WC2, RTA1], for all three route lengths.  Figure 105-Figure 107 show a comparison of the time 

errors between the baseline wind condition with no RTA [RL1-RL3, RT1, WC2, No RTA] and the 

condition with an RTA just after the top-of-descent [RL1-RL3, RT1, WC2, RTA2], for all three route 

lengths.  Figure 108-Figure 110 show a comparison of the time errors between the baseline wind condition 

with no RTA [RL1-RL3, RT1, WC2, No RTA] and the condition with an RTA close to the terminal area 

[RL1-RL3, RT1, WC2, RTA3], for all three route lengths.  Note that, in each of these figures, the time error 

for the RTA waypoint is emphasized.  In most of the runs, the time error for the RTA waypoint remains 

within the RTA tolerance of 30 seconds used in these scenarios.  The time error for the remaining non-RTA 

waypoints, however, can be larger than in the condition when there is no RTA on the route.  Even in regions 

of short time horizon, there are instances of waypoint crossing time error predictions that are larger than 

the non-RTA condition time errors for the same waypoint.  Thus, perhaps intuitively, having an RTA on a 

route ensures small magnitude time errors for the RTA waypoint at the expense of larger time errors for the 

non-RTA waypoints. 

4.6.4 Summary 
The presence of an RTA on a route contributes to the EPP errors in several ways under the conditions 

tested.  The EPP cross-track, vertical, or time errors can be larger than in a condition without RTA because 

the RTA capability makes several changes to the FMS speed profile in order to try to achieve an RTA 

within the required tolerance.  When these speed adjustments occur in the presence of wind forecast error, 

it is common for the FMS speed profile to initially change in one direction (e.g., higher speed) but then to 

correct in the opposite direction (e.g., slower speed).  This happens as the time horizon to the waypoint is 

reduced and the wind forecast error is eliminated by the FMS’s wind blending.  Changes in the speed profile 

also lead to changes in the fly-by radius computed and reported for waypoints.  Similarly, changes in speed 

profile lead to changes in the vertical path of the flight, especially for waypoints without an altitude 

constraint. 

The EPP errors in this section were based on EPP trajectories generated from an FMS reference 

trajectory that remained constant for long periods, and was only updated when the RTA waypoint was 

found to be out of tolerance.  Perhaps if the provisional route computations that this simulated FMS 

computes between reference trajectory updates were used to generate the EPP message, the results in this 

section may have been somewhat different.  That analysis is left for a future study. 
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5 Parametric Error Model 
The qualitative analysis of section 4 provides a good initial look at the level of cross-track, vertical, and 

time errors that one might expect to see in an EPP trajectory under a given set of conditions.  This qualitative 

analysis is useful but does not allow for the real-time estimation of the EPP trajectory errors; for this, an 

error model is needed.  For an error model to be useful, that error model should have the ability to estimate 

the expected level of error for any EPP trajectory point at the time the EPP trajectory is composed or 

received. 

In this section, error models were designed for the cross-track, vertical, and time errors of an EPP 

message.  These models were identified using a subset of the data collected for this analysis.  As was 

highlighted in the previous section, the EPP errors have characteristics that are linked to the trajectory 

predictions of the specific FMS that generated that EPP message.  As such, the models developed here are 

highly dependent on the FMS simulation within the ATOS environment and may not be suitable as generic 

models of EPP errors.  Additional data would need to be collected using a variety of FMS representing the 

prediction and EPP encoding capabilities of the current, or future, air traffic system for more generic EPP 

error models.  Nonetheless, because the ATOS and RPFMS models used in this analysis are medium- to 

high-fidelity models, we can expect that these error models are good first estimates of the magnitude of the 

errors expected in the real environment, although this could only be verified with field data. 

5.1 Model Design 
The cross-track, vertical, or time errors can be modeled using a linear relationship.  The relationship 

between the error observations, 𝑦𝑖, the error model estimates, 𝑦�̂�, and their residuals, 𝜀𝑖, is shown in equation 

(5). 

The 𝑖𝑡ℎ error model estimate, 𝑦�̂�, is given by equation (6), where 𝛽0̂-𝛽�̂� are the model parameters and 𝑥1,𝑖-

𝑥𝑛,𝑖 are the independent variable measurements of the 𝑖𝑡ℎ observation. 

The model identification requires the selection of an appropriate set of independent variables and model 

parameters that reduce the residuals between the observations and the estimates.  The qualitative error 

analysis of section 4 was used to guide the selection of an appropriate set of candidate independent 

variables.  The model parameters were estimated using MATLAB’s stepwise regression function, where 

independent variables are added and removed from the regression model based on their statistical 

significance to the model fit.  The error models identified below were selected by sequentially adding the 

most significant independent variables until the change in R-squared for the model fit reduced to less than 

0.01, or one percent. 

5.2 Independent Variables 
The independent variables selected for the error model identification are shown in Table 6.  The time 

horizon, 𝑡ℎ, was an obvious selection for a regressor because of the trends observed in the time error figures 

of section 4.  In some regions of time horizon, the time error trend is nearly linear.  The square of the time 

horizon was also used as an explanatory variable in the model identification.  The time horizon variable can 

be obtained from the EPP trajectory directly. 

The cross-track errors in the previous section revealed a significant dependency on the reported fly-by 

radius, 𝑅, but the relationship did not appear to be purely linear.  Based on the trends of Figure 13, a bias 

term for points with a non-zero fly-by radius, 𝐼𝑅>0, was also included in model identification, as was the 

square of the radius.  Conversely, a bias term, 𝐼𝑅=0, was included for those points with no reported fly-by 

radius (very small or no track angle change) in order to try and capture the small cross-track errors for these 

points.  These variables can be derived from the EPP trajectory data. 

Regressors related to the track angle change were also included in the model identification.  The track 

angle change, 𝜃, as well as the sine and coversine of that angle (based on Figure 14) were used as regressors.  

 𝑦𝑖 = 𝑦�̂� + 𝜀𝑖 (5) 

 𝑦�̂� =  𝛽0̂ + 𝛽1̂𝑥1,𝑖 + ⋯ + 𝛽�̂�𝑥𝑛,𝑖 (6) 
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The track angle change can be derived from the EPP trajectory data points, using the aircraft’s current state 

as needed to estimate the track angle change for the first EPP trajectory point. 

 
Table 6.  Independent variables used in error model identification. 

Var. Name Units Description Source 

𝑡ℎ time horizon sec. The EPP point time minus the EPP computation time (the 

time-to-go to the EPP point at EPP generation time).  𝑡ℎ >
0 

EPP trajectory 

𝑅 radius N.M. The EPP point reported fly-by radius.  𝑅 ≥ 0 EPP trajectory 

𝐼𝑅>0 radius bias - A bias term for the points with non-zero reported fly-by 

radius. 𝐼𝑅>0 ∶= [𝑅 > 0] = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 

Derived from EPP  

trajectory data 

𝐼𝑅=0 no-radius bias - A bias term for the points with no reported fly-by radius. 

𝐼𝑅=0 ∶= [𝑅 > 0] = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 1 

Derived from EPP  

trajectory data 

𝜃 track angle 

change 

deg. The absolute value of the track angle change for the 

reported point. 

Derived from EPP  

trajectory data 

𝑆𝜃  sine of track 

angle change 

- The sine of the track angle change.  𝑆𝜃 = sin 𝜃 Derived from EPP  

trajectory data 

𝑉𝜃 coversine of 

track angle 

change 

- The coversine of the track angle change.  

 𝑉𝜃 = 1 − sin 𝜃 

Derived from EPP  

trajectory data 

𝐸𝐻𝑊 headwind 

error 

knots The difference between the true and the predicted wind 

magnitude.  𝐸𝐻𝑊 = 𝐻𝑒𝑎𝑑𝑤𝑖𝑛𝑑𝑡𝑟𝑢𝑒 −
𝐻𝑒𝑎𝑑𝑤𝑖𝑛𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  

Estimated from 

wind forecast data 

(not part of EPP 

trajectory) 

𝐼𝐷𝐸𝑆 descent point 

bias 

- A bias term for the points after the top-of-descent point.  

𝐼𝐷𝐸𝑆 ∶= [𝑖 > 𝑖𝑇𝑂𝐷] = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 for the 𝑖𝑡ℎ point in 

the EPP trajectory. 

Derived from EPP  

trajectory data 

𝐼𝐶𝑅𝑈 cruise point 

bias 

- A bias term for the points up-to and including the top-of-

descent point. 𝐼𝐶𝑅𝑈 ∶= [𝑖 ≤ 𝑖𝑇𝑂𝐷] = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 for 

the 𝑖𝑡ℎ point in the EPP trajectory. 

Derived from EPP  

trajectory data 

𝐼𝑇𝑋 ToD or 

xOVER bias 

- A bias term for the ToD and xOVER points.  

𝐼𝑇𝑋 ∶= [𝑖 = 𝑖𝑇𝑂𝐷] = 1, [𝑖 = 𝑖𝑥𝑂𝑉𝐸𝑅] = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 for 

the 𝑖𝑡ℎ point in the EPP trajectory. 

EPP trajectory 

𝐼𝑇𝑂𝐷  ToD bias - A bias term for the ToD point.  

𝐼𝑇𝑂𝐷 ∶= [𝑖 = 𝑖𝑇𝑂𝐷] = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 for the 𝑖𝑡ℎ point in 

the EPP trajectory. 

EPP trajectory 

𝐼𝑋𝑉𝑅 xOVER bias - A bias term for the xOVER point.  

𝐼𝑋𝑉𝑅 ∶= [𝑖 = 𝑖𝑥𝑂𝑉𝐸𝑅] = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 for the 𝑖𝑡ℎ point in 

the EPP trajectory. 

EPP trajectory 

𝐼𝐵𝑇𝑋 between ToD 

and xOVER 

bias 

- A bias term for the points between the ToD and xOVER 

points.  𝐼𝐵𝑇𝑋 ∶= [𝑖 > 𝑖𝑇𝑂𝐷  & 𝑖 < 𝑖𝑥𝑂𝑉𝐸𝑅] =
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 for the 𝑖𝑡ℎ point in the EPP trajectory. 

EPP trajectory 

𝐼𝑆𝐻  short horizon 

bias 

- A bias term for the points within a short time horizon.  

𝐼𝑆𝐻 ∶= [𝑡ℎ < 1000] = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0  

Derived from EPP  

trajectory data 

𝐼𝑀𝐻  medium 

horizon bias 

- A bias term for the points within a medium time horizon.  

𝐼𝑀𝐻 ∶= [𝑡ℎ ≥ 1000 & 𝑡ℎ < 4000] = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0  

Derived from EPP  

trajectory data 

𝐼𝐿𝐻 large horizon 

bias 

- A bias term for the points within a long time horizon.  

𝐼𝐿𝐻 ∶= [𝑡ℎ𝑖 > 4000] = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0  

Derived from EPP  

trajectory data 

𝐼𝐴𝑇 AT altitude 

bias 

- A bias term for the points in the EPP trajectory with an 

“AT” altitude constraint.  𝐼𝐴𝑇 ∈ {0,1}  

Derived from EPP  

trajectory data 

𝐼𝑃𝑅𝐸𝐴𝐿𝑇 pre AT-

altitude bias 

- A bias term for the points in the EPP trajectory prior to 

the first “AT” altitude constrained point.  𝐼𝑃𝑅𝐸𝐴𝐿𝑇 ∈ {0,1} 

Derived from EPP  

trajectory data 

𝐼𝑃𝑅𝐸𝑆𝑃𝐷 pre speed 

constraint bias 

- A bias term for the points in the EPP trajectory prior to 

the first speed constrained point.  𝐼𝑃𝑅𝐸𝑆𝑃𝐷 ∈ {0,1} 

Derived from EPP  

trajectory data 
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The EPP cross-track, vertical, and time errors of the previous section showed significant dependencies 

on the wind forecast error.  Although the qualitative analysis was done with respect to wind magnitude 

forecast error and wind direction forecast error, separately, the EPP error dependencies are more likely 

related to the along-track wind forecast error.  Both the wind magnitude error and direction error can be 

converted to a headwind error at the EPP points.  This headwind error regressor, 𝐸𝐻𝑊, is defined as the 

difference between the true headwind and the predicted headwind at a point.  For the measured data, the 

track into a waypoint is used as the direction for the true and predicted headwind computation.  The 

headwind error regressor can be computed from the analysis data, however, in model implementation, this 

parameter would have to be estimated using external data not available in the EPP trajectory. 

The remaining independent variables are a set of biases intended to capture the error dependencies on 

specific types of EPP points, such as points that are part of the descent phase of flight, or points that are 

part of the cruise phase of flight.  The descent point bias, 𝐼𝐷𝐸𝑆, isolates the points after the top-of-descent, 

whereas, the cruise point bias, 𝐼𝐶𝑅𝑈 , isolates the points up-to and including the top-of descent point.  The 

bias term, 𝐼𝑇𝑋, captures dependencies common to both the ToD and the xOVER points while bias terms, 

𝐼𝑇𝑂𝐷 and 𝐼𝑋𝑉𝑅, capture individual dependencies of these two points.  Also related is the 𝐼𝐵𝑇𝑋 bias, which 

captured dependencies from points that lie between these same two points.  The bias terms, 𝐼𝑆𝐻,  

𝐼𝑀𝐻  , and 𝐼𝐿𝐻, help separate the time horizon into three regions that could help capture wind blending 

dependencies.  The final three bias terms, 𝐼𝐴𝑇, 𝐼𝑃𝑅𝐸𝐴𝐿𝑇, and 𝐼𝑃𝑅𝐸𝑆𝑃𝐷, capture the dependencies of points with 

and without altitude and/or speed constraints, focused mainly on the points just prior to one of these 

constraints.  All of these bias terms can be derived from the EPP trajectory data. 

In addition to the explanatory variables already mentioned, a few combinations of these variables were 

also used in the model identification.  Specifically, the model identification also included: 𝐼𝑆𝐻 ∗ 𝑡ℎ, 𝐼𝑀𝐻 ∗ 𝑡ℎ, 

𝐼𝐿𝐻 ∗ 𝑡ℎ, 𝐼𝐷𝐸𝑆 ∗ 𝑡ℎ, 𝐼𝐶𝑅𝑈 ∗ 𝑡ℎ, 𝐼𝑆𝐻 ∗ 𝐸𝐻𝑊, 𝐼𝑀𝐻 ∗ 𝐸𝐻𝑊 , 𝐼𝐿𝐻 ∗ 𝐸𝐻𝑊, 𝐼𝐷𝐸𝑆 ∗ 𝐸𝐻𝑊, 𝐼𝐶𝑅𝑈 ∗ 𝐸𝐻𝑊, 𝐼𝑇𝑋 ∗ 𝐸𝐻𝑊, 𝐼𝐷𝐸𝑆 ∗ (1 −

𝐼𝐴𝑇), 𝐼𝐷𝐸𝑆 ∗ 𝐼𝑃𝑅𝐸𝐴𝐿𝑇, 𝐼𝐷𝐸𝑆 ∗ 𝐼𝑃𝑅𝐸𝑆𝑃𝐷, 𝐸𝐻𝑊 ∗ 𝑡ℎ, and 𝐼𝐿𝐻 ∗ 𝐸𝐻𝑊 ∗ 𝑡ℎ.  In total, 39 explanatory regressors were used 

in model identification.  The same set of 39 regressors were used in the cross-track, vertical, and temporal 

error model identifications. 

The EPP error models were identified using a subset of scenario runs.  The baseline runs with no wind 

[RL1-RL3, RT1, WC0, No RTA] and with perfect wind [RL1-RL3, RT1, WC1, No RTA] were both 

included in the identification data set to capture dependencies in the absence of wind error.  Two wind 

forecast error conditions ([RL1-RL3, RT1, WC2, no RTA] and [RL1-RL3, RT1, WC5, No RTA]) were 

included in the identification data set to capture the dependencies on the wind forecast error.  The sparse 

route type and the RTA conditions were not used in the model identification. 

The EPP error models were validated against a single wind forecast error condition that was not used in 

the model identification.  The error models were validated against the 135-degree wind forecast direction 

error condition [RL1-RL3, RT1, WC7, No RTA] to evaluate the model predictive capabilities. 

5.3 Cross-Track Error Model 
The identified EPP cross-track error model includes five explanatory variables and a bias term.  The 

cross-track error model takes the form seen in equation (7).  Table 7 lists the model parameters estimates 

and their standard errors.  This EPP cross-track error model has an R-squared value of 0.8500. 

The cross-track error model aligns well with the qualitative analysis of section 4.  The cross-track errors 

are predominantly a function of the turn radius, the track angle change, and the headwind error.  

The cross-track error model fit can be seen in Figure 111 and Figure 112.  Figure 111 shows the cross-

track errors of the identified model against those of the model identification data set.  Figure 112 shows the 

same data versus the time horizon parameter.  Overall, the model shows a good fit to the identification data. 

The validation of the cross-track error model can be seen in Figure 117 and Figure 118.  These validation 

figures indicate a reasonable model, although, there are some indications that there may be other 

explanatory variables that have yet to be identified. 

 

 �̂�𝑥𝑡𝑟𝑘,𝑖 = �̂�0,𝑥𝑡𝑟𝑘 + �̂�1,𝑥𝑡𝑟𝑘 ∗ 𝐼𝑅>0,𝑖 + �̂�2,𝑥𝑡𝑟𝑘 ∗ 𝑅𝑖 + �̂�3,𝑥𝑡𝑟𝑘 ∗ 𝑅𝑖
2

+ �̂�4,𝑥𝑡𝑟𝑘 ∗ 𝜃𝑖 + �̂�5,𝑥𝑡𝑟𝑘 ∗ 𝐸𝐻𝑊,𝑖 (7) 
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Table 7.  EPP cross-track error model parameter estimates. 

Parameter Estimate 
Standard 

Error 

�̂�0,𝑥𝑡𝑟𝑘 5.8159 - 

�̂�1,𝑥𝑡𝑟𝑘 -17.4052 0.4513 

�̂�2,𝑥𝑡𝑟𝑘 0.0319 0.0147 

�̂�3,𝑥𝑡𝑟𝑘 0.0126 0.0001 

�̂�4,𝑥𝑡𝑟𝑘 1.2437 0.0134 

�̂�5,𝑥𝑡𝑟𝑘 0.5203 0.0104 

 

5.4 Vertical Error Model 
The identified EPP vertical error model includes eight explanatory variables and a bias term.  The 

vertical error model takes the form seen in equation (8).  Table 8 lists the model parameter estimates and 

their standard errors.  This EPP vertical error model has an R-squared value of 0.5541. 

 

 
Table 8.  EPP vertical error model parameter estimates. 

Parameter Estimate 
Standard 

Error 

�̂�0,𝑣𝑒𝑟𝑡 3.2635 - 

�̂�1,𝑣𝑒𝑟𝑡 9.9304 0.2526 

�̂�2,𝑣𝑒𝑟𝑡 -17.0391 1.5873 

�̂�3,𝑣𝑒𝑟𝑡 93.9648 3.0644 

�̂�4,𝑣𝑒𝑟𝑡 -296.2090 3.8219 

�̂�5,𝑣𝑒𝑟𝑡 172.8946 3.1350 

�̂�6,𝑣𝑒𝑟𝑡 -19.3875 0.2517 

�̂�7,𝑣𝑒𝑟𝑡 13.9122 0.3106 

�̂�8,𝑣𝑒𝑟𝑡 0.0013 0.000031 

 

The vertical error model has two dependencies on the headwind error variable.  The first is a direct 

relationship to the headwind error.  The second is a combinatory regressor with the headwind error 

multiplied by the time horizon parameter, which accounts for the wind blending effects of the FMS.  The 

remaining terms in the vertical error model capture the vertical error differences of different types of points 

in the EPP message related to the different phases of flight.  

The vertical error model fit can be seen in Figure 113 and Figure 114.  Figure 113 shows the vertical 

errors of the identified model against those of the model identification data set.  Figure 114 shows the same 

data versus the time horizon parameter.  The model does seem to indicate that some explanatory regressors 

may still be missing that could help improve the model fit. 

The validation of the vertical error model can be seen in Figure 119 and Figure 120.  These validation 

figures indicate a relatively weak model, where some model estimates could still be more than 1000 feet in 

error when compared to the actual error value.  This is especially true for medium and long time horizons. 

 
�̂�𝑣𝑒𝑟𝑡,𝑖 = �̂�0,𝑣𝑒𝑟𝑡 + �̂�1,𝑣𝑒𝑟𝑡 ∗ 𝐸𝐻𝑊,𝑖 + �̂�2,𝑣𝑒𝑟𝑡 ∗ 𝐼𝐷𝐸𝑆 + �̂�3,𝑣𝑒𝑟𝑡 ∗ 𝐼𝑇𝑋 + �̂�4,𝑣𝑒𝑟𝑡 ∗ 𝐼𝑇𝑂𝐷 + �̂�5,𝑣𝑒𝑟𝑡 ∗ 𝐼𝐵𝑇𝑋

+ �̂�6,𝑣𝑒𝑟𝑡 ∗ 𝐼𝐶𝑅𝑈 ∗ 𝐸𝐻𝑊 + �̂�7,𝑣𝑒𝑟𝑡 ∗ 𝐼𝑇𝑋 ∗ 𝐸𝐻𝑊 + �̂�8,𝑣𝑒𝑟𝑡 ∗ 𝐸𝐻𝑊 ∗ 𝑡ℎ 
(8) 
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5.5 Time Error Model 
The identified EPP temporal error model includes six explanatory variables and a bias term.  The 

temporal error model takes the form seen in equation (9).  Table 9 lists the model parameter estimates and 

their standard errors.  This EPP time error model has an R-squared value of 0.8074. 

 

 
Table 9.  EPP temporal error model parameter estimates. 

Parameter Estimate 
Standard 

Error 

�̂�0,𝑡𝑖𝑚𝑒 16.1021 - 

�̂�1,𝑡𝑖𝑚𝑒 0.0014 0.00017 

�̂�2,𝑡𝑖𝑚𝑒 0.00000031 0.000000013 

�̂�3,𝑡𝑖𝑚𝑒 -2.5949 0.0992 

�̂�4,𝑡𝑖𝑚𝑒 -20.4580 0.3758 

�̂�5,𝑡𝑖𝑚𝑒 0.7012 0.0840 

�̂�6,𝑡𝑖𝑚𝑒 0.0017 0.000013 

 

The cross-track error model indicates that the time horizon and headwind error variables contribute a 

significant portion to the time error.  The time horizon and the square of the time horizon are both 

parameters in the model.  The headwind error appears in three other terms of the model, including a 

combinatory term that includes the time horizon.  This combinatory terms accounts for the integrated nature 

of the time error, where longer time horizons with a headwind error contribute to larger time errors.  The 

pre- AT-altitude bias term, 𝐼𝑃𝑅𝐸𝐴𝐿𝑇, indicates the errors are likely to be larger prior to entering the 

constrained portion of a route. 

The temporal error model fit can be seen in Figure 115 and Figure 116.  Figure 115 shows the time 

errors of the identified model against those of the model identification data set.  Figure 116 shows the same 

data versus the time horizon parameter.  Overall, the model shows a reasonable fit to the identification data, 

with some points showing over-estimation of time errors and others showing under-estimation of the time 

errors. 

The validation of the temporal error model can be seen in Figure 121 and Figure 122.  These validation 

figures also indicate a reasonable model, with a slight under-estimation of time errors for the validation 

scenario. 

  

 
�̂�𝑡𝑖𝑚𝑒,𝑖 = �̂�0,𝑡𝑖𝑚𝑒 + �̂�1,𝑡𝑖𝑚𝑒 ∗ 𝑡ℎ + �̂�2,𝑡𝑖𝑚𝑒 ∗ 𝑡ℎ

2 + �̂�3,𝑡𝑖𝑚𝑒 ∗ 𝐸𝐻𝑊 + �̂�4,𝑡𝑖𝑚𝑒 ∗ 𝐼𝑃𝑅𝐸𝐴𝐿𝑇  

+�̂�5,𝑡𝑖𝑚𝑒 ∗ 𝐼𝑀𝐻 ∗ 𝐸𝐻𝑊 + �̂�6,𝑡𝑖𝑚𝑒 ∗ 𝐸𝐻𝑊 ∗ 𝑡ℎ 
(9) 
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6 Conclusion 
 

In this work, a set of scenarios were run in a high-fidelity aircraft and FMS simulation to perform an 

initial characterization of EPP trajectory errors.  Linear regression was also used to identify a set of EPP 

error models.  Because this analysis was performed in a simulation environment, the results are highly 

dependent on the assumptions and algorithms within that environment and may not be directly applicable 

to the errors that may be present in the real system and with an operational FMS.  In fact, there are many 

different types of FMS capabilities in the system today, each of which has different trajectory prediction 

capabilities and accuracies.  A field investigation would be required to understand EPP errors under real 

conditions, thus qualifying this analysis as preliminary.  Nonetheless, this analysis does point to some 

important characteristics of EPP trajectory errors. 

The EPP errors were characterized under the following set of conditions: no wind, perfect wind, full 

versus sparse routes, with wind forecast magnitude error, with wind forecast direction error, and under RTA 

operations.  The following is a set of observations that were gathered from the conditions simulated: 

 In the presence of no wind, when comparing EPP and FMS trajectory errors: 

o EPP cross-track errors can be as much as 100-200 feet larger than FMS errors, especially 

for large radius turns of en route waypoints, primarily due to MOT estimation 

o EPP vertical errors differ from FMS errors only by the EPP altitude resolution of 10 feet 

o EPP time errors differ from FMS errors only by the EPP time resolution of 1 second 

 In the absence of wind forecast error, EPP trajectory error magnitudes are: 

o Less than 50 feet cross-track error for most points; on the order of 200 feet for large turn 

radius turns 

o Less than 10 feet vertical error for most points; on the order of 200 feet for the top-of-

descent point 

o Within 30 seconds time error inside two hours of time horizon 

 In the presence of wind forecast error, EPP trajectory errors are: 

o Related to the along-track wind forecast error 

 Groundspeed affects the predicted turn radius 

 Groundspeed affects the location of the ToD point and, thus, the descent vertical 

path 

 Groundspeed affects the ETA at points 

o Reduced within the wind-blending region of the FMS 

 In the presence of RTA operations, EPP errors can be larger than without RTA, especially at long 

time horizons, due to the changing cost index and changing speed profile 

 Depending on the conditions, FMS wind blending can have a positive or a negative impact on the 

EPP trajectory errors 

 EPP trajectory errors inherit the FMS’s trajectory prediction errors but, in general, are larger than 

the FMS trajectory errors 

 EPP vertical errors are more pronounced for points in the descent profile prior to an altitude 

constrained point 

 

Based on the findings of this analysis, some recommendations are made regarding the ATOS simulation 

capability and its FMS and EPP trajectory generation functionality: 

 The FMS should generate trajectory updates after TOD, even if the vertical path does not change, 

in order to provide updated ETA information for EPP trajectories 

 The FMS should generate the EPP message based on the provisional route computation when an 

RTA operation is active 
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Appendix A: Figures - No Wind Baseline Scenario 
1. Cross-Track Error 

 
Figure 8. Cross-track error for EPP points as a function of the time horizon [RL1-RL3, RT1, WC0, No RTA]. 

 
Figure 9. Cross-track error for FMS points as a function of the time horizon [RL1-RL3, RT1, WC0, No RTA]. 

 



 

38 

 
Figure 10.  EPP and FMS median cross-track error (top) and error difference (bottom) for the trajectory points of 

the long route [RL1, RT1, WC0, No RTA]. 

 

 
Figure 11.  EPP and FMS median cross-track error (top) and error difference (bottom) for the trajectory points of 

the medium route [RL2, RT1, WC0, No RTA]. 
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Figure 12.  EPP and FMS median cross-track error (top) and error difference (bottom) for the trajectory points of 

the short route [RL3, RT1, WC0, No RTA]. 

 
Figure 13.  Cross-track error versus fly-by radius for EPP trajectory points [RL1-RL3, RT1, WC0, No RTA]. 
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Figure 14.  Cross-track error versus track angle change for EPP trajectory points [RL1-RL3, RT1, WC0, No RTA]. 

 

 
Figure 15.  Cross-track error versus fly-by radius for FMS trajectory points [RL1-RL3, RT1, WC0, No RTA]. 

 



 

41 

 
Figure 16.  Cross-track error versus track angle change for FMS trajectory points [RL1-RL3, RT1, WC0, No RTA]. 

 

2. Vertical Error 

 
Figure 17. Vertical error for EPP trajectory points as a function of the time horizon [RL1-RL3, RT1, WC0, No 

RTA]. 
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Figure 18. Vertical error for FMS trajectory points as a function of the time horizon [RL1-RL3, RT1, WC0, No 

RTA]. 

 
Figure 19.  EPP and FMS median vertical error (top) and error difference (bottom) for the trajectory points of the 

long route [RL1, RT1, WC0, No RTA]. 
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Figure 20.  EPP and FMS median vertical error (top) and error difference (bottom) for the trajectory points of the 

medium route [RL2, RT1, WC0, No RTA]. 

 
Figure 21.  EPP and FMS median vertical error (top) and error difference (bottom) for the trajectory points of the 

short route [RL3, RT1, WC0, No RTA]. 
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3. Time Error 

 
Figure 22. Time error for EPP trajectory points as a function of the time horizon [RL1-RL3, RT1, WC0, No RTA]. 

 

 
Figure 23. Time error for FMS trajectory points as a function of the time horizon [RL1-RL3, RT1, WC0, No RTA]. 
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Figure 24. Distribution of the time error difference between EPP and FMS trajectory points [RL1-RL3, RT1, WC0, 

No RTA]. 
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Appendix B: Figures – No Wind Versus Perfect Wind 
1. Cross-Track Error 

 
Figure 25. Cross-track error for EPP points as a function of the time horizon [RL1-RL3, RT1, WC1, No RTA]. 

 
Figure 26. Cross-track error for FMS points as a function of the time horizon [RL1-RL3, RT1, WC1, No RTA]. 
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Figure 27.  No wind (EPPWC0) and perfect wind (EPPWC1) median cross-track error (top) and error difference 

(bottom) for the trajectory points of the long route [RL1, RT1, No RTA]. 

 
Figure 28.  No wind (EPPWC0) and perfect wind (EPPWC1) median cross-track error (top) and error difference 

(bottom) for the trajectory points of the medium route [RL2, RT1, No RTA]. 
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Figure 29.  No wind (EPPWC0) and perfect wind (EPPWC1) median cross-track error (top) and error difference 

(bottom) for the trajectory points of the short route [RL3, RT1, No RTA]. 

 

 
Figure 30.  EPP median fly-by radius for no wind scenario (EPPWC0) and perfect wind scenario (EPPWC1) for all 

trajectory points with non-zero reported radius [RL1-RL3, RT1, No RTA]. 
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Figure 31.  Cross-track error versus fly-by radius for FMS trajectory points [RL1-RL3, RT1, WC1, No RTA]. 

 

2. Vertical Error 

 
Figure 32. Vertical error for EPP trajectory points as a function of the time horizon [RL1-RL3, RT1, WC1, No 

RTA]. 
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Figure 33.  No wind (EPPWC0) and perfect wind (EPPWC1) median vertical error (top) and error difference (bottom) 

for the trajectory points of the long route [RL1, RT1, No RTA]. 

 
Figure 34.  No wind (EPPWC0) and perfect wind (EPPWC1) median vertical error (top) and error difference (bottom) 

for the trajectory points of the medium route [RL2, RT1, No RTA]. 
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Figure 35.  No wind (EPPWC0) and perfect wind (EPPWC1) median vertical error (top) and error difference (bottom) 

for the trajectory points of the short route [RL3, RT1, No RTA]. 

3. Time Error 

 
Figure 36. Time error for EPP trajectory points as a function of the time horizon [RL1-RL3, RT1, WC1, No RTA]. 
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Figure 37. Binned temporal error mean and standard deviation for all trajectory points in the no wind [RL1-RL3, 

RT1, WC0, No RTA] and the perfect wind [RL1-RL3, RT1, WC1, No RTA] scenarios. 
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Appendix C: Figures – Sparse Versus Full Routes 
1. Cross-Track Error 

 
Figure 38. Cross-track error for EPP points as a function of the time horizon for the full routes scenario [RL1-RL3, 

RT1, WC2, No RTA]. 

 
Figure 39. Cross-track error for EPP points as a function of the time horizon for the sparse routes scenario [RL1-

RL3, RT2, WC2, No RTA]. 
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Figure 40.  Sparse route (EPPRT2) and full route (EPPRT1) median cross-track error (top) and error difference 

(bottom) for the trajectory points of the long route [RL1, WC2, No RTA]. 

 
Figure 41.  Sparse route (EPPRT2) and full route (EPPRT1) median cross-track error (top) and error difference 

(bottom) for the trajectory points of the medium route [RL2, WC2, No RTA]. 
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Figure 42.  Sparse route (EPPRT2) and full route (EPPRT1) median cross-track error (top) and error difference 

(bottom) for the trajectory points of the short route [RL3, WC2, No RTA]. 

2. Vertical Error 

 
Figure 43. Vertical error for EPP trajectory points as a function of the time horizon for the full routes scenario 

[RL1-RL3, RT1, WC2, No RTA]. 
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Figure 44. Vertical error for EPP trajectory points as a function of the time horizon for the sparse routes scenario 

[RL1-RL3, RT2, WC2, No RTA]. 

 
Figure 45.  Sparse routes (EPPRT2) and full routes (EPPRT1) median vertical error (top) and error difference 

(bottom) for the trajectory points of the long route [RL1, WC2, No RTA]. 
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Figure 46.  Sparse routes (EPPRT2) and full routes (EPPRT1) median vertical error (top) and error difference 

(bottom) for the trajectory points of the medium route [RL2, WC2, No RTA]. 

 
Figure 47.  Sparse routes (EPPRT2) and full routes (EPPRT1) median vertical error (top) and error difference 

(bottom) for the trajectory points of the short route [RL3, WC2, No RTA]. 
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3. Time Error 

 
Figure 48. Time error for EPP trajectory points as a function of the time horizon for the full routes scenario [RL1-

RL3, RT1, WC2, No RTA]. 

 
Figure 49. Time error for EPP trajectory points as a function of the time horizon for the sparse routes scenario 

[RL1-RL3, RT2, WC2, No RTA]. 
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Figure 50. Binned temporal error mean and standard deviation for all trajectory points in the full routes scenario 

[RL1-RL3, RT1, WC2, No RTA] and the sparse routes scenario [RL1-RL3, RT2, WC2, No RTA]. 
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Appendix D: Figures – Wind Magnitude Error 
1. Cross-Track Error 

 
Figure 51. EPP cross-track error for the perfect wind condition (WC1), the true wind magnitude greater than 

forecast (WC2), and the true wind magnitude less than forecast (WC3) [RL1-RL3, RT1, No RTA]. 

 
Figure 52. Cross-track error for a subset of EPP points (FLM and WOJOW) for the perfect wind condition (WC1), 

the true wind magnitude greater than forecast (WC2), and the true wind magnitude less than forecast (WC3) [RL1-

RL3, RT1, No RTA]. 
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Figure 53. Boxplot of the cross-track error for each EPP point of the long route for the perfect wind condition 

(WC1), the true wind magnitude greater than forecast condition (WC2), and the true wind magnitude less than 

forecast condition (WC3) [RL1-RL3, RT1, No RTA]. 

 
Figure 54. Boxplot of the cross-track error for each EPP point of the medium route for the perfect wind condition 

(WC1), the true wind magnitude greater than forecast condition (WC2), and the true wind magnitude less than 

forecast condition (WC3) [RL1-RL3, RT1, No RTA]. 
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Figure 55. Boxplot of the cross-track error for each EPP point of the short route for the perfect wind condition 

(WC1), the true wind magnitude greater than forecast condition (WC2), and the true wind magnitude less than 

forecast condition (WC3) [RL1-RL3, RT1, No RTA]. 

2. Vertical Error 

 
Figure 56. Vertical error for EPP points for the perfect wind condition (WC1), the true wind magnitude greater 

than forecast (WC2), and the true wind magnitude less than forecast (WC3) [RL1-RL3, RT1, No RTA]. 
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Figure 57. Boxplot of the vertical error for each EPP point of the long route for the perfect wind condition (WC1), 

the true wind magnitude greater than forecast condition (WC2), and the true wind magnitude less than forecast 

condition (WC3) [RL1-RL3, RT1, No RTA]. 

 
Figure 58. Boxplot of the vertical error for each EPP point of the medium route for the perfect wind condition 

(WC1), the true wind magnitude greater than forecast condition (WC2), and the true wind magnitude less than 

forecast condition (WC3) [RL1-RL3, RT1, No RTA]. 
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Figure 59. Boxplot of the vertical error for each EPP point of the short route for the perfect wind condition (WC1), 

the true wind magnitude greater than forecast condition (WC2), and the true wind magnitude less than forecast 

condition (WC3) [RL1-RL3, RT1, No RTA]. 

3. Time Error 

 
Figure 60. Time error for EPP points for the perfect wind condition (WC1), the true wind magnitude greater than 

forecast (WC2), and the true wind magnitude less than forecast (WC3) [RL1-RL3, RT1, No RTA]. 
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Figure 61.  Short time horizon EPP time errors for the perfect wind condition (WC1), the true wind magnitude 

greater than forecast (WC2), and the true wind magnitude less than forecast (WC3) [RL1-RL3, RT1, No RTA]. 
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Appendix E: Figures – Wind Direction Error 
1. Cross-Track Error 

 
Figure 62. Cross-track error for EPP points of all route lengths with the perfect wind condition (WC1) and several 

wind direction error conditions (WC4-WC8) [RL1-RL3, RT1, No RTA]. 

 

2. Vertical Error 

 
Figure 63. Vertical error for EPP points for all routes with the perfect wind condition (WC1) and several wind 

direction error conditions (WC4-WC8) [RL1-RL3, RT1, No RTA]. 
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3. Time Error 

 
Figure 64. Time error for EPP points for all route lengths with the perfect wind condition (WC1) and several wind 

direction error conditions (WC4-WC8) [RL1-RL3, RT1, No RTA]. 
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Appendix F: Figures – Time Constrained Routes 
1. Cross-Track Error 

 
Figure 65. EPP cross-track error for the points of the long route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL1, RT1, WC2]. 

 
Figure 66. FMS cross-track error for the points of the long route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL1, RT1, WC2]. 
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Figure 67. Boxplot of the EPP cross-track error of each point of the long route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL1, RT1, 

WC2]. 

 
Figure 68. EPP cross-track error for the points of the long route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL1, RT1, WC2]. 
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Figure 69. Boxplot of the EPP cross-track error of each point of the long route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL1, RT1, 

WC2]. 

 
Figure 70. EPP cross-track error for the points of the long route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL1, RT1, WC2]. 

 



 

71 

 
Figure 71. Boxplot of the EPP cross-track error of each point of the long route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL1, RT1, WC2]. 

 
Figure 72. EPP cross-track error for the points of the medium route, with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL2, RT1, 

WC2]. 
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Figure 73. Boxplot of the EPP cross-track error of each point of the medium route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL2, RT1, 

WC2]. 

 
Figure 74. EPP cross-track error for the points of the medium route, with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL2, RT1, WC2]. 
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Figure 75. Boxplot of the EPP cross-track error of each point of the medium route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent flight [RL2, 

RT1, WC2]. 

 
Figure 76. EPP cross-track error for the points of the medium route, with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL2, RT1, WC2]. 
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Figure 77. Boxplot of the EPP cross-track error of each point of the medium route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL2, RT1, WC2]. 

 
Figure 78. EPP cross-track error for the points of the short route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL3, RT1, WC2]. 
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Figure 79. Boxplot of the EPP cross-track error of each point of the short route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL3, RT1, 

WC2]. 

 
Figure 80. EPP cross-track error for the points of the short route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL3, RT1, WC2]. 
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Figure 81. Boxplot of the EPP cross-track error of each point of the short route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent flight [RL3, 

RT1, WC2]. 

 
Figure 82. EPP cross-track error for the points of the short route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL3, RT1, WC2]. 
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Figure 83. Boxplot of the EPP cross-track error of each point of the short route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL3, RT1, WC2]. 
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2. Vertical Error 

 
Figure 84. EPP vertical error for the points of the long route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL1, RT1, WC2]. 

 
Figure 85. Boxplot of the EPP vertical error of each point of the long route with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise phase of flight [RL1, RT1, WC2]. 
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Figure 86. EPP vertical error for the points of the medium route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL2, RT1, WC2]. 

 
Figure 87. Boxplot of the EPP vertical error of each point of the medium route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL2, RT1, 

WC2]. 
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Figure 88. EPP vertical error for the points of the short route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL3, RT1, WC2]. 

 
Figure 89. Boxplot of the EPP vertical error of each point of the short route with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA1) in the cruise portion of flight [RL3, RT1, 

WC2]. 
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Figure 90. EPP vertical error for the points of the long route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL1, RT1, WC2]. 

 
Figure 91. Boxplot of the EPP vertical error of each point of the long route with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL1, RT1, WC2]. 

 



 

82 

 
Figure 92. EPP vertical error for the points of the medium route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL2, RT1, WC2]. 

 
Figure 93. Boxplot of the EPP vertical error of each point of the medium route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL2, RT1, 

WC2]. 
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Figure 94. EPP vertical error for the points of the short route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent [RL3, RT1, WC2]. 

 
Figure 95. Boxplot of the EPP vertical error of each point of the short route with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA2) just after top-of-descent flight [RL3, RT1, 

WC2]. 
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Figure 96. EPP vertical error for the points of the long route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL1, RT1, WC2]. 

 
Figure 97. Boxplot of the EPP vertical error of each point of the long route with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL1, RT1, WC2]. 

 



 

85 

 
Figure 98. EPP vertical error for the points of the medium route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL2, RT1, WC2]. 

 
Figure 99. Boxplot of the EPP vertical error of each point of the medium route with true wind magnitude greater 

than forecast condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL2, RT1, WC2]. 
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Figure 100. EPP vertical error for the points of the short route, with true wind magnitude greater than forecast 

condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL3, RT1, WC2]. 

 
Figure 101. Boxplot of the EPP vertical error of each point of the short route with true wind magnitude greater than 

forecast condition, without RTA (No RTA) and with an RTA (RTA3) in the terminal area [RL3, RT1, WC2]. 
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3. Time Error 

 

Figure 102. Time error for EPP points of the long route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA1) in the cruise phase of flight [RL1, RT1, WC2]. 

 

Figure 103. Time error for EPP points of the medium route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA1) in the cruise phase of flight [RL2, RT1, WC2]. 
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Figure 104. Time error for EPP points of the short route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA1) in the cruise phase of flight [RL3, RT1, WC2]. 

 

Figure 105. Time error for EPP points of the long route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA2) in just after the top-of-descent [RL1, RT1, WC2]. 
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Figure 106. Time error for EPP points of the medium route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA2) in just after the top-of-descent [RL2, RT1, WC2]. 

 

Figure 107. Time error for EPP points of the short route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA2) in just after the top-of-descent [RL3, RT1, WC2]. 
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Figure 108. Time error for EPP points of the long route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA3) close to the terminal area [RL1, RT1, WC2]. 

 

Figure 109. Time error for EPP points of the medium route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA3) close to the terminal area [RL2, RT1, WC2]. 
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Figure 110. Time error for EPP points of the short route, true wind magnitude greater than forecast condition, 

without RTA (No RTA) and with an RTA (RTA3) close to the terminal area [RL3, RT1, WC2]. 
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Appendix G: Figures – Parametric Error Models 
1. Model Identification 

 
Figure 111.  Cross-track error parametric model fit against the measured error data [RL1-RL3, RT1, WC0, WC1, 

WC2, WC5, No RTA]. 

 
Figure 112.  Modeled and measured cross-track errors versus time horizon [RL1-RL3, RT1, WC0, WC1, WC2, 

WC5, No RTA]. 
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Figure 113.  Vertical error parametric model fit against the measured error data [RL1-RL3, RT1, WC0, WC1, 

WC2, WC5, No RTA]. 

 

Figure 114.  Modeled and measured vertical errors versus time horizon [RL1-RL3, RT1, WC0, WC1, WC2, WC5, 

No RTA]. 
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Figure 115.  Time error parametric model fit against the measured error data [RL1-RL3, RT1, WC0, WC1, WC2, 

WC5, No RTA]. 

 

Figure 116.  Modeled and measured time errors versus time horizon [RL1-RL3, RT1, WC0, WC1, WC2, WC5, No 

RTA]. 
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2. Model Validation 

 

Figure 117.  Cross-track error parametric model fit against the measured error data [RL1-RL3, RT1, WC7, No 

RTA]. 

 

Figure 118.  Estimated and measured cross-track errors versus time horizon [RL1-RL3, RT1, WC7, No RTA]. 
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Figure 119.  Vertical error parametric model fit against the measured error data [RL1-RL3, RT1, WC7, No RTA]. 

 

Figure 120.  Estimated and measured vertical errors versus time horizon [RL1-RL3, RT1, WC7, No RTA]. 
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Figure 121.  Time error parametric model fit against the measured error data [RL1-RL3, RT1, WC7, No RTA]. 

 

Figure 122.  Estimated and measured time errors versus time horizon [RL1-RL3, RT1, WC7, No RTA].
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Appendix H: Route Design 
The functionality on the flightaware.com website was used to select realistic routes for this analysis.  

The research team searched for the type of aircraft used in the ATOS simulation platform (Boeing 757-200) 

and then selected historical routes flown on a given day that met the length requirements set in Table 2 and 

the direction specified in Section 3.2.1.1.  Once several routes were identified, these were pared down to 

three routes that satisfied both the length and direction criteria.  The details of each route are presented in 

the following sections. 

The long full route [RL1, RT1] in each scenario features a flight from Los Angeles International Airport 

(KLAX) to Washington Dulles International Airport (KIAD).  The flight is initialized at its cruise altitude 

of FL390 and its cruise speed of Mach 0.80 heading direct to the navigational aid NOOTN.  From NOOTN, 

the flight proceeds direct to navigational aid SELLS, then direct to navigational aid OATHE, then direct to 

the VORTAC HYS, then direct to the VORTAC SLN, then direct to the VORTAC STL, then direct to the 

VOR-DME FLM, then direct to the VORTAC HVQ.  At HVQ, the flight follows the GIBBZ2 STAR 

procedure to the navigational aid MATTC.  In order to connect the STAR and approach procedures, the 

flight proceeds from MATTC direct to navigational aid IZUMI, which is the intermediate fix for the 

RNAV/RNP Z approach procedure to runway 19L at KIAD.  Once the flight completes the turn at 

navigational aid IZUMI, it joins and follows the RNAV/RNP Z approach procedure to runway 19L. 

The long sparse route [RL1, RT2] in each scenario features the same flight from Los Angeles 

International Airport (KLAX) to Washington Dulles International Airport (KIAD).  The flight plan is the 

same as the full route except that, after the navigational aid NOOTN, the flight proceeds direct to the 

VORTAC HVQ, bypassing most of the en route points of the full route. 

The medium full route [RL2, RT1] in each scenario features a flight from Las Vegas McCarran 

International Airport (KLAS) to Chicago O’Hare International Airport (KORD).  The flight is initialized at 

its cruise altitude of FL350 and its cruise speed of Mach 0.80 heading direct to the VORTAC DVC.  From 

DVC, the flight proceeds direct to the VORTAC PUB, then direct to the VORTAC HYS, then direct to the 

VORTAC SLN, then direct to the navigational aid AGENT, then direct to the navigational aid KIDER, 

then direct to the VORTAC IRK.  At IRK, the flight follows the BENKY2 STAR procedure to the 

navigational aid TONIE.  In order to provide a connected route to the runway, from TONIE, the flight 

proceeds direct to the navigational aid WAVIE, which is the intermediate fix on the RNAV Global 

Positioning System (GPS) approach to runway 28R at KORD.  Once the flight completes the turn at 

WAVIE, it joins and follows the RNAV GPS approach procedure to runway 28R.   

The medium sparse route [RL2, RT2] in each scenario features the same flight from Las Vegas 

McCarran International Airport (KLAS) to Chicago O’Hare International Airport (KORD).  The flight plan 

is the same as the full route except that, after the VORTAC DVC, the flight proceeds direct to the VORTAC 

IRK, bypassing most of the en route points of the full route. 

The short full route [RL3, RT1] in each scenario features a flight from San Francisco International 

Airport (KSFO) to Denver International Airport (KDEN).  The flight is initialized at its cruise altitude of 

FL350 and its cruise speed of Mach 0.80 heading direct to the navigational aid INSLO.  From INSLO, the 

flight proceeds direct to the navigational aid GAROT, then direct to the VOR-DME EKR.  At EKR, the 

flight follows the KAILE2 STAR procedure, and then follows the Instrument Landing System (ILS) 

approach procedure to runway 16L at KDEN.  In the short route, the STAR procedure is connected to the 

approach procedure, which means that no modifications to the route were required regarding removing 

discontinuities in the FMS.   

The short sparse route [RL3, RT2] in each scenario features the same flight from San Francisco 

International Airport (KSFO) to Denver International Airport (KDEN).  The flight plan is the same as the 

full route except that, after the navigational aid INSLO, the flight proceeds direct to the VOR-DME EKR, 

bypassing the en route navigational aid GAROT of the full route. 

Table 10 provides the details of the full and sparse route conditions for all route lengths.  The full route 

flight plans can be seen in Figure 4 while the sparse route flight plans can be seen in Figure 123. 
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Table 10.  Route descriptions – all route lengths, full and sparse route types. 

Route 

Length 

Departure 

Airport 

Initialization 

Point 

Cruise 

Altitude 

En Route 

Flight Plan 

(Full 

Route/RT1) 

En Route 

Flight Plan 

(Sparse 

Route/RT2) 

STAR Approach 
Arrival 

Airport 

Long 

(RL1) 
KLAX 

35.9936° N 

115.2879° W 
FL390 

NOOTN 

SELLS 

OATHE 
HYS 

SLN 

STL 

FLM 

HVQ 

NOOTN 

HVQ 

HVQ 

FIMPA 

WOJOW1 

BURTT 

PHOOW 

HESEE1,2,3 

GYSLO2,3 

BBONE2,3 

KILMR1,2,3 

OTTTO3 

MAAAY3,4 

RYPIN 

GIBBZ 

SUNYJ 

UDIYU 

MATTC 

(GIBBZ2) 

IZUMI 

DOMSE 

R-19L 

(RRZ19L) 

KIAD 

Medium 

(RL2) 
KLAS 

36.7596° N 

111.7164° W 
FL350 

DVC 

PUB 

HYS 
SLN 

AGENT 

KIDER 

IRK 

DVC 

IRK 

IRK 

LOAMY 

KEOKK1  

DRAMS3 

RYELY3 

BDF1,2,3 

BYLAW2,3 

BENKY1,2,3 

NEWRK 

ASHTN 

PETAH 

JORGO 

MONKZ4 
TONIE 

(BENKY2) 

WAVIE 

ADAMIE 

WILLT 

FIDAK 

R-28R 

(R28R) 

KORD 

Short 

(RL3) 
KSFO 

38.4483° N 

120.2139° W 
FL350 

INSLO 

GAROT 

EKR 

INSLO 

EKR 

EKR1 

CSPAD3 

FRNCH3 

SKARF3 

TOMSN1,2,3 

BEOND2,3 

SWAYN3 

KAILE1,2,3 

(KAILE2) 

BJETN3 

JEEPR3 

JOBOB3 

KUURT3 

KIKME3 

LEETS3,4 

R-16L 

(ILS16L) 

KDEN 

                                                      
1 Waypoints with RTA constraints in some scenario runs. 
2 Analysis waypoint with an associated speed constraint. 
3 Analysis waypoint with an associated altitude constraint. 
4 Last waypoint considered in the analysis of each scenario (point prior to scenario termination). 
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Figure 123.  Sparse version of the long, medium, and short routes and their lateral waypoint locations. 
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Appendix I: STAR Charts and Approach Plates 

 
Figure 124. KAILE2 STAR chart (KDEN).  
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Figure 125. ILS RWY 16L approach plate (KDEN).  
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Figure 126. BENKY2 STAR transitions chart (KORD).  
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Figure 127. BENKY2 STAR arrival chart (KORD).  
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Figure 128.  RNAV (GPS) RWY 28R approach plate (KORD).  
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Figure 129. GIBBZ2 STAR transitions chart (KIAD).  
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Figure 130. GIBBZ2 STAR arrival chart (KIAD).  
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Figure 131.  RNAV (RNP) Z RWY 19L approach plate (KIAD). 
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Appendix J: Wind Magnitude Analysis 
In order to ensure that the wind magnitudes were realistic for this study, an analysis was performed to 

determine realistic wind magnitudes as a function of altitude.  This analysis leveraged a large dataset of 

winds, which consisted of one month (May 2016) of Rapid Refresh (RAP), version 2 wind model data.  The 

RAP model data used in this study provided a wind prediction every hour for 51 vertical levels in a 13-

kilometer (approximately 7 nautical mile) grid over North America [20].  Wind speeds were parsed from 

this dataset at all prediction times (24 per day) for altitudes up to 52,000 feet mean sea level at 100 random 

latitude/longitude locations across the continental United States.  In the analysis, the wind dataset was 

further curtailed to include only altitudes between 4,000 feet and 42,000 feet.  

A script was written to ingest these data files (74,400 in total), parse the data files, and store the data.  

This post-processed data was used to determine the relationship between wind magnitude and altitude.  

Once the data was plotted (see Figure 132), a best-fit analysis was conducted to determine the best fit to the 

data for wind magnitude.  Two relationships were analyzed – a linear approximation and a quadratic 

approximation.  Based upon the results of the analyses, a linear approximation was chosen at seven 

percentile values – the 1st, 5th, 25th, 50th, 75th, 95th, and 99th percentiles.  The results of the line fit can be 

seen in Figure 132. 

The coefficients used in the equation 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝐴 ∗ (𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒) + 𝐵 in order to vary the wind 

magnitude as a function of altitude are for each percentile.  These coefficients, as well as the R2 value for 

each linear approximation, are presented in Table 11.  By using these coefficients in the aforementioned 

equation, wind files were generated with different percentile magnitudes of wind varying by altitude. 

 
Table 11.  Coefficients and R2 values for the linear approximations of wind magnitude as a function of 

altitude. 

Percentile A B R2 Value 

1st 0.00015003 0.52633 0.94522 

5th 0.00035515 0.96455 0.97482 

25th 0.00082299 2.3230 0.98241 

50th 0.0012070 4.6225 0.98623 

75th 0.0015832 8.2710 0.98426 

95th 0.0021514 15.630 0.98303 

99th 0.0025367 21.844 0.97397 
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Figure 132.  Linear approximation for wind magnitude as a function of altitude. 
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Appendix K: Turn Radius Resolution 
The EPP message provides the turn radius for a waypoint at a resolution of 0.1 nautical miles.  As such, 

the error between the actual radius and the reported radius can be as much as 0.05 nautical miles 

(approximately 300 feet) when using a standard rounding approach.  The distance, d, from a fly-by waypoint 

to a middle-of-turn point at the geometric center of a constant radius, R, turn of a given track angle change, 

θ, can be computed by: 

 

It can be shown that, given two turn radius values, the difference in the distance from the fly-by waypoint 

to the middle-of-turn, Δd, is given by: 

 

Equation (11) shows the maximum possible difference in the distance from a middle-of-turn point to a 

fly-by waypoint for a given radial difference and track angle change.  The distance error here is close to 

zero at very small track angle changes and can be up to ~100 feet for turns of 90 degrees of track angle 

change.  Note that the error can be double these magnitudes if the radius values are truncated or rounded 

using a floor or ceiling function. 

 
Figure 133.  Maximum middle-of-turn distance error [ft] contours as a function of radial difference and track 

angle change. 

 

 𝑑 = 𝑅 (
1

𝑐𝑜𝑠 (
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𝜃
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