An Overview of NASA ACC High Energy Dynamic Impact Methodology for Prediction of Ballistic Limit

Mostafa Rassaian², Matthew E. Melis¹, J. Michael Pereira¹, Jenna Pang², and Brian Justusson²

¹NASA Glenn Research Center, Cleveland, OH ²Boeing Research & Technology

Aircraft Airworthiness and Sustainment Conference 2018 April 23-26, 2018, Jacksonville Florida

The material is based upon work supported by NASA under Award No. NNL09AA00A..

Outline

- Provide an Executive Overview of this Session
- Brief Overview of the Advanced Composites Project
- Summary of the High Energy Dynamic Impact Program Element
 - Advanced Composites Consortium Effort
 - Impact Testing programs at NASA Glenn
 - MAT213 Development at NASA Glenn
- Progressive Damage Analysis Methods
 - LS-DYNA MAT162
 - LS-DYNA MAT261
 - Peridynamics EMU
- Future Work

Consortium Research Team

NASA ACC Technical Challenge Areas

1) Predictive Capabilities

Robust analysis for smarter testingBetter prelim design, fewer redesigns

2) Rapid Inspection

- Increase inspection throughput
- Quantitative characterization of defects
- Automated inspection

3) Manufacturing Process Simulation

- Reduce manufacture development time
- Improve quality control
- Fiber placement and cure process models

Verification & Validation

- Tie Technical Challenge work together
- Validate program benefits

High Energy Dynamic Impact Program Element

Objective

• Evaluate & develop impact analysis tools to predict performance of safety-critical engine/airframe structures dominated by high-energy impact events.

• Benchmark methods and tools for reducing development to certification timeline.

Five Year Project Duration

Phase 1 :

- Assess state of the art
- Identify deficiencies and technologies to be advanced
- Fundamental and small scale testing
- Validate methods against tests

Phase 2:

- Continue more focused technology maturation on selected methods
- Sub-component and component testing
- Continue validation with higher level tests
- Establish best practices and guidance

Predominant focus on LS DYNA with smaller effort on Peridynamics

Existing LS DYNA models utilized in this study are MAT162, MAT261 and SPG along with a new model under development at NASA Glenn called MAT213

Analytical Method – Building Block Approach

Once validated, a PDFA model can serve to inform higher complexity test configurations and reduce scope of expensive testing

Overview of NASA ACC HEDI Testing

Phase I Program Flow

- > Examine Applicable material models
- > Develop a test matrix
- Expert FEM users develop blind predictions
- Perform testing
- Calibrate model response
- Assess technical gaps and End User needs

Simulation Approach

Why use MAT162 for HEDI?

MAT162 General Overview:

- Intended for use in high energy impact events exhibiting penetration and perforation of thick-section tape and woven composite materials
- Incorporates higher order failure modes using 11 parameters only observed at elevated loading rates, specifically:
- In-plane \rightarrow 2 compression, 2 tension, 1 shear
- Out-of-plane \rightarrow 1 tension, 2 transverse shear
- Coulomb friction angle for shear band formation
 - Fiber Crush stress limit (SFC)
 - Fiber Shear stress limit (SFS)

Aluminum hollow projectile impact

- Unique to MAT162

Standard test

methods exist

Steel bearing impact

Incorporation of SFC and SFS offer a unique capability to represent material failure immediately in front of the projectile in HEDI events

Why use MAT261 for HEDI?

MAT261 General Overview:

- Includes five damage failure modes to capture not only in-plane and out-of-plane failure, but also mechanics of failure/damage observed in high energy dynamic impact
- Input of fracture toughness helps to determine damage progression:
 - ENKINK Fiber compression fracture toughness
 - ENA Fiber tension fracture toughness
 - ENB Intra-laminar matrix tension fracture toughness
 - ENT Intra-laminar matrix transverse shear fracture toughness
 - ENL Intra-laminar matrix longitudinal shear fracture toughness –

Damage after impact

Strain rate capability and through-thickness damage model offer a unique capability to represent material failure in HEDI events

Determine with testing

Why use Peridynamics for HEDI?

Peridynamics General Overview:

- Formulation models bond-based damage propagation in composite materials without limitations of crack initiation and crack growth law
- Constitutive model consists of 14 total inputs to characterize material, regardless of discontinuities:
 - 6 Elastic constants

• 4 Fiber / matrix failure strains in tension / compression

- 1 Matrix shear failure strain
- 2 Energy release rates
- 1 Density

Lamina level failure model

In-plane damage and delamination

Peridynamics theory offers a unique capability to represent material failure without influence of relations for crack initiation and propagation

$\rho \ddot{\mathbf{y}}(\mathbf{x},t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}',\mathbf{x},t) \ dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x},t)$

Peridynamics theory of motion

Impact Testing at NASA Glenn (25" x 25" Panels)

Multiple material systems and projectiles are tested to expand an experimental database for which to validate impact predictive models

Ballistic Impact Testing

Test-Analysis Comparison

Transitioning Phase 1 to Phase 2

Realistic, Representative of In-Service High Fidelity Test Data

Validation of Material Models for High Energy Dynamic Impact Phase 1 Targeted Program

Phase 1 Executed Program

Phase 2 Planned Program

Lessons learned led to a Phase 2 effort focused on validation of material models

- Updated projectile to minimize uncertainty of impact
- Developing MAT213
- Developing MAT162 sub-laminate modeling approach
- Creating best practices for MAT261
- Developing a non-linear, strain rate dependent stretch model for PD

Phase 2: "HEDI Playbook"

Envisioned Final HEDI Deliverable is "The HEDI Playbook"

Peridynamics

MAT162

MAT261

- Chart allows end users to quickly assess what are the modeling needs for the length scale of interest, which tool is recommended, and what the expected success will be
 - This chart will be accompanied with CRT CDRLs including benchmarking/verification report, best practices report, and scale-up strategies

Phase 2: Validation of Projectile

Modified ASTM D8101 projectile (91g vs. 50 g)

- Al-6061 \rightarrow concerns about strain-rate sensitivity
- Johnson-Cook material model validated for analysis use
 - Test of projectile against rigid plate
 - Captures strain sensitivity and deformation

Strain

Deformation

MAT213 Development

MAT213 General Overview:

- Incorporates plasticity, damage, and failure
- Architecture independent

Displacement: Test vs. Simulation

Summary

Phase I

- Material models developed with promising results from MAT162, MAT261, and peridynamics
 - MAT 261 showed reasonable results with limited calibration
 - Identified areas for SPG improvements; continuing SPG development in other fields
- Identification of tech gaps
 - Calibration of MAT162 parameters for parts idealized at the sublaminate length scale
 - Analysis of bolted joint failure at high loading rates

Phase II

- Performing analysis of impact on structural assemblies, including fasteners, bonded joints, doublers, and stiffeners
- Developed validation framework of PDA models
- Validated Johnson-Cook projectile model for subsequent analysis
- Developing Best Practices & Benchmarking for HEDI modeling
- Continuing rigorous verification and validation of MAT213 with multiple material architectures and constituents
- Improved PD material modeling capability to include nonlinearity and strain rate effects

Significant strides have been made towards the goal of using simulation of composites in impact applications

Acknowledgements

- Special thanks to the HEDI team:
 - Alan Byar, Fernando Cuenca, Jeff Iqbal, Matt Molitor, Rick Rosman, Steve Slaughter, Olaf Weckner (Boeing)
 - Robert Goldberg (NASA Glenn)
 - HEDI Partners: UTC, GE Aviation
- This effort was performed under the support of the NASA Advanced Composites Project and Consortium
 - Industry wide effort to develop and transition technology that will enable validated strength and life prediction tools for complex composite structures and standardize procedures for their reliable use
 - Study was a product of the research involving development of PDFA tools for high energy dynamic impact
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Questions?

Ballistic Impact Testing Overview

Phase 1

Ti Projectile

Blunt Projectile

Sharp Projectile

Realistic, Representative of In-Service, High Fidelity Test Data

- Four (4) material systems
 - IM7/8552 UD tape & PW fabric; T700/5208 and T800/AMD-825 triaxial braid
- Multiple laminate types and thicknesses

<u>Phase 2</u>

Ti Projectile

Phase II Projectile

Validation of Material Models for High Energy Dynamic Impact

- Three (3) material systems
 - IM7/8552 UD tape & PW fabric; T800/AMD-825 triaxial braid
- Multiple laminate types and thicknesses

UD Tape Panel - TL	Fabric Panel	Braid

Phase I Technical Development

MAT261 Results

 Adjusting EFS (Effective Failure Strain) leads to significant improvement in correlation with test

Ballistic Limit

Penetration EFS = 0.04

Rebound EFS = 0.05

 $V = 628 \, \text{ft/s}$

Comparison of matrix damage