https://ntrs.nasa.gov/search.jsp?R=20180003533 2019-08-31T15:51:06+00:00Z

Risk-Based Safety and Mission Assurance: Approach and Experiences

Rich Barney Safety and Mission Assurance Directorate Goddard Space Flight Center ESA-JAXA-NASA S&MA TRISMAC Meeting June 4-6, 2018

Can we answer the Big Questions?

How do We Survive and Thrive?

Translate the knowledge and technologies derived from these areas of exploration to practical applications today.

Why are We Here?

What is Out There?

Risk as a Common Language

• Risk is the common communication language between all of the technical and nontechnical disciplines in a project.

What is risk?

- Definition: The combination of
 - a) the probability that an undesired event will occur
 - b) the consequence or impact of the undesired event
 - In short, Risk is an expectation of loss in statistical terms

- Flavors of risk (consequences)
 - Technical (failure or performance degradation on-orbit)
 - Cost (\$ it will take to fix the problem)
 - Schedule (time to fix the problem)
 - Safety (injury, death, or collateral damage)

What is Risk-Based SMA?

The process of applying limited resources to maximize the chance for safety & mission success by focusing on mitigating specific risks that are applicable to the project vs. simply enforcing a set of requirements because they have always worked

Gadard Risk Experience: Launch Operations

NASA Risk Classification

• <u>Class A</u>: Lowest risk posture by design

- Failure would have extreme consequences to public safety or high priority national science objectives.
- May launch with low to medium risks

Class B: Low risk posture

 Represents a high priority National asset whose loss would constitute a high impact to public safety or national science objectives.

Class C: Moderate risk posture

Represents an instrument or spacecraft whose loss would result in a loss or delay
of some key national science objectives.

- <u>Class D</u>: Cost/schedule are equal or greater considerations compared to mission success risks
 - Technical risk is medium by design (may be dominated by yellow risks).
 - Many credible mission failure mechanisms exist.

Mission Success Activities vs. Risk Posture (example elements)

								Hosted
							Do No	Payload Class
Technical					Ground	7120.8	Harm	(host
Categories	Class A	Class B	Class C	Class D	System (GS)	Class	(DNH)	requirements)
Single	Any SPF	Particular	Selective	SPF, critical	N/A	Project	Project	NASA review
point	against Level 1	attention to	redundancy for	item, or tall pole		best effort.	best effort	of design
failures	requirements	avoidance,	tall pole items,	analysis up front,				history
(SPF)	necessitates a	tracking, and	tracking, and	communication		Tracked in		
	specific waiver,	mitigation, SPF	communication,	of results.		project		
	SPF analysis	analysis expected	tall pole, critical	Selective		documen-		
	expected per	per GPR /123.1.	item, or SPF	redundancy		tation.		
	GPR 7123.1	Highly fault	analysis	where cost				
		Highly fault-		effective.				
		redundancy and						
		other means						
EEE Parts	Level 1 parts	Level 2 parts per	Level 2 parts per	Level 3 parts	For custom	Rest	Rest	Host practices
EEE Tarts	per EEE-INST-	EEE-INST-002	EEE-INST-002	per EEE-INST-	designed	commer-	commer-	Advise on part
	002:	except Level 1	for missions	002 except	module.	cial	cial	selection &
	DPA	parts for single	greater than 2	Level 2 parts for	quality level	practices.	practices.	derating.
	performed per	point failures and	years except	hybrids	of parts	advise on	ISO	
	S-311-M-70;	hybrids	Level 1 parts for	containing	selected	part	certified	
	Counterfeit	containing active	hybrids	active	needs to be	selection	facilities	
	Avoidance	components;	containing active	components;	consistent	&	preferred.	
	requirements	DPA performed	components and	DPA performed	with the	derating.		
	per 500-PG-	per S-311-M-70;	Level 3 parts	per S-311-M-	criticality of	ISO		
	4520. 2.1;	Counterfeit	may be used for	70; Counterfeit	the module.	certified		
		Avoidance	fault tolerant,	Avoidance		facilities		
			non-critical	requirements		preferred.		

Mission Success Activities

Q

Risk Experience: Thermal Cycling

- SMA reviewed the Problem Failure Report (PFR) database to isolate multi project failures associated with thermal cycling.
- The data shows that multiple thermal cycles <u>do</u> uncover issues after the first few cycles.
- About 45% of PFRs were written after failures on thermal cycles >3.
- The Magnetospheric Multiscale mission showed 8 PFRs in the database associated to thermal cycling and 5 occurred during cycle >3.

Multi Project Problem Failure Reports (PFRs) vs Thermal Cycle Failure

Attributes of risk-based SMA

• Upfront assessment of reliability and risk, e.g. tall poles, to prioritize how resources and requirements will be applied

 Early discussions with developer on their approach for ensuring mission success (e.g., use of high-quality parts for critical items and lower grade parts where design is fault-tolerant)

 Judicious application of requirements based on learning from previous projects and the results from the reliability/risk assessments

 Characterization of risk for nonconforming items to determine suitability for use – project makes determination whether to accept, not accept, or mitigate risks based on consideration of all risks

 Continuous review of requirements for suitability based on current processes, technologies, and recent experiences.

Risk Experience: Learning from Previous Projects

On Oct. 31, 2013, NASA's most recent addition to its solar-observing fleet began sharing its data and imagery with the world.

A mission that almost wasn't.....

Risk Experience: Nonconforming Printed Circuit Board Acceptance

- PCB coupons are evaluated for compliance on each panel. Each panel may have several PCBs and several coupons.
- GSFC projects develop dozens to hundreds of printed circuit boards (PCBs).

Printed Circuit Board	Printed Circuit Board	
Printed Circuit Board	Printed Circuit Board	COUPON

Risk Experience: Nonconforming Printed Circuit Board Acceptance Problem

- In the past, 30% of all printed circuit board coupons had been rejected due to nonconformance.
 - Solely based on the coupon not meeting the requirements to which they were evaluated.
 - Without any basis of risk or flightworthiness.

 Projects were choosing two vendors for most boards to mitigate the risk of coupon rejections.

- The time and resources wasted on respins were reducing more important risk mitigation activities.
- Respins frequently resulted in boards that had bigger concerns than the first build.

Risk Experience: Nonconforming Printed Circuit Board Acceptance Risk-based Solution

- Risk assessments are performed by a central working group when coupons are nonconforming.
- Initial assessments took weeks to perform. Now they take a day.

 Out of the 231 risk assessments, boards from 33 panels were determined to be of elevated risk and scrapped (14% rejection).

Cost savings of scrapped boards is between ~ \$1M and \$4M, schedule savings is on the order of years. Does not account for frequent reattempts to build the same board without knowing the cause of the nonconformance or cost of microsection analysis labor.

Continuous improvement and learning are at the core of this approach.

Risk Experience: Nonconforming Printed Circuit Board Acceptance Corrective Action

• Some requirements frequently reappear in risk assessments

- Requirements that frequently are violated and rarely entail risk raise red flags and demand continuing actions:
 - Industry survey
 - In-house testing
 - Follow-up with requirements body

- Example: copper wrap requirement in IPC 6012 3/A for buried/hidden vias
 - Frequently violated (especially for European products since requirement not included in European spec)
 - Can be very difficult to achieve
 - Uniformity across the board is ambiguous

16

Summary

 Goddard Space Flight Center has implemented a risk-based SMA framework that prioritizes understanding all sides of risk for a given problem as opposed to applying a bias toward compliance with quality requirements after a problem has occurred.

The Risk-Based SMA approach and experiences presented show that once noncompliance has occurred, careful analysis and risk management should be prioritized along with requirements compliance.

The experiences presented demonstrate that the risk-based approach is effective at saving cost and schedule resources while establishing a risk posture commensurate with mission requirements and constraints. Goddard SPACE FLIGHT CENTER

