

https://ntrs.nasa.gov/search.jsp?R=20180004069 2019-08-31T16:10:22+00:00Z

Key Challenges in Capturing a Boulder for the Asteroid Redirect Robotic Mission

15th International Planetary Probe Workshop

Benjamin D. Cichy¹ and Suparna Mukherjee²

¹ NASA Goddard Space Flight Center (GSFC)
 ² Stinger Ghaffarian Technologies (SGT)

Asteroid Redirect Robotic Mission

Asteroid Redirect Mission (ARM)

High Efficiency, High Power Solar A<u>rrays</u> High Power, High Throughput Electric Propulsion

Exploration EVA Capabilities Deep-Space Rendezvous Sensors & Docking Capabilities "A Capability Driven Mission"

Transporting multi-ton objects with advanced solar electric propulsion

Integrated crewed/robotic vehicle operations in deep space staging orbits

Advanced autonomous proximity operations in deep space and with a natural body

Astronaut EVA for sample selection, handling, and containment

Robotic Segment Boulder Collection Operations Concept

Capture Module – Capabilities and Key Challenges

Capture Module Mockup

Microspine Gripper Tool

ARM Capture Module (CAPM)

Built from capabilities under development for robotic satellite servicing and on-orbit assembly

Characterize surface of asteroid at 10 cm resolution

Autonomously land a 10 t vehicle with 50 m solar arrays to a preidentified target with 50 cm accuracy and 10 cm/s touchdown velocity

Autonomously grasp and anchor to natural rock surface

Autonomously extract the boulder breaking attachment / cohesion to surface

Autonomously depart asteroid

Defend the planet

Reference Target 2008 EV₅

Key Mission Challenges – Technical and Programmatic

Significant uncertainty in understanding of C-type asteroid properties, including the quantity, accessibility, strength, and surface cohesion of boulders

Evolution in mission objectives from original capability-driven 2-3 m boulder estimate, to a Level-1 requirement for returning a 6 m boulder

Classical calculation of required extraction capability given 6 m requirement

Mission Performance Monte Carlo Analysis

We need to analyze the probability of success – that we *find*, *extract*, and *return* a boulder of the required size

Simple Monte Carlo analysis would estimate by iteratively evaluating a randomly selecting boulder. However this is not correct because the mission will get to <u>select</u> the boulder to extract

When we model selection, we need to take into account uncertainty in knowledge, and the conservatism of the operations team – won't select a boulder unless there is a high confidence we will be successful. Thus *selectable* not a proper subset of *returnable*

$$P_{success} = P(Returnable|Selectable) * P_{one selectable}$$

where
$$P_{one selectable} = [1-(1-P_{selectable})]^{number of boulder}$$

Probability of success formulation

Mission Performance Scorecard

Boulder Size	100 N				200 N				500 N				1500 N			
	CI	СМ	СК	CR	CI	СМ	СК	CR	CI	СМ	СК	CR	CI	СМ	СК	CR
1 m +0.5 m	Robust				Robust			Robust				Robust				
2 m +/- 0.5 m	Some															
3 m +/- 0.5 m	No Capability Force Limited			Some												
4 m +/- 0.5 m				No Capability			М	М	N*	N*	R	S*	N*	N*		
5 m +/- 0.5 m		No Capability*														
6 m - 0.5 m							٨	Aass I	Limite	d						

Key Assumptions

99% number of boulder estimates derived from radar data and SFD Maximum return mass of 20 t Cohesion range 25-250 Pa

Depth-of-Bury range 5%-75%

Size estimation accuracy 2 cm length/width 3 cm height for DOB < 25%

95% estimate of P(success) required for selection

Able to determine spectral type and select boulder after arrival at asteroid

15th IPPW - Key Challenges in Capturing a Boulder for the Asteroid Redirect Robotic Mission

- Robust capability, P(s) > 95%
 Some capability, P(s) ~50-95%
 Marginal capability, P(s) ~10-50%
 No capability, P(s) < 10%
- Limited by return mass

Sensitivity Analyses to Establish Robustness

An extraction force level of 1500 N provides 4 m nominal and 2 m off-nominal capability

Results of Performance Analysis and Trades

Mission Performance analyses created a common language to discuss the expected size of boulder the mission could return given a capability level of the capture system

Stakeholders agreed to update requirements to reflect capability of 3-4 m boulder

Capture Module team in turn augmented Capture Module design with additional robot arm and load bypass cables in order to robustly meet 1500 N extraction force requirement

Updates to requirements and design retired major implementation risk, and put the team on a credible path towards PDR

Supplementary Material

ARRM Reference Target 2008 EV5

Capture Module Mockup

Reference ARV

MegaFlex Reference Array:

~20 m wing tip to base

capture Boulder Solar_electric Power/Propulsion **Module:** (SePPM), S/C from Industry **Electric Propulsion Engines and** provider TBD) **Power Processors:** (Aeroject Corp Hosts core spacecraft housekeeping provided, thru GRC) functions, GN&C, and Ion Propulsion Four 13 kW engines using 5 t of Xe System propellant

Capture Module: (GSFC provided) Robotics to support landing and

Augmentation Trade Space

N = 1000 N(R) = 500 N(S) = 100N(SR) = 1

Psel = 100/1000 = 10% Psr = 1/1000 = 0.1 %

P1sel = 1-(1-Psel)^1000 P1sel = 0.999999 P(R|SEL) = 1/100 = 1% Ps = P1sel*P(R|SEL) = 1%

Note, this would be wrong:

Ps = 1-(1-Psr)^1000 Ps = 63.23%