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ABSTRACT

The Integrated Multi-satellitE Retrievals for GPM (IMERG), a global high-

resolution gridded precipitation data set, will enable a wide range of applica-

tions, ranging from studies on precipitation characteristics to applications in

hydrology to evaluation of weather and climate models. These applications

focus on different spatial and temporal scale and thus average the precipita-

tion estimates to coarser resolutions. Such a modification of scale will impact

the reliability of IMERG. In this study, the performance of the Final run of

IMERG is evaluated against ground-based measurements as a function of in-

creasing spatial resolution (from 0.1◦ to 2.5◦) and accumulation periods (from

0.5 h to 24 h) over a region in the southeastern US. For ground reference, a

product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-

based operational precipitation dataset, is used. The TRMM Multisatellite

Precipitation Analysis (TMPA) is also included as a benchmark. In general,

both IMERG and TMPA improve when scaled up to larger areas and longer

time periods, with better identification of rain occurrences and consistent im-

provements in systematic and random errors of rain rates. Between the two

satellite estimates, IMERG is slightly better than TMPA most of the time.

These results will inform users on the reliability of IMERG over the scales

relevant to their studies.
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1. Introduction35

Satellite retrievals of precipitation are instrumental in understanding the distribution of precip-36

itation around the globe. In regions with sparse measurements, such as mountainous areas and37

oceans, these remotely sensed estimates help to bridge gaps and constrain the errors in ground-38

based data. This is typically achieved through the use of gridded high resolution precipitation39

datasets, such as the Integrated Multi-satellitE Retrievals for GPM (IMERG; Huffman et al. 2015),40

the TRMM Multisatellite Precipitation Analysis (TMPA; Huffman et al. 2007), Climate Prediction41

Center morphing algorithm (CMORPH; Joyce et al. 2004; Joyce and Xie 2011), and Precipitation42

Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classifi-43

cation Scheme (PERSIANN-CCS; Hong et al. 2004). These gridded precipitation datasets use a44

blend of data from various sources with advanced techniques to provide a near-global coverage45

with high spatial and temporal resolution.46

However, to understand and benchmark the performances of these datasets, they need to be47

evaluated against ground measurements. To this end, a whole range of ground validation efforts48

have been undertaken to evaluate these datasets based on different criteria. Some studies focus on49

different rain systems (e.g. Ebert et al. 2007; Habib et al. 2009; Roca et al. 2010; Mei et al. 2014).50

Some studies analyze the performance by terrain or surface (e.g. Tian and Peters-Lidard 2007;51

Kubota et al. 2009; Stampoulis and Anagnostou 2012; Chen et al. 2013b; Liu 2016). Some studies52

investigate the downstream impact of the estimates on hydrologic modeling (e.g. Gottschalck et al.53

2005; Xue et al. 2013; Falck et al. 2015; Tang et al. 2016b). Some studies focus on a better54

understanding of the errors in these datasets themselves (e.g. Maggioni et al. 2014; Tang et al.55

2015; Tan et al. 2016).56
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The aim of this study is to quantify the performance of IMERG as a function of spatial and57

temporal scale. Similar analyses have been performed for other products. For example, Tian et al.58

(2007) compared TMPA and CMORPH at daily, seasonal and annual time scales against ground59

radar and gauges, finding that CMORPH is better at daily resolution while TMPA is superior at60

the longer time scales. On the other hand, Hossain and Huffman (2008) examined the sensitiv-61

ity of various metrics to spatial and temporal scale in PERSIANN-CCS against rain gauges, and62

found that the probability of detection of rain is most sensitive to scale, followed by correlation63

length. Gourley et al. (2010) evaluated TMPA and PERSIANN-CCS against a radar-based prod-64

uct as a function of spatial scale, temporal scale and intensity, showing that TMPA is better than65

PERSIANN-CCS, though both had reduced skill at higher intensities. Habib et al. (2012) in-66

vestigated the performance of CMORPH against gauges and radar across a range of spatial and67

temporal scales, with the conclusion that random error decreases with increasing scale. Sarachi68

et al. (2015) proposed a statistical model to quantify the uncertainties in gridded satellite estimates69

by deriving parameters to a generalized normal distribution as a function of scale.70

In this study, we build on these studies and evaluate the IMERG Final run on its ability to identify71

rain occurrences and rain rates over a range of spatial and temporal scales against a ground-based72

dataset derived from the Multi-Radar/Multi-Sensor product over a region in the United States.73

Our goal is to examine how various aspects of IMERG change as it is averaged over larger areas74

and longer periods. For example, it is expected that random errors would decrease with more75

averaging; indeed, our study will show that averaging the estimates in a 0.1◦ grid box from 0.5 h76

to 24 h will reduce the normalized root-mean-square error from 1.7 to 1.0. Hence, our results also77

provide users with quantitative information on the performance of IMERG at a scale suitable to78

their purposes.79
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2. Data80

a. IMERG81

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a gridded precipitation product82

that merges measurements from a network of satellites in the GPM constellation (Huffman et al.83

2015). IMERG uses the GPM Core Observatory satellite, which has a dual-frequency precipita-84

tion radar and a 13-channel passive microwave imager, as a reference standard to intercalibrate85

and merge precipitation estimates from individual passive microwave (PMW) satellites in the con-86

stellation (Hou et al. 2014). Lagrangian time-interpolation is then applied to these estimates using87

displacement vectors derived from infrared (IR) measurements on geosynchronous satellites to88

produce gridded high resolution estimates of rainfall. This process, known as morphing, was first89

introduced as the central component in CMORPH (Joyce et al. 2004; Joyce and Xie 2011). This90

gridded estimate is further supplemented via a Kalman filter with microwave-calibrated rainfall91

estimates calculated directly from IR measurements following the PERSIANN-CCS algorithm92

(Hong et al. 2004). The final satellite estimate is then calibrated, either directly for the post-93

real-time product or indirectly for the near-real-time products, using gauge data from the Global94

Precipitation Climatology Centre monthly precipitation dataset following the approach employed95

in TMPA (Huffman et al. 2007).96

IMERG has a high resolution of 0.1◦ every half-hour covering up to ±60◦ latitudes. Three97

choices of IMERG runs are available depending on user requirements. The Early run, available98

at a 6-hour delay for real-time applications such as for hazard predictions, is limited to rainfall99

morphing only forward in time. The Late run, with a 18-hour delay for purposes such as crop100

forecasting, employs morphing both forward and backward in time. The Final run is at a 4-month101

delay for research applications. Both the Early and Late runs have climatological gauge adjustment102
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while the Final run uses monthly gauge adjustments to reduce bias. Moreover, runs with longer103

delays will use more PMW estimates due to latency in data delivery. Note that these delays will104

eventually be reduced towards the targets of 4-hour, 12-hour and 2-month respectively. This study105

focuses on the calibrated estimate from Final run of IMERG, which is available from Apr 2014106

onwards.107

Currently, IMERG ingests data from Version 3 of GPM, which uses algorithms implemented at108

the launch of the GPM Core Observatory in Feb 2014 and is thus subject to further improvements109

as measurements are collected. The release of an updated IMERG using Version 4 of the GPM110

products is imminent and may involve potential improvements. We do not expect this new version111

of IMERG to introduce major changes to the results of our study; however, should any significant112

difference arise, we will address the changes in a follow-up paper. IMERG can be downloaded113

from http://pmm.nasa.gov/data-access.114

b. TMPA115

The TRMM Multisatellite Precipitation Analysis (TMPA; also known as TRMM 3B42) is the116

gridded precipitation product from the TRMM project. Just as with IMERG, TMPA uses the117

TRMM satellite to calibrate and combine PMW estimates from different platforms. Estimates118

derived from geosynchronous IR measurements calibrated against PMW estimates on a monthly119

basis are used to fill in the gaps in the PMW field.120

TMPA is available at a resolution of 0.25◦ every 3-hour covering up to ±50◦ latitudes. Two121

different products of TMPA are available: the real-time product (with a 9-hour delay) and the122

research product. This study uses the research product, which is available beginning 1998.123

The research product utilizes the TRMM Precipitation Radar on board the satellite for calibra-124
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tion and has the additional monthly gauge adjustment step. TMPA can be downloaded from125

http://pmm.nasa.gov/data-access.126

Due to the decommissioning of the TRMM satellite, the TMPA research product switches, in127

Oct 2014, from calibration with the Precipitation Radar to a climatological calibration modified128

from the real time product. While this change may introduce a discontinuity from Sep to Oct129

2014, the use of gauge adjustment should minimize, if not eliminate, artifacts for estimates over130

land (Bolvin and Huffman 2015).131

c. Reference132

The Multi-Radar/Multi-Sensor (MRMS; formerly National Mosaic and Multi-Sensor QPE) sys-133

tem is a gridded product by NOAA/NSSL based primarily on the US WSR-88D network (Zhang134

et al. 2011b). Reflectivity data are mosaicked onto a 3D grid over the United States with quality135

control for beam blockages and bright band. From the reflectivity structure and environmental field136

at each grid point, a precipitation regime (e.g. snow, stratiform rain, convective rain) is determined137

using physically-based heuristic rules and a corresponding reflectivity-precipitation relationship is138

applied to estimate the surface precipitation rate. These precipitation rates are bias-corrected using139

gauge data from the Hydrometeorological Automated Data System1 and regional rain gauge net-140

works. A radar quality index (RQI) is produced alongside each precipitation estimate in MRMS141

(Zhang et al. 2011a), providing a numerical value that reflects sampling and estimation uncer-142

tainty, such as beam issues relating to orography and bright bands. Evaluation of MRMS shows143

better performances with the gauge correction and the quantitative benefit of the RQI filter (Chen144

et al. 2013a; Kirstetter et al. 2015a).145

1More information on the Hydrometeorological Automated Data System is available at http://www.nws.noaa.gov/oh/hads/WhatIsHADS.html.
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For the analysis herein, we use a reference dataset processed from the MRMS suite in support146

of the GPM mission for ground validation, available from Jun 2014 onwards (Kirstetter et al.147

2012, 2014, 2015b; Gebregiorgis et al. 2016). This product aggregates the MRMS rain rates to148

produce a half-hourly accumulated rain rates over the conterminous United States (20◦–55◦N,149

130◦–60◦W) with a high spatial resolution of 0.01◦. For this reference product, the RQI ranges150

from 0 (lowest quality) to 100 (highest quality). We mask pixels with RQI less than 100, thus151

keeping only perfect-RQI pixels in computing the areal averages. A perfect RQI indicates an152

absence of blockage and a radar beam below the bright band. We also exclude all pixels in which153

frozen precipitation is identified. Thus, this study focuses only on the most reliable estimates of154

liquid precipitation.155

3. Approach156

We restrict our analysis to 30.0–41.5◦N, 93.5–83.5◦W, a region within which the reference is157

highly reliable due to good radar coverage, high density of gauges and absence of significant158

orography. The RQI in this region is generally high (Fig. 1). This flat topography, together with a159

lack of frozen surfaces at most times of the year, also means that satellite retrievals are generally160

more accurate, though the reliance on ice scattering in retrievals over land will lead to challenges161

in the estimation of warm rain. Within this region, we randomly sample an ensemble of 100162

square boxes of length 0.1◦ and extract the IMERG and reference precipitation rates in each of163

these boxes over the period of 19 months (Jun 2014 to Dec 2015). We then do the same for square164

boxes of length 0.2◦ (i.e. 2 × 2 IMERG grid boxes), repeating it at 0.1◦ increments up to and165

including 2.5◦. From these rates as a function of spatial scale, we average them to get rates over166

periods of 1 h, 3 h, 6 h, 12 h and 24 h. This is also done separately for TMPA and the reference,167

at increments of 0.25◦ to 2.50◦ and periods of 3 h, 6 h, 12 h and 24 h. Therefore, for each spatial168
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and temporal scale, we have 100 sets of precipitation rates between IMERG and the reference as169

well as TMPA and the reference, from which we can derive the statistics for each pair of rain rates170

and take the average across the ensemble to reduce sampling bias. Note that we are working with171

precipitation rate and not accumulated precipitation; in other words, the units of the precipitation172

are mm / h over 1 hr, 3 hr, ... , 24 h instead of mm.173

The period of this analysis covers 19 months over 2014 and 2015 without a distinction between174

different seasons. Additional analyses for the warm season (Apr 2015 to Sep 2015) and the cold175

season (Oct 2014 to Mar 2014) show that the difference is generally an offset in the performance176

of IMERG, with the warm season slightly better than the cold season as consistent with previous177

studies (Guo et al. 2016; Liu 2016). However, as the behavior of the performance as a function178

of scale is generally similar between the two seasons, we will not distinguish between the two179

seasons in the following sections. Instead, readers interested in the results for each season can180

refer to the Supplementary Material.181

We evaluate IMERG and TMPA against the reference on two aspects: (i) rain occurrences, i.e.182

if they agree that it is raining above a certain threshold or not; and (ii) rain rates, i.e. when both183

are raining, the degree to which the rates are similar. This follows the approach advocated in184

Tang et al. (2015). As such, our analyses may depend considerably on the chosen threshold. This185

presents an immediate challenge as rain rates are a function of scale, a situation well exemplified186

in Fig. 2, which shows better agreement between IMERG and the reference at longer and larger187

scales. While we expect rain rates to decrease with increasing scale due to coarsening, the fraction188

of raining events actually increase, as demonstrated in Fig. 3 through a fixed threshold of 0.2 mm189

/ h. This will have a bearing on the results because many aspects of rainfall evaluation, such as the190

probability of detecting rain, are a function of the number of raining events.191

9



Instead of using a fixed threshold at all scales, we reduce the threshold with increasing scale.192

Since the purpose of a threshold is to account for measurement uncertainty, this uncertainty and193

thus the threshold should decline as we consider more grid boxes. In the limit of a very large scale,194

measurement uncertainty should be infinitesimally small. This then leads to the next question of195

how the threshold should decline with scale. To resolve this, we draw our inspiration from the196

Central Limit Theorem (Wilks 2011), whereby the standard deviation of a sample mean is the197

population standard deviation divided by
√

N, where N is the number of samples. In our case, we198

set our threshold at box length l and time period t as T (l, t) = T (0.1◦,0.5 h)/
√

N, where N is the199

number of grid boxes and time steps that we averaged over. This leads to200

T (l, t) =
T (0.1◦,0.5 h)√

l
0.1◦ ×

l
0.1◦ ×

t
0.5 h

. (1)

We set T (0.1,0.5 h) = 0.2 mm / h, which is the minimum nonzero value of IMERG rain rates201

prior to gauge adjustment (personal comm., G. Huffman, 2014). Fig. 4 shows the thresholds as a202

function of scale calculated in this way. In the Supplementary Material, we provide an alternative203

set of figures, showing values calculated using a constant threshold of 0.2 mm / h.204

With a scale-consistent set of thresholds, we consider an estimate to be raining if the precipita-205

tion rate is at least that of the threshold and not raining if it is below the threshold. This approach206

allows us to construct a contingency matrix (hits, misses, false alarms, and correct negatives) for207

each ensemble member of every scale, from which we can calculate the probability of detection,208

false alarm ratio, bias in detection, and Heidke skill score (Wilks 2011). The probability of de-209

tection is the fraction of actual rain occurrences that the estimate detected; a perfect score is 1.210

The false alarm ratio is the fraction of rain occurrences in the estimates that are wrong; a perfect211

score is 0. The bias in detection quantifies the tendency for the estimate to overestimate (> 1)212

or underestimate (< 1) the number of rain occurrences; a perfect score is 1. Bias in detection,213
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also known as bias ratio (Wilks 2011), should not be confused with “bias”, which is a measure of214

rain rate. The Heidke skill score is a generalized skill score than quantifies whether the estimate215

is worse (< 0) or better (> 0) than random chance; a perfect score is 1. Then, for the subset of216

the hits, we calculate the correlation, normalized mean error, normalized mean absolute error and217

root-mean-squared error, as well as parameters used in the multiplicative error model of Tian et al.218

(2013). These quantities are defined in Appendix. In the following sections, we will present these219

quantities as a function of scale, averaged over all ensemble members. Note that as we are using220

square boxes, an increase in spatial scale correspond to a squared increase in the actual area (e.g.221

double the box length from 0.1◦ to 0.2◦ increases the area by a factor of 4).222

4. Evaluation of Rain Occurrences223

We begin our evaluation by examining the ability of the satellite estimates to identify the rain oc-224

currences. Fig. 5 gives the average percentages of hits, misses, false alarms and correct negatives225

between IMERG/TMPA and the reference. The percentage of hits increases monotonically with226

increasing scale for IMERG and TMPA, which is expected since there are more rain occurrences227

even with a constant threshold (Fig. 3), much less for a threshold that decreases with scale. For the228

same reason, the percentage of correct negatives decreases monotonically for both IMERG and229

TMPA. The percentage of misses (false negatives) in IMERG increases with scale but converge to230

between 8% and 9% at 2.5◦. The increase itself may be a consequence of the lower threshold at231

coarser scales, but the fact that the percentage of misses approaches a common value may be an232

indication of the merit of Eq. (1). On the other hand, for TMPA, whether the percentage of misses233

increases with spatial scale depends on the temporal scale, and vice versa. For example, the per-234

centage of misses at 3 h increases with spatial scale while that at 24 h decreases with spatial scale.235

Interestingly, IMERG at 24 h also exhibits a similar behavior at coarser spatial scales, though236

11



with a more muted decline. Finally, for false alarms (false positives), the percentage in IMERG237

increases with scale, though remaining below 8% over the range of scales considered. Likewise,238

the percentage of false alarms for TMPA increase with scale, though with larger magnitudes and239

at a faster rate. The percentage of false alarms is higher in the cold season than in the warm season240

(not shown).241

From the rain occurrences, we can calculate the probability of detection, false alarm ratio, bias242

in detection and Heidke skill score as a function of scale (Fig. 6). The probabilities of detection for243

both IMERG and TMPA rise monotonically with scale. This means that both datasets are better at244

identifying rain occurrences at coarser scales. Between IMERG and TMPA, the former is better245

at finer scales, but the probability of detection for TMPA increases more rapidly with spatial scale246

and outperforms IMERG after 1.0◦ to 1.5◦. At 24 h and 2.5◦, the probability of detection is 0.87247

for IMERG and 0.90 for TMPA. The probability of detection remains above 0.5 at all scales.248

The false alarm ratios for IMERG decline rapidly with scale, but the improvement diminishes249

at coarser scales (Fig. 6). This means that, of all the occurrences which the estimates classify250

as raining, the fraction that are false positives decreases as IMERG estimates are averaged over251

larger areas and longer periods. For TMPA, the false alarm ratios remain roughly constant with252

spatial scales, but is lower at longer periods. This behavior of constant performance with spatial253

scale is due to the decreasing thresholds; when we use a constant threshold of 0.2 mm / h, the false254

alarm ratios for TMPA decrease with spatial scale just like in IMERG (Supplementary Material).255

Regardless of the threshold or scale, IMERG has consistently lower false alarm ratios than TMPA.256

Taking together the fact that TMPA has higher probability of detection but also higher false alarm257

ratios than IMERG, it suggests the possibility that TMPA identifies more rain events than IMERG.258

The bias in detection of IMERG remains below one for the range of scales considered here (Fig.259

6). This means that IMERG is underestimating the number of rain occurrences, though there is260
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a gradual increase towards one with increasing grid box size. For TMPA, the bias in detection261

does not differ between different temporal scales, but it increases sharply with the size of the box,262

overshooting the ideal value of one at about 1.0◦. Therefore, on the number of rain occurrences,263

TMPA underestimates in grid boxes smaller than 1.0◦ but overestimates in grid boxes larger than264

1.0◦. The behavior of the bias in detection in both IMERG and TMPA reflect the asymmetry in265

how the percentages of misses and false alarms change (Fig. 5). Since the bias in detection has266

false alarms in the numerator and misses in the denominator (see Appendix), the greater increase267

in misses than in false alarms meant that bias in detection will increase. Using a constant threshold268

of 0.2 mm / h, the bias in detection of both IMERG and TMPA are roughly constant with scale,269

with TMPA being closer to one than IMERG (Supplementary Material).270

Finally, the Heidke skill scores for IMERG and TMPA are well above zero for all scales (Fig. 6),271

with IMERG consistently outperforming TMPA. This means that both datasets are better at identi-272

fying rain occurrences than random chance. For IMERG, the scores generally increase with spatial273

and temporal scale, though reaching an asymptotic value of about 0.70. However, for TMPA, the274

Heidke skill score either remains constant or declines with scale, though this is primarily due to275

the decreasing threshold: using a constant threshold of 0.2 mm / h results in an improvement in276

scale similar to IMERG (Supplementary Material).277

In summary, Figs. 5 and 6 evaluate the performance of IMERG and TMPA in identifying rain278

occurrences. They showed that IMERG is in general better at identifying rain occurrences at larger279

spatial scale and longer temporal scale, though this improvement is not always monotonic. TMPA,280

on the other hand, provides mixed results with increasing scale. Between IMERG and TMPA,281

the former is generally better, primarily due to the lower percentage of false alarms. However,282

these results are strongly affected by the thresholds (Fig. 4) as alternative figures for a constant283

threshold of 0.2 mm / h have shown (Supplementary Material). Therefore, even though we see that284
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the aggregation of rainfall estimates over longer periods and larger areas improve the performance,285

results on rain occurrences are sensitive to the chosen threshold. Because of this, we also provide,286

in the Supplementary Material, the data computed in this section over a range of thresholds (i.e.287

instead of fixing the threshold, we have three dependence variables on top of spatial and temporal288

scale).289

5. Evaluation of Rain Rates290

The previous section evaluated the ability of IMERG and TMPA to identify rain occurrences.291

In this section, we select the subset of hits, i.e. cases in which both the satellite estimate and the292

ground reference are equal or above the thresholds, and further investigate how well the satellite-293

retrieved rain rates match those from ground measurements. We begin by examining the correla-294

tion coefficient between IMERG/TMPA and the reference (Fig. 7). On this measure, both IMERG295

and TMPA shows a clearly increasing correlation with increasing scale though with diminishing296

returns at coarser scales. Notably, IMERG has significantly higher correlations than TMPA at the297

same scale. For example, at 3 h and 0.5◦, IMERG has a correlation of 0.68 whereas TMPA has a298

correlation of only 0.56. In fact, even the 1 h IMERG correlations are better than the 3 h TMPA299

correlations.300

A similar improvement in the rain rates as a function of scale is also present in the three errors301

calculated (Fig. 8). All three errors generally decrease at coarser scales. For normalized mean302

error, with the exception of IMERG at 0.5 h, the errors decline with increasing spatial scale but303

rapidly levels off at about zero after 1.0◦. This implies that some spatial aggregation of IMERG304

and TMPA will remove most of the systematic error. For IMERG at 0.5 h, the normalized mean305

error becomes negative in grid boxes larger than 0.3◦, but this underestimation is largely due to the306

decreasing thresholds with scale as negative normalized mean errors is not present when a constant307
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threshold is used (Supplementary Material). Regardless, it should be noted that the magnitudes of308

normalized mean errors are small, being mostly below ±0.1 as compared to mostly above +0.5 in309

the normalized mean absolute error. This lower value in the normalized mean error is expected310

due to the cancellation of positive and negative errors in a dataset that has been gauge-adjusted311

for systematic error. What is also shown in Fig. 8 that averaging over larger spatial scales further312

reduces the systematic error in general.313

Both normalized mean absolute error and normalized root-mean-square error show comparable314

behavior. Both errors have higher magnitudes than normalized mean error. Since they are more315

strongly influenced by random error, the reduction of the two errors with a greater degree of316

averaging is not surprising. One puzzling observation in Fig. 8 is how the two errors for 0.5 h317

declines with scale faster than for 1 h and 3 h, such that the 0.5 h estimates actually have lower318

errors than the 1 h and 3 h estimates; the reason for this is unclear. One salient distinction between319

the two errors is that IMERG is better than TMPA in normalized mean absolute error whereas the320

reverse is true for normalized root-mean-square error. Since normalized root-mean-square error321

is affected by outliers to a greater degree, this suggests that IMERG has more outliers and/or the322

outliers have larger magnitudes. One plausible explanation for this is the fact that IMERG uses a323

pre-launch GPM database (Version 3); it is likely that the transition to a full GPM database will324

improve the accuracy of IMERG.325

One drawback of correlations and the errors employed thus far is the assumptions of additive326

errors and Gaussian distribution that underpin their formulation. As rain rates are not normally327

distributed, such assumptions may not adequately represent the statistics of rainfall, resulting in328

problems such as a changing variance with rain rate and the failure to properly distinguish between329

systematic and random errors (Tian et al. 2013, 2016). As such, here we adopt the multiplicative330

error model, a framework that has greater validity for rainfall. This approach fits the estimate and331
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the reference in a power-law relationship, with two parameters α and β expressing the systematic332

error and the parameter σ representing the bias-adjusted random error (see Appendix for more333

details).334

The three parameters of the multiplicative error model have different responses to increasing335

spatial and temporal scales (Fig. 9). At the finest scales, α is positive but rapidly becomes negative336

with just a slight increase in scale, both spatially and temporally. While there is some improvement337

at the coarsest scale, α remains negative throughout. On the other hand, β shows a more expected338

response consistent with the normalized mean error: a gradual increase with spatial and temporal339

scale towards the perfect value of 1. In fact, IMERG has a β of one at 24 h and 2.5◦. To interpret340

the combined behavior of α and β , we must bear in mind that α represents a multiplicative offset341

while β represents the dynamic range (see Fig. A1). In this light, what our results suggest is that,342

with upscale averaging, IMERG and TMPA are better able to capture the actual range of the rain343

rates, but this comes at a cost of a bias towards lower values on the whole.344

As for the bias-adjusted random error, σ clearly decreases with longer temporal scale as ex-345

pected, but its behavior with spatial scale is inconsistent with what we have observed in normal-346

ized mean absolute error and root-mean-square error. Instead of a monotonic decline, σ actually347

rises sharply until about 0.5◦ before falling very gradually. This bizarre behavior in σ is apparently348

due to how our thresholds are chosen in Eq. (1). Indeed, when we use a fixed threshold of 0.2 mm349

/ h, σ decreases with coarser scales similar to normalized root-mean-square error (Supplementary350

Material).351

In summary, Figs. 7, 8 and 9 evaluate the performance of IMERG and TMPA in identifying352

rain rates of raining events. They showed that both satellite estimates generally have improved353

performance at larger spatial scale and longer temporal scale, both for systematic and random354

errors. The decomposition using the more relevant multiplicative error model, however, suggests355
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that the improvement is more subtle: upscaling improves the range of rain rates in the estimates356

as compared to the reference, but it also adds an overall bias towards lower values. In general,357

IMERG is better than TMPA. The impact of our chosen thresholds is lower for rain rates than358

for rain occurrences, with its effect only evident for σ . Just as with the quantities calculated in359

Sec. 4, the Supplementary Material contains data for the quantities in this section over a range of360

thresholds.361

6. Conclusion362

In this study, we evaluated IMERG, the gridded satellite rainfall product from GPM, against a363

ground-based reference dataset derived from MRMS as a function of spatial and temporal scale,364

using TMPA as a benchmark. The motivation behind this study is to acquaint users of IMERG365

with its performance at a scale that is relevant to their purpose. This evaluation is performed366

over a region where the reference is reliable due to dense radar coverage and general absence of367

significant orography. We examined IMERG based on two aspects: (i) whether it can identify rain368

occurrences above a specified threshold, and (ii) whether it can capture the correct rain rates when369

it correctly identifies rain occurrences.370

In general, both IMERG and TMPA improve when scaled up to larger areas and longer time371

periods. In terms of identifying rain occurrences, there is an increase in misses and false alarms372

at coarser scales due to our threshold definition, but the four skill scores demonstrate that IMERG373

is on average better able to identify rain occurrences at coarser scales than TMPA. However, these374

results on rain occurrences are sensitive to the chosen rain/no-rain threshold. In terms of the rain375

rates, there are consistent improvements in correlations and both systematic error and random er-376

ror. This reduction in random error with scale is also reported in similar studies (e.g. Roca et al.377

2010; Habib et al. 2012). However, results from multiplicative error model suggest that these378
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improvements may have subtle compensating changes. Between the two products, IMERG is379

slightly better than TMPA at identifying rain occurrences and estimating rain rates. This is consis-380

tent with early studies on IMERG, finding that it has generally comparable or better performance381

than TMPA (Guo et al. 2016; Tang et al. 2016a,b).382

Our results provide a reference for IMERG users on its performance specific to their purpose.383

For example, in an evaluation of daily precipitation in a climate model with resolution of 1.0◦, our384

results show that IMERG can correctly identify whether it is raining or not (at a threshold of 0.004385

mm / h) 85% of the time with a Heidke skill score of 0.68, and the rain rates have a normalized386

root-mean-square error of 0.9. Alternatively, if IMERG were to be used for hydrological modeling387

over a basin of area equivalent to 2.5◦ × 2.5◦ at hourly resolution, it will miss 8.5% of the rain388

occurrences (≥ 0.008 mm / h), falsely identify a positive 5.5% of the time, and have a correlation389

of 0.78 on its rain rates.390

While the results in this study are restricted to land and over a limited range of latitudes, the391

relative performance between different scales should be applicable to all regions. Furthermore,392

the values in this study may be “transferred” to other regions according to our understanding of393

how satellite retrievals of rain rates perform over different regions. For example, for regions that394

are similar to our area of study, i.e. land surfaces in the low to mid-latitude with some vegetation395

cover and no significant orography, our results should be directly applicable. Over oceans, it is396

likely that the performance of IMERG will be better due to better microwave retrieval over ocean.397

On the other hand, we would expect IMERG to perform poorer over mountainous areas, so the398

results here may indicate a likely upper bound. In a similar way, since we do not expect the Early399

and Late runs of IMERG to be better than the Final runs, the results here set an upper limit for400

the performance of these estimates. As such, with the knowledge of the relative performance of401
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microwave retrievals between the region of interest and the region considered here, the results402

herein will be useful for IMERG users in better understanding the performance of the dataset.403
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APPENDIX416

Definition of Metrics, Errors and the Multiplicative Error Model417

We evaluate the satellite estimate against the ground reference based on its ability to identify418

(i) rain occurrences and (ii) rain rates of the hits. To evaluate rain occurrences, we count the419

number of hits (both estimate and reference are raining), misses (estimate is below threshold while420

reference passes the threshold), false alarms (estimate passes the threshold when reference is below421

threshold), and correct negatives (both estimate and reference are below threshold). We denote422

these as H, M, F , and C respectively. We remind readers that our threshold varies with scale (Fig.423
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4). Then, we can calculate the probability of detection, false alarm ratio and bias in detection,424

defined as,425

probability of detection =
H

H +M
, (A1)

false alarm ratio =
F

H +F
, (A2)

bias in detection =
H +F
H +M

, (A3)

Heidke skill score =
H +C−He

N−He
, (A4)

where426

He = no. of correct rain occurrences by chance =
1
N
((H +M)(H +F)+(C+M)(C+F)) ,

(A5)

and N is the sample size (Wilks 2011). It may help to recall that H+M is the number of rain events427

according to the reference while H +F is the number of rain events according to the estimate.428

Probability of detection is also sometimes called hit rate; bias in detection is also known as bias429

ratio and should not be confused with rain rate bias.430

The perfect value for probability of detection, bias in detection and Heidke skill score is one; the431

perfect value for false alarm ratio is zero. We compute these scores for each ensemble member,432

and then average across the ensemble to obtain the mean scores as a function of scale.433

For the hits, we can further evaluate their rain rates using normalized mean error, normalized434

mean absolute error and root-mean-square error, define as,435

normalized mean error =
1
n ∑i(yi− xi)

x
, (A6)

normalized mean absolute error =
1
n ∑i |yi− xi|

x
, (A7)

root-mean-square error =

√
1
n ∑i(yi− xi)2

x
, (A8)

20



where xi and yi are the reference and estimate respectively, x = 1
n ∑i xi is the mean of the reference,436

and n is the number of hits. Perfect values are zero. Note that normalized mean error is some-437

times also defined as “bias”, but we avoid this terminology due to potential confusion with bias in438

detection.439

We can also examine the rain rates of the hits using the multiplicative error model (Tian et al.440

2013), which expresses the estimate and the reference through the relationship,441

yi = eαxβ

i eεi, (A9)

where α and β characterize the systematic errors and εi represents the bias-corrected random error442

with a normal distribution of mean 0 and standard deviation σ . With a logarithmic transformation,443

this relationship becomes444

log(yi) = α +β log(xi)+ εi, (A10)

which can be fitted using ordinary least squares. The perfect value of α is zero; the perfect value445

of β is one; and the perfect value of σ is zero.446

One way to visualize this is via Fig. A1, which shows the effects of α and β on linear axes for447

x and y. α quantifies the “tilt” from the one-to-one line: with a perfect β , the deterministic part of448

the model becomes y = eαx, with α determining the gradient of the relationship. β characterizes449

the departure from linearity: with a perfect α , the deterministic part of the model becomes y = xβ ,450

with β being the exponent in the power-law relationship. With a logarithmic transformation, the451

model becomes a straight line in log-log axes, with β being the slope and α being the intercept452

at x = 1. σ , on the other hand, quantifies the stochastic component in the model, representing the453

spread of the points from the best fit curve of y = eαxβ . As such, it can be considered as the spread454

of the points after removing any systematic errors.455
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FIG. 1. A map of the average RQI for 2015. The red box shows our region of analysis: 30.0–41.5◦N, 93.5–

83.5◦W.

608

609

30



10-1 100 101 102
10-1

100

101

102

IM
ER

G
 (m

m
 / 

h)

(a)
0.1°, 0.5 h

10-1 100 101 102
10-1

100

101

102
(b)

0.1°, 24 h

10-1 100 101 102

reference (mm / h)

10-1

100

101

102

IM
ER

G
 (m

m
 / 

h)

(c)
2.5°, 0.5 h

10-1 100 101 102

reference (mm / h)

10-1

100

101

102
(d)

2.5°, 24 h

FIG. 2. A scatter diagram between IMERG and the reference at different scales: (a) 0.1◦ × 0.1◦ grid box at
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FIG. 4. Thresholds for raining events as a function of scale. Solid lines are for IMERG comparisons while

dashed lines are for TMPA comparisons.
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FIG. 5. Hits, misses, false alarms and correct rejections in IMERG (solid lines) and in TMPA (dashed lines)

as a function of scale.
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FIG. 6. Probability of detection, false alarm ratio, bias in detection, and Heidke skill score of IMERG (solid

lines) and of TMPA (dashed lines) as a function of scale.
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FIG. 7. Correlations of the hits between IMERG and the reference (solid lines), and TMPA and the reference

(dashed lines) as a function of scale.
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FIG. 8. Normalized mean errors, normalized mean absolute errors and normalized root-mean-square errors

(RMSE) of the hits in IMERG (solid lines) and in TMPA (dashed lines) as a function of scale.
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FIG. 9. Multiplicative error model parameters of the hits in IMERG (solid lines) and in TMPA (dashed lines)

as a function of scale.
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Fig. A1. The effects of α with β = 1 (left) and β with α = 0 (right) from the multiplicative error model on a

linear axes.
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