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On the Minimum Induced Drag of Wings

Albion H. Bowers
NASA Armsirong Chief Sclentist

NASA Neil A. Armstrong Flight Research Center

Where does lift come from?
You should wonder about this...

Flying Wings

Flylng wings are so
elegant and elemental...

Yet they are difficult to fly
and handle poorly. Why?

Imagination vs Knowledge

@ Requirements and Assumptions

® Concepts and Solutions




Questions vs Answers

® “The important and difficult job is never to find the right answers, it is to
find the right question.” —Peter Drucker, Concept of the Corporation and
Management

® “...question the unguestionable.” —Ratan Tata, CEQ Tata Group

@ “They get a kick out of screwing with the status quo. They can't bear it.
So they spend a tremendous amount of time thinking about how to
change the world. As they brain storm, they like to ask: if we did this,
what would happen?" —Meg Whitman, colounder of ebay, PayPal, and
Skype

Personal Air Vehicles

Flying Wings

Flying wings are so
elegant and elemental...

Yet they are difficult to fly
and handle poorly. Why?

Birds




The Four Ways Birds Differ from Aircraft

® Birds tun and ma_nét.l:\}gr— wit“tioht a vertical

@ Birds have slender tips that carry litle load
@ Birds gracefully fly formation with overlapped wingtips

#® Birds have narow wingtips without tip stall

Wilbur & Orville Wright

® Flying experiments 1869 to 1905

Prandtl Lifting Line Theory

Wingtip vortices

® Prandi’ s “voriex ribbons”
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® Elliptical spanload for a given span (1920) HutiekePrani)
® “the downwash produced by the
longitudinal vortices must be uniform at all This k the accapted theary
poinis on the aerofoils in order that there :ndr{;s:-rd-:mhrmmmw
- e . wings. wi 5 3 win|
may be & minimum Of dfﬂg 'Ol' a glven l:t‘nnlya:ﬁdvnamre? ‘What about

total lift.” y=c the structure?




Wingtip vortices

Elliptical Spanload

Elliptical Spanload

Elliptical Spanload and Wingtip Vortices




Fundamental Assumptions

For 3 long time it was diffleclt to find suitahie fonotions to exprem the dintriimtion of Bit,

fram whith a planible distribution of » would be cbteined by equation (37). After various -
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(4) Tho most impertant of Bets's thecrems, from & practizal standpoint, furmishos the com-
plate anslogy to Munk's theorem. soncering the wing system baving the least drag, and, corre-
sponding perfectly to the statements in sections 27 and 98, may be sxpressed thus: The How
behind a propeiler having the least lose te energy i as if o serew surfaces pessed over by (e
propellsr Blados warg zoldified into a solid figure and this were displaced beckward in tha

nonvisosus fiwd with & given small veincity: The potentinl differe
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Minimum Induced Drag & Bending Moment

1 _
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@ Prandd (1833)
Constrain minimum induced drag
Constrain inlegrated wing bending moment
22% increase in span with 11% decrease in induced drag
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Horten Applies a Bell Spanioad

i

Horten Saliplanas

@ Horten Spanload (1934-1954)
use twist to achieve spanload
induced thrust at tips
no structural implications

HI (1934}

HI [1935)

Hm {1938}

HIZ (1861}

HEL{1944)

Prandtl & Horten
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Jones Spanload Kiein and Viswanathan
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Constrain shear stress

@ Minimize induced drag (1850) 16% increase in span with 7% decrease in induced drag

Coenstrain wing reot bending moment

30% increase in span with 17% decrease in induced drag ® “Hence the required downwash-distribution is

parabolic.” y=ax? +bx+ ¢
® “Hence, for a minimum induced drag with a given lotal lift

and a given bending moment the downwash must show a
linear variation along the span.” y=bx+¢

Winglets Whitcomb’s Winglets
® Hichard Whitcomb’ s Winglets s = S
- induced thrust on wingtips e )
- induced drag decrease is === =Y

about half of the span “extenslon”
- reduced wing root bending stress
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Bird Flight Model

How do birds turn & maneuver? i

# Minimum Structure
& Flight Mechanics Implications

® Empirical evidence

= “First the tait is tited downward on the side awey from the
direction of the tum...Perhaps the tail functions as a rudder in
starting the tum...” (Koford, 1950)

# Alleviating the load on the tips allows the bird to tum (bank and
yaw) correctly (Hoey, 1892)

e “, .the tall was lcaded upward and the same clockwise tail
rotation produced a right force, thus a left tum...” (Hoey, 1062)

Prandtl(1920) vs Prandtl(1933)

spenioad
Prandtl Prandti
1520 1933
Elliptical Bell
Spanload Spanload —
NI LTT T T—— I S

Spanload, Downwash, Induced Dra

T T = =

All wings dictate 3 solutions
Spanioad

Downwash

Induced Drag




Horten H Xc Example

Prandtl Wing
[ e e ARl i
a0 n et ‘l

® 24 degres leading edge

sweep angle —ndlil——3
@ Chord:

root — 16.75 inches

tip - 3.875 inches
@ Span: 147.6 inches

Symmetrical Spanloads

® HorenH X¢
footlaunched
ultralight sailplane
1950
@ 24 degree leading edge
sweep angle
@ Chord:
raot - B3 inches
fip — 15.75 inches
® Span: 492 feet
Calculation Method
® Taper
5 RO 23274
e Twist RL 85524
e Control Surface Deflections 2 2725
® Central Difference Angle N o
RE  BHISY
R7 8.6801
RE BASSS
A9  B.1492
Rio 77522
Ri1 72592
R12 6.5634
Tailst R13 5.5579
Al4 51382
R15 44927
R16 31253
A17 18394
R1B 0.6589
A19 -0.6417
R20-16726

@ Elevon Trim
e CG Location

it

4 i 5 i i 52
—18 —8» 88 87 A8 4B 44 =00 =83 =a1 &

spam
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Asymmetrical Spanloads

@ Cla {roll due to aileron)

@ Cnda (yaw due to ailaron)
induced component
profile component
change with lift

# (Cnda/Cloa

o CL{Lift Coefficient)
Increased lift:
increased CIp
increased Cnp*
Decreased lift;
decreased CIp
decreased Cnp*

Performance Comparison

Max L/D: 31.9 -

Min sink: 89.1 fpm “

Does not include pilot drag -
Prediicled L/D: 30 s =
Predicted sink: 90 fpm e N OO W

Dr Edward Uden’s Results

@ Spanload and Induced Drag %% A
# Elevon Configurations

@ Induced Yawing Moments Mﬁh
b

Elevon Config Cnda Spanload

I -002070  bell %I%
I 001556  bel
" 002788 bell %% A
Y, - 018060 elliptical

v - 015730 sliptical %J\

vi 001842 bel %R
VIl 002823 ball

vl 004629 bel A
X 005408 bell %\

X 004182 bel

Xl 005455  bell

“Mitteleffekt”

Artifact of spanload approximations

Effect on spanloads
increased load at tips
decreased load near centerline

Upwash due to swesp unaccounted for

i H H ] N P
-na
=i o bl =) sdd g =44 =dd BT by @

11



Kucheman

& FEffect on spanloads
increased load at tips
decreased load near centeriine

¢ Upwash due to sweep unaccounted for
¢ Residual {(Kucheman)

A pue e

k

i 2 H : i
-8 -48 -08 -aF -&d 8k =64 =Bl 41 Q0 B

Elliptical Half-Lemniscate

@ Minimum induced drag for given control power (roll)
@ Dr Richard Eppler: F5-24 Phoenix

gl

Prandil’s Bell Spanload

Prandtl’s Spanload
B
si=(1-x3) 2 i

o
w=9/2 (x2— %) . /

fim Lx)=0 (n
x:0— bf2

tim dl{x} =0 [£23]
x:0 — b/2 dx

Wmo dDWOO = #m dDWK @)
x:0—bi2 dx xe0—hf2 dx
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Mike Allen
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Spanload

Spedding’s Gliding Falcon

@ Spedding photograpgh's a gliding falcon's wake with He bubbles

@ Vortex cores are 0.76 b apart

@ Elliptical spanload is assumed, so the vortex cores are assumed to
corne from the wingtips

-
b
i

i

-
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Henningsson 2014 (PLOS One)

Portugal, et al 2014 (Nature)

Henningsson 2014 (PLOS One)

Upwash and Wing Beats
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Upwash and Wing Beats
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Pointy Wings and Wing Stall
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Effect of Sideslip

e Wing twist
® Sideslip is imposed
® Distorts the bell spanload and the induced dragahrust profile

PRANDTL-D Proverse Yaw?

Flight Data

What would Proverse Yaw look like?

@ Measurement of proverse yaw would be the final hurdle to achieve

® [cing on the cake: measure Cnda (yawing moment due to aileron
deflection)

e NOT ONE SECOND OF FLIGHT DATA
EXISTS TO PROVE ANY OF THIS IS TRUE

17



Proverse Yaw

@ ..until June 26N, 2013

® Roll and Yaw are the same sign

@ From Uden: Cnda is +ve 18 bt el
D braese,
e uncertainty s

Inertlas; conflguration changes, turbulence, and slope of Cnda

Revalidated Proverse Yaw

PRANET. Cain & B2 VS B ]

| W

Spanload, Downwash, Induced Drag

b

==

]
[

=

All wings dictafe 3 solutions
Spanload
Downwash

Induced Drag _

Loran Hiwton & Kecnan Mbee

Elliptical Spanload Flow
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Bell Spanload Flow

"=,  dewnwash

e ol
Induudi’al/

Prandtl 3

® The aerodynamic testbed
- wing pressures
- FOS8s

19



Wind Tunnel Test

® NASA Langley
® 12-it low speed tunnel
® 52 runs, 6 component force-moment
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The Future: Prandil-M on Mars?

The Future: Prandtl-M on Mars?

Das kleiner
Prandil Falke

The Mars Mission

Deploy cubesat from
large Mars rover

Use Exobrake parachute for Mars
atmosphere entry

Deploy Prandtl-m (2 Ibm, 2 ft span)
from cubesat at 15,000 ft agl

Glide 5 mins, 22 miles, Mach 0.6
Crash land on Mars

Transmit images & data back

20



The Mars Mission

Deploy cubesat from
large Mars rover

Use Exobrake parachute for Mars
atmosphere entry

Deploy Prandtl-m (2 Ibm, 2 ft span)
from cubesat at 15,000 tt agl

Giide 5 minsg, 22 miles, Mach 0.6
Crash land on Mars

Transmit images & data back

Prandtl Propulsion

@ Propulsion systems currently use “minimum induced loss”
& What if we switched te minimum torque for a given thrust? +15.4%

angle e

radlus

Prandtl Propulsion

@ Propulsion systems currently use “minimum induced loss”
® What if we switched to minimum terque for a given thrust? +15.4%
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Prandtl Prop 2
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2016 Interns & MARTI

PRANDTL-D

& Videos

- TEDxNASA 2011
hitp:/fwww.youtube.comAvatch?v=2230maQ9uLyY

- NASA Aero Academy 2013
http:/fwww.youtube.comiwatch?v=HrOIBwBFGpY

Red Jensen: pllot,
engineesr

= Had lengan, 1uitin Hall, & Detak Abranzon

PRANDTL-D Aircraft
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Control of Yaw

You Have Three Choices:

1/ drag a vertical tail arcund with you all the time

to create a yawing moment Cun:ent
Design
2/ manipulate drag at the wing tips to control yaw Options

-OR-

3/ manipulate THRUST at the wing tips to control yaw

Biolegical vs Mechanical Flight

Biological Flight

B am—

® Mechanical Flight (110 yrs}

@ Vertabrato Flight (128 My)

Prandtl, Horten, Jones, and Birds

24



Efficiency

Efficiency: 12.5% increase in wing efficiency
20-30% increase in efficiency by eliminating the tail
15.4% increase in propulsive efficiency

TOTAL EFFICIENCY INCREASE: 69%

CY2011: world jet fuel consumption $134B
$55B in Jet fuel saved

e CY2011 World GDP: $69.7T
World power production: $12.0T
® $1.85T savings in world power production

Prandtl 3 & 3¢

@ The aerodynamic testbed
- wing pressures

Prandtl 3c cFOSS

Deborah Jacloon
bl s
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Concluding Remarks

NASA Aero Academies & Others

Birds as as the first mode/ for Might

Applied approach gave immediate solutions, departure from bird flight

Eventual meeting of theory and applications (applied theory)

Spanload evolution (PrandilHorten/Jones/Kleln/Viswanathan/Whitcomb/Bowers)
Solve performance, strugture and control with ONE spanload solution!

12.5% Increass in L/, ~2% increase in prop efficiency, 20-30% decrease in
drag eliminating the tail, ~43-62% reduction in total aerg efficlency

Assumptions and Solutions

The Wrights disintegrated the flight of birds, and Prandil/Horten/Jones
relhtegrated the flight of birds...

Thanks: Red Jensen, Brlan Eslinger, Dr Christian Gelzer, Dr Oscar Murillo,
Hayley Foster & Steve Craft, Dr Bob Liebeck, Nalin Ratnayake, Mike Allen,
Walter Horten, Georgy Dez-Falvy, Rudl Opitz, Bruce Carmichael, A.T. Jonas,
Russ Les, Bob Hoey, Phil Barnes, Dan & Jan Armstrong, Dr Phll Burgers, Ed
Lockhart, Andy Kesckes, Dr Paul MacCready, Relnhold Stadler, Dr Edward
Uden, & Dr Karl Nickael

2014 NASA Aero Academy

- Brian Plank, Joe Lorenzetti, Kathleen Glasheen, Bryce Doerr, Cynthia
Farr, Nancy Pinon, Heather Laffoon, Jack Toth, Leo Banuelos

2013 NASA Aero Academy

- Eric Gutierrez, Louis Edelman, Kristyn Kadala, Nancy Pinon, Cody
Karcher, Andy Putch, Hovig Yaralian, Jacob Hall

2012 NASA Aero Acadamy

- Steffi Valkov, Juliana Plumb {Ulrich}, Luis Andrade, Stephanie
Reynoelds, Joey Wagster, Kimmy Callan, Javier Rocha, Sanel
Horozovic, Ronalynn Ramos, Nancy Pinon

Mike Allen, Alex Stuber, Matt Moholt, Dave Voracek, Jaiwon Shin,
Ross Hathaway, Brian Eslinger, Oscar Murillo, Lesli Monforton, Red
Jensen, Aamod Samuel, Brad Neal, Brad Flick, Chris Acuff, Rick
Howard (NPS), Marke Stamenovic, Jim Murray, Nalin Ratnayake, Eric
Nisbet, Jeromy Robbins, Nelson Brown, Curtis Stump, Andrew Burrell,
Anthony MacPherson, Brian Taylor, Chris Miller, Victor Loera, Cameron
Law, Koen vander Kerckhovs, Bob Hoey, Russ Lee, Reinhold Stadier,
Edward Udan, Paul MacCready, Karl Nickel, Walter Horten, Diego
Roldan Knellinger, Michael Cox, Jeff Jennings, Phil Barnes
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Full-Scale Wing
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o you went Lo build 3 ship, don't drum up psopls to collect
wood and don' assign them tasks and werk, but rathar jeach
them to long for the endless immensity of the sea...

- Antolne de Saint-Exupery
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The End






