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Introduction: 

The bulk of the martian crust is basaltic [1, 2] with a 

wide variety of subsequently derived aqueous altera-

tion phases [3-5]. Study of analogue terrains is vital to 

better understand the weathering of such mafic bedrock 

at a range of surface temperatures. Moreover, climatic 

models have suggested that the early martian climate 

was not warm and wet, but cold and icy [6], with some 

of the apparent fluvial and lacustrine features attributa-

ble to transient melting of ice sheets as opposed to per-

sistent surface water [e.g. 6, 7]. 

This study examines sediment samples from Collier 

glacial valley, Three Sisters, Oregon (OR), with the 

aim of better characterizing erosion, transport, and in 

situ aqueous alteration in a glaciated Mars-analogue 

terrain. 

Methods: 

Collier glacier drains dacite, andesite, and basaltic an-

desite units [8, 9; Figure 1]. Basaltic andesite units 

show evidence of hydrothermal alteration. 

Samples were sieved to eight particle size fractions 

corresponding to divisions in the Wentworth classifica-

tion and the %wt for each size-component was meas-

ured. Samples were spiked with 20 wt% corundum as 

an internal standard for X-ray diffraction (XRD). XRD 

patterns were measured from 2-80 º2 at 100 seconds 

per step with a 0.0167º step size, in a Panalytical 

X’Pert Pro instrument with a Co-K source. Mineral 

abundances were determined using the Panalytical 

High Score Plus software (HSP) which, combined with 

measurement uncertainty, has a detection limit of 2-

3%wt. Rietveld refinement was conducted using the 

Jade software package, for a transect of moraine sam-

ples [Figure 1]. Jade has a detection limit of ~0.5%wt.  

Six field samples were selected for study in the JEOL 

7600F Scanning Electron Microscope (SEM) at John-

son Space Centre, Houston. Secondary electron images 

and EDS data were obtained at 15kV and 800pA.  

Results: 

The glacial sediments are dominated by the minerals 

plagioclase feldspar and pyroxene. Upstream and 

westwards, low-Ca dominates over high-Ca pyroxene. 

Downstream, pyroxene compositions vary. X-ray 

amorphous phases were also detected at up to 27%wt. 

All other phases detected did not exceed 10%wt.  

Quartz appears absent from the up-valley, eastern sed-

iments and displays a tendency to be concentrated in 

the coarser particle size fractions upstream and finer 

fractions on the banks of the proglacial lake. Magnetite 

also fines downstream like quartz. Hematite, a less 

abundant oxide, is associated with coarser grain sizes 

in the uppermost glacial toe-region and central-eastern 

side of the valley, close to hydrothermally altered ash 

units [8] and consistent with remote sensing observa-

tions [10]. Ilmenite is detected by Jade and SEM but 

not HSP, thus it’s distribution is not yet characterized. 

Zeolites were not detected using HSP nor SEM, but 

analysis using Jade identified chabazite in samples B 

and D on either side of the valley transect. 

Potassium feldspar was not detected by HSP, but a K-

bearing phase was detected by SEM in samples A and 

D. Jade suggested up to 5 %wt orthoclase in sample C 

in the cross-valley transect, but no others [Figure 2].  

The X-ray-amorphous content, evident from the broad 

hump centered around 3.8Å, is quantified using Jade 

for the east-west valley transect and varies between 0-

30%wt [Figure 2]. The composition of such poorly 

crystalline phases cannot be derived from XRD, but the 

potential candidates are primary volcanic glass and 

secondary alteration phases.  

Figure 1: Geological map of the area surrounding Collier glacier, 

adapted from [9]. mlb=mafic Little Brother (basaltic andesite); 

mns=mafic North Sister (basaltic andesite); mms=mafic Middle Sister 

(basaltic andesite); awc=andesite of west Collier; dbh=dacite of Black 

Hump. The locations of samples A-E along an east-west transect are 

indicated.  
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Detailed investigation of the trends across the east-west 

transect revealed that sample mineralogy varies signifi-

cantly [Figure 2]. Sample C towards the east is notably 

distinct with potassium feldspar and trace amounts of 

actinolite within the modelled mineralogy. Zeolite was 

found in samples B and D. Sample E contains the 

greatest amorphous content. 

Discussion: 

The varying abundances of certain mineral phases up-

stream indicates the extent of contribution from the 

more evolved volcanic rocks (andesite awc and dacite 

dbh). Increasing low-Ca pyroxene and quartz content 

eastwards downstream signifies homogenization. More 

detailed textural and compositional analyses of primary 

phases could expose trends not noted here.  
The concentration of quartz and oxides in finer frac-

tions downstream is consistent with physical weather-

ing during glacial transport of bedrock. However, due 

to the low %wt of such phases, close to the detection 

limit of HSP, patterns require confirmation by Jade.  

Crystalline alteration phases (zeolites and hematite) are 

detected at low %wt in samples and are most likely 

derived from altered units on North Sister and Little 

Brother [Figure 1; 8]. The absence of any significant 

amounts of crystalline phases formed in situ indicates 

that glacial environments lead to minimal chemical 

alteration. However, amorphous alteration phases may 

be present since the amorphous hump in XRD patterns 

is not entirely consistent with just volcanic glass [10, 

11]. Transmission electron microscopy of sediment 

samples [12] has identified several of these phases in-

cluding nanophase iron oxides and “proto-clays”. Ob-

servations of similar amorphous materials on Mars [3, 

4, 13-16] may be evidence of the Red Planet’s ancient 

glaciated surface. 

Across the east-west transect, mineralogical variations 

indicate bedrock source units for each sample [Figure 

2]. For example, the distinct mineralogy of sample C 

replicates that of the unit awc [Figure 1]. However, 

sample E has a much higher amorphous content than 

it’s adjacent unit mns, potentially due to the in situ 

formation of amorphous alteration phases.  

Overall, the olivine content is less than that of the 

mafic source units, indicating increased dissolution 

relative to other primary phases.  

Conclusions: 

The main downstream trends are the increased mixing 

of phases and confinement of rarer minerals to fine-

grained fractions. Cross-valley mineralogical variations 

are clearly related to the bedrock source region, except 

for in olivine and amorphous content which may com-

prise the main weathering signature of mafic glacial 

terrains. The near absence of crystalline alteration 

phases confirms there is minimal chemical alteration. 

In comparison to Mars, the wide variety of secondary 

phases [5] detected by the Curiosity at Gale Crater 

[17], could not be produced in a glacial terrain similar 

to the Three Sisters volcanic complex. On the other 

hand, the amorphous content at Gale [13-16] is compa-

rable to that of Collier glacial valley and probably not 

produced by a warm, wet climate. Some work has ad-

dressed the nature of the amorphous phases within Col-

lier [11, 12, 18], but more is needed to further charac-

terize the unique weak alteration signatures produced 

in a mafic glacial terrain. 
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Figure 2: Pie charts indicating the weighted average abundance of mineral phases in samples A-E across the central valley transect, as modeled by 

JADE and weighted by %wt in each particle size fraction. KEY: orange = plag (andesine, labradorite, anorthite, albite), pink = Kfs, dark blue = High-Ca px, light 

blue = low-Ca px, green = olivine, reds = oxides (hematite, magnetite), purple = fluorapatite, light grey = amorphous, dark grey = zeolite, dark green = actinolite 
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