https://ntrs.nasa.gov/search.jsp?R=20180004120 2019-08-31T16:11:35+00:00Z

National Aeronautics and Space Administration

Human Mars Architecture

Tara Polsgrove NASA Human Mars Study Team

15th International Planetary Probe Workshop June 11, 2018

Space Policy Directive-1

"Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities.

Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations."

EXPLORATION CAMPAIGN

Robotic arm

EVA/science airlock elements, logistic element, more docking

Habitation element, docking

Power Propulsion Element (PPE)

Orion

LUNAR ORBITAL PLATFORM-GATEWAY DEVELOPMENT

Establishing leadership in deep space and preparing for exploration into the solar system

A Brief History of Human Exploration Beyond LEO

- A myriad of choices define the "Architecture" of a human Mars mission
- A large menu of human Mars architecture choices can be organized into three distinct segments
 - End State: Describing long-term architecture goals and objectives
 - Transportation: Getting crew and cargo to Mars and back
 - Surface: Working effectively on the surface of Mars
- Human exploration of Mars may represent one of the most complex systems-ofsystems engineering challenges that humans will undertake
 - Multiple systems must work seamlessly together
- Work will continue to define the optimal human Mars architecture, and the following is ONE possible solution.

Design Choices

Mission Architecture / End State								Transportation Earth-to-Orbit																
																The	cur	re	nt big	g picture	e des			
Primary Program Focus		Transportation															ch	nic		offor	c iin 5 2	v 10		
				Cis-Ea	arth Infra	structu	re		Deep Space									CIII	JIC	22	Uner	s up 3.3	V TO	
Flags & Footprint Lewis & Clark	Initial Orbit	t Long	-Term Sup	porting Space	3	In-S	Space Earth Reti	urn Cis-Lun	ar Ma	rs Orbit	Chemic	al In-Sp	ace In-S	pace No. of						oos	sik	ole co	ombinat	ions
Research Base , Antarctic Field Analog		Cis-Lu	<u> </u>	Transportation																				
	DRO								Deep Space						Ea		Return							
Primary Activity Science & Resear	Near Rectilinear	r No Ci	Destination		Mars Parking	Mars (Orbit Mars Orbit	Mars Orbit	Mars	Ascent	Vehicle As	ent Vehicle	MAV	Earth Eart	th Mars P	e- Desc	ent t	0 Earth	Entrv		_			
	Halo Orbit (NRHO)	Infrast				Hur	nan Health		Surface				•											
Resource Utilizat	LEO		Mars Orbi	t	Radiation	n Coun		Design	First Surfa	e Crev	/Surface N	o of Crewt	Lander	Landed Mass	S Lander Ent	rv la	nding	,		Landin	σ			
Primary Activity Human Expansic	HEO							Desien	THAC SUTTA	e (crev	Junace	o. or crew t		Surface			i u i i i			Lanum			ן	
	-	_	Phobos							1		Execution												
			Mars' Surface 50	Passive Z	Zero-	ISRU	Power	Habitat Type	Life Support	Planetary Outpost	Radius/ Exploration	Length of Surface Stay	Planetary Sciences	Laboratory	ECLSS	т	rash	Robotics	Landing Zone	Cargo Handling	Surface Communication			
			Combinati		Active	Artific			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Zone								Surveys				
			Lunar Firs		Arti	Artific	None	Solar	Monolithi	o Open	Different for Each	< 10 km	7 sols	Teleoperation of Instrument /	None	Open	Con	tainers	Low Latency	Orbital	Crane/	Line of Sight		
			Areosynchro	nous							Expedition			Networks							Hoise			
		_	Mars Flyb	y			Demonstration Only	Nuclear	Modular	Closed	Single Outpost	10 - 100 km	14 sols	Recon Geology / Geophysiology	Basic Analysis / No Lab	50 - 75% Closed	Re	cycle	Autonomous	Robotic	Ramp	Relay Satellite		
			Backflip Grand Tou	ır			Atmospheric	RTG	Inflatable		Multiple	> 100 km	30 sols	Field Work	Moderate Geochemical	75 - 90%	Comb	pination	Crew		ATHLETE		1	
			Fast	Fast			Oxygen				Outposts			5.000	+ Life Science	Closed			Partnered					
							Regolith	Combination	n Rigid				90 sols	Geophysical Tests	s Science	> 90% Closed					Other			
							Water from fror	n	Local Features				300 - 500											
				l			Subsurface Ice		and Resources				sols											
						Fabrication / Manufacturing						500 - 1000 sols												
							Combination						> 1000 sols, overlapping	, ,										
							Export						ciews											

Mission Architecture / End State												
Primary Program Focus	Mission Class	Level of Human Activity	Earth Based Mission Support	Cost Emphasis	Reusability							
Flags & Footprints / Lewis & Clark	Opposition Class - Short Stay (1-60 sols)	Robotic / Telerobotic	Continual Control	Low Cost / Gradual Build-Up	None							
Research Base / Antarctic Field Analog	Conjunction Class Long Stay (300+ sols)	Expeditions	Moderate Intervention	High Cost / Gradual Build-Up	In-Space Habitation							
Primary Activity: Science & Research	All-Up vs. Split Mission	Human-Tended	No Daily Intervention	Low Cost / Fast Build-Up	In-Space Transportation							
Primary Activity: Resource Utilization		Continuous Presence	Minimal	High Cost / Fast Build-Up	EDL and Ascent							
Primary Activity: Human Expansion		Human Settlements			Surface Systems							
		Human Colonization			Infrastructure for Permanent Habitation							

- A single surface site lends itself to a "field station" approach for development of a centralized habitation zone / landing site. The first mission to this site would deploy habitation, power, and other infrastructure that would be used by at least two subsequent surface missions.
- Reusable surface elements (first 3 landed missions)
 - Provides some infrastructure for missions to follow
- Reusable in-space transportation and habitation (at least 3 missions)
 - Based in cis-lunar space
- Cost can be spread via gradual buildup of transportation/orbital capability → short surface stay → long surface stay

SUMMARY – NASA Example Mission

• End State: First 3 human Mars mission visit a common "Field Station"

- Single landing site for first 3 (min) surface missions
- Long-distance (100 km-class) surface mobility
- Major decisions that "frame" this example architecture
 - Reusable in-space transportation and habitation*
 - Split mission architecture (predeploy)
 - Conjunction-class, long-stay, minimum energy
 - Hybrid in-space propulsion
 - Use of ISRU from the very first landed mission

• Priority elements and technological capabilities:

- Reusable, refuelable in-space propulsion (SEP and chemical)
- Long-lifetime, high reliability in-space habitation
- 20-25 mt payload to Mars surface delivery (E/D/L)
- Surface nuclear power
- Atmospheric ISRU, evolving to atmosphere + water
- Affordability and sustainability: TBD

• Target milestones: First human orbital mission 2033, first human landed mission 2037

Beyond Cis-lunar Space

First Human Mission to Mars Sphere of Influence

Deep Space Transport (DST)

NASA

- Emphasis on first human mission to Mars' sphere of influence
 - First long duration flight with self sustained systems
 - Autonomous mission with extended communication delay
 - First crewed mission involving limited abort opportunities
- Example Assumptions
 - 8.4 m Cargo Fairing for SLS launches
 - Crew of 4 for Mars class (1000+ day) mission independent of Earth
 - Orion used for crew delivery and return to/from cislunar space
 - Re-usable DST/Habitat and Propulsion Stage
 - Hybrid (SEP/Chemical) In-Space Propulsion System
 - Gateway used for aggregation and re-fueling of DST

Mars Orbital Mission Elements and Systems

Mars Orbital Mission Example Operational Concept

Mars Surface Mission

The second

Mars Surface Mission

- Emphasis on establishing Mars surface field station
 - First human landing on Mars' surface
 - First three missions revisit a common landing site
- Example Assumptions
 - Re-use of Deep Space Transport for crew transit to Mars
 - 4 additional, reusable Hybrid SEP In-Space Propulsion stages support Mars cargo delivery
 - 10 m cargo fairing for SLS Launches
 - Missions to Mars' surface include the following:
 - Common EDL hardware with precision landing
 - Modular habitation strategy
 - ISRU used for propellant (oxidizer) production
 - Fission Surface Power
 - 100 km-class Mobility (Exploration Zone)

Mars Surface Mission Example Operational Concept

Mars Surface Mission Key Elements and Systems

Human Landers: A Leap in Scale

Steady progression of "in family" EDL

Human Scale Lander (Projected) 16-19 47-62 t 36-47 t + 2 ~120-350

0.1x0.1

New Approach Needed for Human Class Landers

Human Mars Lander Challenges

- 20x more payload to the surface
- 200x improvement in precision landing
- Dynamic atmosphere; poorly characterized
- New engines; performing Supersonic RetroPropulsion
- Terrain hazard detection improving, but not perfect
- Surface plume interaction debris ejecta could damage vehicles

Concept Quad Chart

HIAD: Hypersonic Inflatable Aerodynamic Decelerator

ADEPT: Adaptable Deployable Entry & Placement Technology

Capsule

Mid L/D

HIAD EDL Sequence

NASA LUNAR EXPLORATION

ARTEMIS 22 (2010)

2018

LRO (2009) ORION SPACECRAFT 2019

SMALL COMMERCIAL LANDERS 2019 ONWARD POWER & PROPULSION ELEMENT 2022

ORION CREWED

MID-SIZE ROBOTIC LANDERS 2022

2022

GATEWAY IN LUNAR ORBIT 2024

ADVANCED EXPLORATION LANDER 2026

2026

Preliminary Mars Surface Location Constraints

What Do We Need to Land?

10 m diameter SLS fairing; 300 day stay; Crew of 4; Four 20 t payloads

- Surface Power Units
- **Unpressurized Rovers** •
- Cargo Off-loading
- Logistics Module
- Science Payloads

- Mars Ascent Vehicle
- Atmosphere ISRU
- Crew Access Tunnel

Lander 3

- Pressurized Rover
- Logistics module
 - Crew consumables
 - Fixed system spares
 - Mobile system spares
 - EVA spares
- Surface Mobility

- Habitation
- Crew

•

NASA Exploration Campaign

NOTIONAL LAUNCHES

EARLY SCIENCE & TECHNOLOGY INITIATIVE

SMD–Pristine Apollo Sample, Virtual Institute

HEO/SMD-Lunar CubeSats

SMD/HEO–Science & Technology Payloads

SMALL COMMERCIAL LANDER INITIATIVE

HEO-Lunar Catalyst & Tipping Point

SMD/HEO-Small Commercial Landers/Payloads

MID TO LARGE LANDER INITIATIVE TOWARD HUMAN-RATED LANDER

HEO/SMD–Mid sized Landers (~500kg–1000kg)

HEO/SMD-Human Descent Module Lander (5-6000kg)

SMD/HEO–Payloads & Technology/Mobility & Sample Return

💏 SMD–Mars Robotics

2018

LUNAR ORBITAL PLATFORM—GATEWAY

2019

HEO-Orion/SLS (Habitation Elements/Systems)

HEO/SMD–Gateway Elements (PPE, Commercial Logistics)/Crew Support of Lunar Missions

2022

2023

2024

2025

2026

2021

2028

2029

2027

Timelines are tentative and will be developed further in FY 2019

2020

2030

HYPERSONIC INFLATABLE AERODYNAMIC DECELERATOR (HIAD)

The Mars Landers will use an inflatable decelerator to slow down their descent velocity and protect the payload from heat as it travels through the atmosphere. After touchdown, the HIAD will retract to enable easier surface access.

SUPERSONIC RETROPROPULSION

The Mars landers will have rocket engines capable of starting at supersonic speeds. This technology will enable the landers to slow down for a soft touchdown on the surface of Mars.

ars Surface Habitat

The Mars Londer will deliver this surface habitat, capable of supporting 4 crew on the Martian surface for up to 500 days. The habitat will moderate temperature and climate for the attrabatis, and serve as an outpast that will enable astronaut exploration of Mars.

Transport to Mars

The landers will be launched from Earth on NASA's Space Launch System (SLS) in a 10m diameter fairing. Each will rendezvous with a cargo transport which will carry the lander from cislunar space all the way to Mars orbit. From here, the cargo transport will return to Earth for reuse and the lander will descend to the surface of Mars.

MARS

LANDER

With Precision Landing

Mars Ascent Vehicle

The Mars Ascent Vehicle is designed to carry 4 astronauts and 250 kg of science materials from the surface of Mars back to the Deep Space Transport which will return the crew to Earth.

Lander Payloads

The Mars Lander can deliver 20 metric tom of payload to the Martian Surface Examples of potential surface payloads include human habitats, ascent vehicles, power systems, resource processors, and before carceling reserve.

0 0

PRECISION LANDING

Advanced avionics and control systems (the brains of the lander) will allow precise landings on the surface of Mars. This will ensure the landers are within 1 km of each other for efficient base operations.

CRYOGENIC PROPULSION

The Mars Lander uses a liquid oxygen and methane propulsion system which is common with the Mars Ascent Vehicle (MAV). This reduces unique developments and enables in-situ resourceutilization to reduce MAV mass. Surface Operations

Crewed surface exploration will be augmented by pressurized rovers which can support up to two week sorties. This enhanced mobility will allow the astronauts to explore and investigate a larger number of scientific sites than they could without rovers.

