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Preface

If you do a casual search for books that contain the word attitude in their
title, you’ll find yourself drowning in a sea of over 500 volumes. Of course,
most of those books relate more to personal self improvement than to space-
craft dynamics, but even when the subject is limited to the areas of aerospace
and astrodynamics you’ll still find a fair number of items from which to
choose. So, what distinguishes this text from those many other candidates?
This book attempts to de-emphasize the formal mathematical description of
spacecraft onboard attitude and orbit applications in favor of a more quali-
tative, concept-oriented presentation of these topics (whether or not we ulti-
mately achieved that goal is something we’ll have to leave to you, dear reader,
to decide). As such, it would most likely be described by an attitude control
analyst as a (hopefully) amusing light read rather than an essential refer-
ence bible. And it certainly would not be the first text an Attitude Control
Subsystem (ACS) flight software (FSW) designer would grab if he needed a
specification of a Kalman filter algorithm. ACS Without an Attitude is in-
stead intended for programmers and testers new to the field who are seeking
a commonsense understanding of the subject matter they’re coding and test-
ing in the hope that they’ll reduce their risk of introducing or missing the key
software bug that causes an abrupt termination in their spacecraft’s mission
and their careers.

ACS Without an Attitude is organized in four major sections. Section One
(Chapters 1 to 3) contains the attitude, orbit, and dynamics background ma-
terial required to understand the downstream spacecraft applications. Sec-
tion Two (Chapters 4 and 5) is a survey of the spacecraft sensors and actu-
ators used to measure and control the spacecraft attitude and orbit. Section
Three (Chapters 6 to 11) examines how sensor data is combined with ref-
erence data to measure attitude and orbit, and how desired or commanded
attitude parameters are compared with measured attitude parameters to de-
termine what should be done to maintain the current pointing, or modify
it to satisfy future needs. Finally, Section Four (Chapter 12) is a survey of
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mission characteristics and how attitude and orbit geometries are selected to
accomplish mission objectives.

The information presented in these sections was originally collected to
support an informal set of lectures in 1999 and 2000 instigated by my Branch
Chief, Elaine Shell (Flight Software Branch, NASA Goddard Space Flight
Center), who also realized that bullet charts are an ineffective means to doc-
ument information, hence this book. The following is a list of textbooks and
documents I drew on (hopefully not too blatantly) while preparing for my
talks, as well as additional references used when writing this book:

1. Spacecraft Attitude Determination and Control, edited by James R. Wertz,
Kluwer Academic Publishers (1978).

2. Space Mission Analysis and Design, edited by Wiley J. Larson and James
R. Wertz, Microcosm, Inc. and Kluwer Academic Publishers (1992).

3. Reducing Space Mission Cost, edited by James R. Wertz and Wiley J. Lar-
son, Microcosm Press and Kluwer Academic Publishers (1996).

4. Satellite Technology and Its Applications, by P.R.K. Chetty, TAB Profes-
sional and Reference Books (1991).

5. An Introduction to the Mathematics and Methods of Astrodynamics, by
Richard H. Battin, AIAA Education Series (1987).

6. Modern Inertial Technology Navigation, Guidance, and Control, by An-
thony Lawrence, Springer (1998).

7. Modern Control Systems, by Richard C. Dorf and Robert H. Bishop,
Addison-Wesley Publishing Company (1995).

8. Feedback Control of Dynamic Systems, by Gene F. Franklin, J. David
Powell, and Abbas Emami-Naeini, Addison-Wesley Publishing Company
(1991).

9. Modern Control Engineering, by Katsuhiko Ogato, Prentice-Hall (1997).
10. Goddard Trajectory Determination System (GTDS) Mathematical The-

ory, Revision 1, edited by A.C. Long, J. O. Cappellari, Jr., C.E. Velez, and
A.J. Fuchs, NASA/GSFC Flight Dynamics Division Code 550 (1989).

11. Fundamentals of Astrodynamics, by Roger R. Bate, Donald D. Mueller,
and Jerry E. White, Dover Publications, Inc. (1971).

12. Classical Mechanics, by Herbert Goldstein, Addison-Wesley Publishing
Company (1950) .

13. Fundamentals of Spacecraft Attitude Determination and Control, by
Landis F. Markley and John L. Crassidis, Springer Science and Business
Media (2014). (An excellent book for both subject history and in-depth
mathematical analysis.)

In addition, here are some references targeted to specific topics discussed
in the later chapters:

1. Hermite Polynomials, Legendre polynomials, and spherical harmonics:
Mathematical Methods for Physicists (seventh edition), by G. Arfkin, H.
Weber and F. Harris, Academic Press, Inc. (2013), section 18.1.
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2. Runge-Kutta integrator: Numerical Methods for Scientists and Engineers
by R.W. Hamming, McGraw-Hill (1962).

One of the strengths of my original set of lectures was the participation of
several of my NASA/GSFC Guidance, Navigation, and Control (GN&C) col-
leagues who supplemented (and often, and graciously, corrected) my presen-
tations with material drawn from their extensive experience here at GSFC.
And when my pitches started to drag a bit, they also helped liven things
up by recounting some of their many war stories accumulated during their
years of applying clean-cut mathematical algorithms to uncooperative real-
life spacecraft. My crew of semi-regular experts included

1. Gary Welter
2. Landis Markley
3. Dave Quinn
4. Dave McGlew
5. Bruce Bromberg

As the years have rolled by since the first version of the manuscript, the
material in the book has been updated many times, stimulated by new mis-
sions and new ACS technologies, as well as new teaching experiences gained
repeating the course. Finally, as I reached the point I could no longer bear
to edit the material again, Gary Welter, Dave Simpson, and Chris Rouff have
ridden to the rescue to co-author with me this final version.

Lou Hallock - 2010

Well . . . life goes on, including delays from other obligations. Lou passed
the torch to us, his three amigos, when he retired in 2011, along with encour-
agement to put our own stamp on the book (sometimes with a “you broke
it, you bought it” response to editorial suggestions). We’ve also corralled a
couple of colleagues (Scott Starin and Tim McGee) to provide some review
and feedback on the near-final text. (Our thanks to you both.) So, here is the
multi-chef result, we think well-flavored – though some of you may find cer-
tain sections more “in your face” than “without an attitude”. Time to let it
go. Enjoy.

Gary Welter, Dave Simpson, & Chris Rouff – 2016
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1

Attitude Conventions & Definitions

Most people who have had even the most casual contact with spacecraft
(no, not a Close Encounter of the First Kind) have heard the term “orbit”
used and have at least a rough idea of what the word means. By contrast,
the first time you hear the phrase “attitude determination” or “attitude con-
trol” a whole host of rather exotic images may cross your mind, for example
Michael Caine’s portrayal of Harry Palmer in the movie The Ipcress File. In
some respects, these impressions are not totally far-fetched, and there are
some similarities between psychiatry and spacecraft attitude control. Al-
though the field of psychoanalysis is possessed of a rich literature document-
ing its knowledge and a host of psychoanalytical techniques for analyzing a
subject have been established, it is difficult even for a talented psychiatrist
to determine in the short-term a subject’s state of mind. There are many rea-
sons for this problem, but four that strike a resonant chord relative to the
aerospace profession are that:

1. many forces can influence a subject’s behavior;
2. the relative importance and impact of those forces can be difficult to

judge;
3. events from the past must be blended with current events to predict cur-

rent behavior;
4. there is no direct means to measure the subject’s state of mind.

Now replace this image of a patient lying on the couch pouring out his
heart to a well-paid psychiatrist with that of a spacecraft in orbit teleme-
tering data to a not-so-well paid Attitude Control Subsystem (ACS) analyst,
and let’s run through the checklist of difficulties. A spacecraft is subject to
a wide variety of perturbations on its pointing (item 1), the effects of which
can only be approximated even with the help of complex mathematical mod-
els (item 2). One of the standard tools for accurate measurement of attitude
errors (i.e., deviations of the measured orientation of the spacecraft in 3-
dimensional space from its desired orientation), the Kalman filter, combines
a (limited) historical baseline with the most recent measurements, weight-
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ing fresher data higher than staler data (item 3). And, unlike the highly con-
trolled conditions of a laboratory or a vacuum chamber, no direct measure-
ments can be made of a spacecraft’s orientation in orbit (item 4). One must
deduce its orientation from attitude sensor data, i.e., one must see through
the “eyes” of the spacecraft rather than seeing the spacecraft state directly.
So, as with psychoanalysis, attitude determination and control requires a
great deal of analytical rigor in its methodologies along with a somewhat
artistic flair in selecting which combination of factors should be evaluated
and how those factors should be weighted relative to each other.

Some of you may find Sections 1.2 through 1.6 a bit tedious, with its many
explanations of different ways to express attitude. One of our reviewers sug-
gested an early plug for Section 1.7, which explains why they are all needed.
So take heart as you proceed; justification will be forth-coming - we promise.
(Thanks Scott.)

1.1 Definition of the Inertial Reference Frame

As is the case for any serious discipline, attitude determination and control
possesses its own special vocabulary and conventions that must be absorbed
prior to learning the key material that can make its practitioner truly dan-
gerous to his spacecraft. To this end, in this chapter, we’ll present the fun-
damental concepts used to define attitude, along with (to a minimal degree)
the various mathematical expressions of attitude and how they relate to each
other. To describe the orientation of an object in space, it is first necessary
to specify a frame of reference relative to which directions in space and the
object’s orientation is defined. For spacecraft in orbit about the Earth, it is
usually most convenient to define a reference frame whose origin is located
at the Earth’s center.

The reference frame z-axis is defined to be a unit vector parallel to the
Earth’s spin axis. By convention, a spin axis direction is defined such that if
the fingers of a right hand are curled along the spinning motion, the “thumbs
up” thumb direction will be parallel to the positive spin axis direction; this is
called a right-handed rotation. By conservation of angular momentum (more
on that in Chapter 3), and the fact that the Earth’s mass distribution is very
nearly spherically symmetric, the direction of the Earth’s spin axis is very
nearly constant in time . . . at least over typical human time scales. The refer-
ence frame x-axis is associated with another quasi-invariant, the unit vector
pointing from the Earth to the Sun at the instant of the vernal equinox. The
vernal equinox is the time during the year when the Sun moves along its “or-
bital” path (as seen from the Earth’s point of view) across the Earth’s equator
from the Southern hemisphere to the Northern hemisphere. This equatorial
transit is also called the First Point of Aries, a reference back thousands of
years ago to the time when the constellations of the zodiac were originally
named and the Sun was in the constellation of Aries at the moment of the ver-
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Z ≡ Earth Spin Axis 

X ≡ Sun Direction at Start of Spring; 
a.k.a. “First Point in Aries” (although actually in Aquarius now) 

Y ≡ Z × X α	


δ	


V 

Fig. 1.1. A direction vector V relative to the GCI reference frame, rotated from the
x-axis based on angles α (along the equator) and δ above or below the equator.

nal equinox. The plane of the Sun’s orbit about the Earth (or less parochially,
the Earth’s orbit about the Sun) is called the ecliptic, and is tilted (on aver-
age) about 23.44◦ relative to the Earth’s equatorial plane. Finally, taking the
cross product of z-axis and x-axis yields the third member of the orthonor-
mal triplet, the y-axis. The reference frame whose axes are defined by this
(x, y, z) triplet is called the Geocentric Inertial (GCI) frame, where the term
geocentric means “Earth-centered” while the term inertial means that the ref-
erence frame is fixed relative to the “stationary” stars in the celestial sphere.
For folks not into Greek and the Earth goddess Gaia, the reference frame is
also called the Earth-centered Inertial (ECI) frame. Figure 1.1 illustrates how
a direction vector (V) can be defined relative to the GCI frame.

If the Earth’s mass distribution were spherically symmetric, the GCI
frame described in the preceding paragraph would be truly fixed in space.
However, because the Earth is in fact shaped like an oblate spheroid (i.e., it
has an equatorial bulge), the gravitational intereaction of the Sun and Moon
with the Earth’s equatorial bulge causes the Earth’s spin axis to precess (i.e.,
cone) and nutate (i.e., wobble) like a top spinning on the floor. The preces-
sion rate (generated by the Sun’s torque on the bulge) is 50 arcsec/year, so
it takes about 26,000 years for the Earth’s spin axis (i.e., the North celestial
pole) to complete a single coning period about the North ecliptic pole. (The
ecliptic poles define a line perpendicular to the ecliptic plane.1) This rota-
tion of the North celestial pole about the North ecliptic pole is also called the

1Wertz, Spacecraft Attitude Determination and Control, page 27
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precession of the equinoxes. The half cone angle is the average angle between
the ecliptic pole and the Earth’s spin axis, i.e., 23.44◦. The amplitude of the
wobble (as the spin axis precesses) is about 9.2 arcseconds and arises from
the Moon’s torque on the Earth’s equatorial bulge, with the period of the
wobble equal to 18.6 years, which also is the precession period of the Moon’s
orbital plane due to Solar gravitational influences. Because of these motions,
the GCI frame isn’t truly “inertial”, which is perhaps another reason (in ad-
dition to the insistence on viewing the Sun as orbiting the Earth rather than
the generally accepted Copernican model) for renaming the Geocentric Iner-
tial frame as the Egocentric Inertial frame. In any event, one can’t really talk
about GCI coordinates without associating those coordinates with a time.

The time identifies the direction of the Earth’s spin axis relative to the
stars in the Sun’s neighborhood, and thereby the orientation of the GCI axes
(at that time) relative to the fixed stars. Further, the time identifier comes
in different “flavors”. If the time is mean of epoch, the nutation effects are
ignored (i.e., the cone angle is set to 23.44◦), but the precession effects are
included for the specified epoch time. Nowadays, a standard epoch time is
January 1, 2000. So in a Goddard Space Flight Center (GSFC) Flight Dynam-
ics Facility (FDF) ephemeris file, consisting of a series of GCI position and
velocity vector pairs spaced at equal time intervals (say, once per minute)
over an extended time interval (say, one week), each vector’s components are
specified relative to the GCI frame defined at the precession angle corre-
sponding to January 1, 2000. Mean of epoch is a popular time choice for star
catalogs.

If the time is true of epoch, both nutation and precession effects are in-
cluded, and the same rotation is applied to each vector in the GSFC FDF
ephemeris file. If the time is mean of date, each vector in the file will include
the precession effects associated with the attached time for the vector, so
each position and velocity vector pair will be rotated by a slightly different
amount. This means, in effect, that the components of each vector pair in the
file are specified with respect to a slightly different reference frame. Simi-
larly, with true of date times, the nutation and precession effects associated
with the attached time for each individual vector pair are included. Unless
otherwise requested, GSFC FDF-generated ephemeris files are typically true
of date, potentially making them inconsistent with a mean of epoch star cat-
alog. In other words, unless care is taken, the star catalog star vectors may
be defined relative to a different GCI frame than the spacecraft position and
velocity vectors. This problem, of course, can be avoided by requesting the
ephemeris data in mean of epoch format, with the same precession time for
both the ephemeris and star catalog data.

To avoid the complexity of having an inertial reference frame (GCI) that’s
only inertial if you compensate for the fact that it is really moving relative
to the celestial objects you’re most concerned with (stars in the Sun’s neigh-
borhood), one could select a Sun-centered (i.e., Heliocentric) Inertial (HCI)
reference frame. However, that choice costs you the convenience gained by
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choosing as the origin the gravitational body (the Earth) about which most
GSFC spacecraft orbit. So for most GSFC missions, it’s less work and less
confusing to select GCI as the reference relative to which you’ll define your
spacecraft’s orientation. An exception is missions where the spacecraft orbits
a Lagrange point (stable or pseudo-stable gravitational equilibrium points
relative to two gravitational objects orbiting each other, as will be discussed
in Chapter 12). For such cases, for example a Sun-Earth Lagrange point, the
“natural” reference frame to pick for many calculations is a Sun-centered
rotating (i.e., non-inertial) frame that “freezes” the gravitational objects and
the Lagrange point in that frame.

The GCI and HCI reference frames described above are examples of a
right-handed reference frames. Mathematically, their orthogonal unit vec-
tors (x, y, z) satisfy the relations: x × y = z, y × z = x, and z × x = y. The
right-handedness arises from imagining a right-handed rotation from x-to-y
having a spin axis along z, a right-handed rotation from y-to-z having a spin
axis along x, and a right-handed rotation from z-to-x having a spin axis along
y. One can also have left-handed frames; these satisfy x × y = −z, y × z = −x,
and z× x = −y. Right-handed frames are the standard; we will only be using
such frames in this book.

1.2 Defining Attitude via Euler Angles (Right Ascension,
Declination, and Roll)

Getting back to our favorite (for now) reference frame, the GCI, one of the
first things you want to be able to describe, even before talking about the
orientation of the spacecraft, is where important celestial objects are located
within the frame. Strictly speaking, since most celestial objects (like stars)
are so far away, an attitude analyst is primarily interested in the direction
of an object in GCI as opposed to its actual position vector (which would
include both direction and distance). Just as only two angles, latitude and
longitude, are required to specify the location of any point on the Earth’s
surface, only two angles are needed to specify the location of the center of
any celestial object on the celestial sphere (see Figure 1.1). The GCI coun-
terpart of longitude is called right ascension. Right ascension is an azimuthal
angle measured within the GCI’s x-y plane and has a range of 0 to 360◦, with
a right-handed sense of rotation, and with 0◦ defined to be the First Point
of Aries. Right ascension is computed by projecting onto the x-y plane the
vector directed from the GCI origin to the celestial object center. The angle
between the x-axis and the vector’s projection is the object’s right ascension.
The GCI counterpart of latitude is called declination. Declination is an eleva-
tion angle that measures the angle between the x-y plane and the vector from
GCI origin to the celestial object, and has a range of −90◦ to +90◦. For a given
right ascension and declination, the equivalent three-dimensional vector is
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(x,y,z) = [cos(α)cos(δ),sin(α)cos(δ),sin(δ)] (1.1)

where

(x,y,z) = unitized 3-vector in GCI reference frame
α = right ascension (degrees)
δ = declination (degrees)

The reverse transformation is

α = arctan(y/x) (1.2)

δ = arcsin(z)

(The range of the arctan function in Equation 1.2 is 0 to 360◦, and must be
assigned to the correct quadrant according to the signs of x and y. If both x
and y are equal to zero (i.e. the declination is ±90◦), then α is undefined.)

Vectors having the z-component zero (i.e., vectors in the x-y plane) have
declination zero. The North Celestial Pole is defined to have declination 90◦,
while the South Celestial Pole has declination −90◦. Note that if you try to
project a vector directed to either pole onto the x-y plane you get a single
point at the origin of the GCI frame, not a vector. This condition is referred
to mathematically as a singularity, meaning the right ascension is undefined
(i.e., cannot be calculated) for objects located at the poles. Alternately, if the
declination is ±90◦ the celestial object will be located at the North (South)
Pole no matter what value of right ascension is specified.

As illustrated above, the definition of the direction of (ideally) infinitely
distant point sources (which, practically speaking, includes the “fixed” stars)
in GCI requires only two numbers, right ascension and declination. However,
if you want to define the orientation of a three-dimensional object in GCI,
more information is required.

To help visualize the situation, suppose you wanted to define the ori-
entation of a spinning spacecraft in GCI at a specific instant in time. It is
straightforward to specify the spacecraft’s spin axis right ascension and dec-
lination. The only thing left that we care about is how components mounted
on the spacecraft body are oriented with respect to the GCI as they rotate
about the spacecraft spin axis at a constant rate (in the absence of pertur-
bations). For example, suppose a camera is mounted on the spacecraft body
looking out in a direction perpendicular to the spin axis. You would like to
be able to say in what direction in GCI the camera was looking, so if it saw
something interesting you could associate what it saw with known celestial
objects, or alternately determine the location of a new celestial object so it
could be studied in more detail in the future. A convenient way to do this
would be to define the angle about the spacecraft spin axis at which the ob-
ject was observed. (Note, this approach requires that the spin axis be fixed
in direction, which is frequently close enough to true.) However, as we saw
with right ascension and declination, to use angles to define the orientation
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of an object in space, we must also define a fiducial (i.e., a reference mark)
from which the angle is to be measured.

Continuing our imaginary spacecraft construction exercise, suppose there
was a bright object sensor mounted on the spacecraft body looking out in a
direction perpendicular to the spin axis. If the spacecraft were in sunlight,
as the spacecraft rotated about its spin axis, the bright object sensor would
spot the Sun (assuming the spin axis was not pointed directly at, or away
from, the Sun) and you could note that time relative to an onboard clock. You
could also note relative to an onboard clock when the camera saw its celestial
object. Knowing the azimuthal angular separation between the camera and
sensor boresights (assume it was measured when the spacecraft was built
or was calibrated on-orbit), and knowing the rotation rate of the spacecraft
(easily obtained by measuring the time differences between Sun sightings by
the bright object sensor, given that the spin axis is fixed in space), you could
compute the angle about the spin axis measured from the Sun direction to
the direction of the celestial object. This third angle, along with the right as-
cension and declination of the spin axis, uniquely “pins” the spacecraft to
the celestial sphere at the time of the camera observation.

The spinning spacecraft discussion is a nice practical exercise in visual-
izing how you can define a specific spacecraft’s attitude. What we next want
to do is define a more general approach that would be applicable to any
spacecraft. Keeping the image of our spinning spacecraft, let’s now visualize
the spacecraft spin axis (defined to be the spacecraft x-axis) lined up with
the GCI x-axis and the camera boresight (defined to be the spacecraft z-axis)
lined up with the GCI z-axis. Note that since the spacecraft y-axis is the cross
product of the spacecraft z- and x-axes, the spacecraft y-axis will line up with
the GCI y-axis as well. Then we can define a unique orientation angle, called
the roll angle (φ), that describes how the spacecraft’s camera axis has been
rotated from the GCI z-axis in the GCI y-z plane. The roll angle’s range of
rotation will be 0◦ to 360◦ (or −180◦ to +180◦), with a right-handed sense of
direction.

So now we can imagine putting the spacecraft through a set of three suc-
cessive “right-handed” rotations about the spacecraft z-, y-, and x-axes with
values (θZ ,θY ,θX ) = (α,−δ,φ). The first two get the spacecraft x-axis (the
spin axis for our previously imagined spinning spacecraft) pointed at the
desired (α,δ) coordinates. (Note that by “right-hand” convention, a rotation
that brings spacecraft pointing up into the +Z hemisphere requires a nega-
tive rotation about the local Y spacecraft axis.) The final rotation adjusts the
roll angle to the desired value (see Figure 1.2).

Applying these three rotations in that order suffices to reorient the space-
craft from its original attitude (where its axes are aligned with the GCI refer-
ence axes) to any general attitude at which the spacecraft could be oriented.
Rotating the spacecraft through successive rotations within a fixed reference
frame is often called “performing active rotations”. The same effect can also
be achieved kinematically by conceptually holding the spacecraft fixed and
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Fig. 1.2. A spacecraft’s attitude expressed as a rotation sequence (α,−δ,φ)

rotating the reference frame (and implicitly the entire universe with it) by
the negative of those rotations in the reverse order. In other words, you get
the same result vis-a-vis relative orientation of the spacecraft to the universe
by flipping the order and signs of rotation from (α,−δ,φ) to (−φ,+δ,−α) and
imagine them applied to the universe. This approach (rotating the reference
frame rather than the object) is often called “performing passive rotations”.
It is the approach most common in classical dynamics textbooks, although
for many the active approach seems easier to visualize.

Whether your rotation convention is active or passive, the set of angles
utilized in performing the successive rotations is called an Euler angle se-
quence. The order of rotation is somewhat arbitrary, as is even the set of axes
about which the rotations are performed. Specifically, for a given set of 3 mu-
tually orthogonal rotation axes, there are 12 different rotation combinations
that span the space, i.e., that can generate a set of successive rotations that
can orient the spacecraft to any desired attitude. The values of the angles,
of course, may change depending on the convention selected, so although
the definitions of the angle-axis combination is arbitrary, once a convention
has been selected all elements of the ground-flight system must follow that
convention or pointing interpretation errors will result. The 12 allowed com-
binations of rotations are 3-1-3, 2-1-2, 1-2-1, 3-2-3, 2-3-2, 1-3-1, 3-1-2, 2-1-
3, 1-2-3, 3-2-1, 2-3-1, 1-3-2. In this shorthand notation, “1” stands for the
x-axis, “2” stands for the y-axis, and “3” stands for the z-axis.
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1.3 Defining Attitude via Euler Angles (Roll, Pitch, and Yaw)

{Roll, Dec, R.A.} is just one of several popular applications of Euler angle
formulations to ACS problems. So let’s discuss some of the other Euler angle
uses. The problem we’ve examined so far is how do you define the orien-
tation of the spacecraft in the GCI frame, and we’ve defined a convenient
formalism that satisfies that need. Another important problem is how to de-
scribe the difference between the way the spacecraft is pointed and the way
you’d like to have it pointed. You could do a direct comparison between the
measured and desired {Roll, Dec, R.A.}, but the simple differences between
the measured and desired angles could give you a rather misleading impres-
sion of how large the error is and how much effort is required to correct it.
The unreliability of the simple differences grows with the size of the angles
(breakdown of first order approximations) and with how close you are to
the celestial pole singularities. A better approach to the problem is to define
two body reference frames, the desired or commanded body frame and the
measured body frame. Of course, there really is only one body frame, and it
usually is defined relative to “natural” spacecraft axes, such as the primary
moments of inertia, science instrument boresights, etc. But if you substitute
for the GCI frame the desired body frame, and substitute for the spacecraft
frame the measured body frame, you can similarly define an Euler angle
triplet that rotates you from the commanded frame to measured frame. The
associated angles are a measure of the angular displacements between the
two frames for the selected axes of rotation. The names used for these dis-
placement angles are {Roll, Pitch, and Yaw}, as compared to {Roll, Dec., and
R.A.}, where unlike the declination angle’s left-handed sense, the pitch an-
gle is measured in a right-handed fashion. The ranges of the angles are the
same. The roll and yaw angles have ranges of 0◦ to 360◦ (or sometimes −180◦

to +180◦), and the pitch angle has a range from −90◦ to +90◦.
Note that the quantitative description of attitude error is just one use

of the {Roll, Pitch, Yaw} formalism. If you substitute for the GCI frame the
current commanded body frame and substitute for the spacecraft frame a
future commanded body frame, you can obtain an Euler angle triplet that
rotates you from where you currently want to be to where you want to go in
the future. These Euler angles (and their associated axes) can then be used
to control the spacecraft’s motion when executing a slew (i.e., a large re-
orientation of the spacecraft’s pointing).

Another application of {Roll, Pitch, Yaw} is describing an Earth-pointing
spacecraft’s orientation relative to its orbit about the Earth. In the orbit
frame, the z-axis (the yaw axis) is aligned with the direction of the nadir
vector, the vector that points from the spacecraft center-of-mass to the Earth
center-of-mass (similarly, the zenith vector points from Earth center to space-
craft center). The y-axis (the pitch axis) is aligned with the negative orbit-
normal, with the x-axis (the roll axis) forming the last of the orthogonal
triplet. Figure 1.3 illustrates how the orbit frame axes are dependent on the
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spacecraft position in the orbit, rotating once per orbit about the y-axis. For
a perfect circular orbit, the x-axis will line up with the direction of the space-
craft orbital velocity vector.
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Fig. 1.3. Orbit reference frame; Z0 towards nadir, X0 parallel to velocity, Y0 = Z0×X0

1.4 Defining Attitude via the Direction Cosine Matrix

So an Euler angle description of the spacecraft attitude is an extremely flex-
ible formulation that is easily adaptable to different applications (absolute
pointing, relative pointing, and reorientation). It is also ideal for visualizing
what’s going on with your spacecraft. The problem is how do you convert
your visual image to something useful to a flight (or ground) computer that
is wonderfully adept at doing exactly what you tell it to do very quickly, but
is (at least at this writing) utterly inept at imagining anything at all. That’s
where the direction cosine matrix comes in. The direction cosine matrix (DCM)
recasts those three Euler angles into a 3 × 3 matrix that can be used with
mathematical rigor to transform any 3-dimensional vector between two ref-
erence frames. Specifically, the DCM that transforms vectors from the GCI
to the body frame is the attitude matrix. The individual Euler angle rotations
themselves can be expressed as 3× 3 rotation matrices and, as stated earlier,
you can use these elementary single-axis rotations to build up a set of rota-
tions that span the space, although (as discussed at the end of Section 1.2)
the choice and order of the three rotations is somewhat arbitrary.

OK, so let’s construct the attitude direction cosine matrix for a situation
in which the spacecraft has been rotated from GCI via an Euler angle se-
quence (Φ3,Φ2,Φ1), equal to (α,−δ,φ), as discussed in Section 1.2. First con-
struct the 3×3 matrix that would transform a direction vector from the GCI
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frame (G) to intermediate frame F1 rotated from GCI by angle Φ3 about axis-
3 (i.e., the z-axis):

VF1 =AF1<GVG =

 cos(Φ3) sin(Φ3) 0
−sin(Φ3) cos(Φ3) 0

0 0 1

VG

where the notation “F1 < G” indicates transformation into frame F1 from
G. Next construct the matrix that would transform a direction vector from
frame F1 to intermediate frame F2 rotated from F1 by angle Φ2 about axis-2
(i.e., the y-axis):

VF2 =AF2<F1VF1 =

 cos(Φ2) 0 −sin(Φ3)
0 1 0

sin(Φ3) 0 cos(Φ2)

VF1

Finally, construct the matrix that would transform a direction vector from
frame F2 to the final spacecraft frame (S) rotated from F2 by angle Φ1 about
axis-1 (i.e., the x-axis):

VS =AS<F2VF2 =

1 0 0
0 cos(Φ1) sin(Φ1)
0 −sin(Φ1) cos(Φ1)

VF2

For each of the three matrices AF1<G, AF2<F1, and AS<F2, we encourage you
to compute a few examples so that you’re comfortable that the minus signs
are in the correct positions in the three matrices. Now that you have the
individual pieces, put them together as:

VS =AS<F2AF2<F1AF1<GVG =AS<GVG (1.3)

If you want to go in the opposite direction, i.e., transform a vector from the
spacecraft frame to the GCI frame, the appropriate equation is:

VG =AG<SVS = [AS<G]TVS = [AF1<G]T [AF2<F1]T [AS<F2]TVS

where the superscript T indicates matrix transposition. Direction cosign ma-
trices (a.k.a., rotation matrices) are a special subclass of 3 × 3 matrices for
which the matrix inverse is equal to the matrix transpose.

Equation 1.3 specifies the particular Euler angle convention employed by
the ground system for the Hubble Space Telescope (HST) mission, where the
order for the roll, declination, and right ascension rotations were arrived at
in what passes in aerospace work for a collegial atmosphere. Two analysts
(including one of the authors), who were also best friends, argued with and
yelled at each other for about an hour until they realized they were saying the
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same thing (the author was an “activist”, the other analyst was a “passivist”,
but definitely not a “pacifist”).2

Getting back to our original discussion of attitude formalisms, you might
ask how is it that the 9 numbers of the DCM can say the same thing, nothing
more and nothing less, as 3 Euler angles. That’s 6 more numbers than we
started with but no more content (please, no wisecracks about government
projects). The reason this can be true is that unlike the independent nature of
the 3 Euler angles, which can take on any values within their allowed ranges,
the 9 direction cosine numbers are highly correlated with each other. The
fact that the DCM is an orthonormal matrix requires that the columns of the
matrix, when viewed as three 3-dimensional vectors, be mutually orthogonal
(i.e., their dot products with each other yield value zero) and be normalized
(i.e., their dot products with themselves yield value unity). That places 6
conditions (3 from orthogonality and 3 from normality) on the 9 numbers,
each of which has a range from -1 to 1. Counting independent pieces of in-
formation, the 9 numbers of the DCM represent only 3 independent pieces
of information, the same as contained by the set of 3 Euler angles. You can
play the same game with the DCM rows, but those 6 conditions can be shown
to be redundant with the 6 constraints on the columns. But in return for ex-
pressing the same information in a less compact (and therefore less efficient)
fashion and abandoning the visual ease of the Euler angle formulation, we’ve
gained a straightforward means to transform vectors quantitatively between
reference frames, an essential capability if we are to be able to determine
and control the spacecraft pointing accurately in realtime. We also get as a
side benefit a very convenient gimmick for computing the inverse pointing.
Because a direction cosine matrix is orthonormal, its inverse is the same as
its transpose (i.e., you get the inverse by exchanging rows and columns). So
if you know the rotation matrix that takes vectors from the GCI frame to the
body frame, all you have to do is flip the matrix indices to get the rotation
matrix that turns body vectors into GCI vectors.

2While we’re on the subject of convention confusions, there’s a classic source of
misunderstandings between spacecraft builders and spacecraft users that arises en-
tirely from their respective roles. If you’re building a spacecraft, you literally see the
thing in front of you and have the perspective of a god on the outside looking down
on (actually more likely up to, unless it’s a very small spacecraft) your creation. So,
for example, you see the star trackers attached to the body of the spacecraft and see
the sensor’s field of view (FOV) from the outside looking in. By contrast, if you’re
using a spacecraft, it’s way above your head in orbit, so you imagine yourself to be
a bug sitting inside the spacecraft (or, if you’re a Trekkie, you imagine yourself to
be Captain Kirk standing on the bridge of the Enterprise) looking out on the heav-
ens through the windows provided by the sensors. This difference in perspective has
led to numerous heated arguments between hardware providers and ACS analysts
regarding reference frame polarities, and even worse, can produce an incorrect im-
pression of agreement pre-launch, starting a ticking time bomb that will wait until a
critical moment in the mission post-launch to rear its ugly head.
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1.5 Defining Attitude via the Eigenvector and Rotation
Angle

Still, utilizing 9 numbers to do the work of 3 seems pretty inefficient, al-
though nowadays flight computer memory and computing power has im-
proved to the point that this inefficiency no longer poses the serious prob-
lem it once did to the first generation of onboard computers (OBCs). A useful
alternative to these two approaches (direction cosines vs. Euler angles) is ob-
tained by breaking away from the key concept the first two approaches have
in common, namely that a general rotation in 3-dimensiosnal space should
be built up from a series of 3 rotations about 3 axes. One could equally well
view the process of rotating an object in 3-dimensional space as a single,
right-handed rotation about a single generalized axis, the generalized axis
being any unit vector in the starting reference frame. (That the rotation be-
tween any two reference frames can be expressed as a single rotation about
a single axis was first demonstrated by Euler.) Because the axis of rotation is
an invariant under its rotation, the components of the rotation vector in the
starting reference frame will not only have the same numerical values in the
ending reference frame, they will also have the same values at any intermedi-
ate “snapshot” along the way. For this reason, the rotation axis is also called
the eigenvector, where “eigen” means “same” in German. Considering some
of the applications we discussed earlier, the rotation angle could be the slew
angle if you were maneuvering the spacecraft between attitudes, the angular
error between the commanded and measured attitudes, or simply the angu-
lar displacement from coincidence with the GCI axes needed to orient the
spacecraft at the specified pointing.

So any rotation also can be described by four numbers, one number speci-
fying the angle of rotation and three numbers specifying the axis of rotation.
Since the rotation axis is a unit vector, there is a normalization constraint on
the rotation axis’s three numbers, reducing that information content from
three to two. Therefore the four numbers of the single rotation angle-plus-
vector formulation represent just three independent pieces of information,
the same as the Euler angle or DCM formulation. As for the Euler angle for-
mulation, one can visualize what the rotation about that one axis will look
like, but (as for the Euler angle formulation) you can’t easily transform a
vector between frames without (for example) first converting from the rota-
tion angle-plus-vector formulation to a DCM. Equation 1.43 supplies a messy
looking matrix that does that.

A=


cosφ+e2

1(1−cosφ) e1e2(1−cosφ)+e3 sinφ e1e3(1−cosφ)−e2 sinφ

e1e2(1−cosφ)−e3 sinφ cosφ+e2
2(1−cosφ) e2e3(1−cosφ)+e1 sinφ

e1e3(1−cosφ)+e2 sinφ e2e3(1−cosφ)−e1 sinφ cosφ+e2
3(1−cosφ)

 (1.4)

where
3Wertz, Spacecraft Attitude Determination and Control, page 413
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A = the direction cosine attitude matrix
(e1, e2, e3) = eigenvector
φ = slew angle

However, in the case of the single rotation angle-plus-vector formulation,
there is a more direct analog to the Euler angle’s DCM, the attitude quater-
nion, which is the subject of our next section.

1.6 Defining Attitude via Quarternions

Quaternions seem to generate a wide variety of emotional reactions among
people in the aerospace field, such as fear, anger, disbelief, etc. Perhaps the
parallels to psychoanalysis aren’t so strained after all. Quaternion algebra
was first introduced by Sir William Hamilton in the 1840s.4 For a number of
decades, it became the dominant method of expressing much of physics (in-
cluding kinematics and electromagnetic theory), eventually being replaced
by vector analysis starting in the mid 1880s. However, because of its com-
pact form and associated numerical efficiency, the use of quaternion algebra
has made a comeback in a number of fields, including attitude control for
aerospace systems.

Quaternion algebra may be viewed as an extension of complex algebra,
wherein the single imaginary element of the latter (i =

√
−1) is replaced with

a triplet of imaginary elements (i, j,k) satisfying Equations 1.5:

i2 = j2 = k2 = −1 (1.5a)

ij = k; jk = i;ki = j (1.5b)

ij = −ji; jk = −kj;ki = −ik (1.5c)

A general quaternion can be expressed as

q ≡ (q1,q2,q3,q4) ≡ iq1 + jq2 + kq3 + q4 (1.6)

where each of q1,q2,q3, and q4 are real numbers. (The placement of the real
term as the fourth component is not a universal convention. Some authors
prefer to place it first and call it q0.) Multiplication of two general quater-
nions follows from equations 1.5, together with normal multiplication of real
numbers, as in Equation 1.7:

pq = (p1,p2,p3,p4)(q1,q2,q3,q4) (1.7a)

= ((p1q4 + p2q3 − p3q2 + p4q1), (−p1q3 + p2q4 + p3q1 + p4q2),

(p1q2 − p2q1 + p3q4 + p4q3), (−p1q1 − p2q2 − p3q3 + p4q4)) (1.7b)

4W. Hamilton, ”On Quaternions, or On a New System of Imaginaries in
Algebra”, in 18 installments in volumes 25 - 36 of The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 1844 - 1850. See
http://www.emis.de/classics/Hamilton/OnQuat.pdf
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Ultimately, if you find the reference to hyper-complex numbers off-putting,
the basic points are that (a) each quaternion is an ordered quartet of real
numbers, and (b) quaternion multiplication can be defined as in equation
1.7b.

A quaternion conjugate (q∗) is defined analogously to a complex con-
jugate, i.e., q∗ = (q1,q2,q3,q4)∗ = (−q1,−q2,−q3,q4). Note that q∗q = qq∗ =
(Σiq

2
i )(0,0,0,1), so (Σiq

2
i )−1q∗ is the multiplicative inverse of q.

Let’s turn now to expressing an attitude (or a rotation generally) as a
quaternion. Given a rotation expressed as an angle (φ) and eigenvector (e)
set, the corresponding attitude quaternion is constructed via Equation 1.8.

q = (q1,q2,q3,q4) = (e1 sin(φ/2), e2 sin(φ/2), e3 sin(φ/2),cos(φ/2)) (1.8)

Although an attitude quaternion’s information presentation is more ab-
stract than the rotation angle-plus-vector format, the information contained
is the same and can be extracted from the attitude quaternion fairly eas-
ily. The sum of the squares of the four components of the attitude quater-
nion is equal to the expression [(e2

1 + e2
2 + e2

3)sin2(φ/2) + cos2(φ/2)]. Using
the fact that the eigenvector is a unit vector and the trigonometric identity
(sin2(φ/2) + cos2(φ/2)) = 1, it’s clear that like the eigenvector the attitude
quaternion is unitized as well. Since attitude quaternions are normalized, an
attitude quaternion packages only three independent numbers, just as the
case for the other attitude formats. Note also that the reverse rotation is rep-
resented by the conjugate quaternion, q∗, i.e., the same rotation angle about
an eigenvector pointed in the opposite direction. Note also that the −q rep-
resents a rotation about −e by an angle 2π −φ, which in normal 3-D space
gets you to the same orientation as q. For attitude representation purposes,
we therefore have q = −q (though a computer program may take issue with
that if you’re not careful).

A DCM, A, can be formed from the corresponding quaternion compo-
nents without backtracking through the (φ, e) representation and equation
1.4 as shown in Equation 1.95.

A =


q2

1 − q
2
2 − q

2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q2

1 + q2
2 − q

2
3 + q2

4 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2

1 − q
2
2 + q2

3 + q2
4

 (1.9)

If you need to rotate a 3-vector v from one frame to another given the
rotation in quaternion format, you can use Equation 1.9 to construct A and
then useA to rotate the vector using v′ =Av. Alternatively, you can perform
the entire operation with quaternion algebra as shown in Equation 1.10.

V ′ = q∗V q (1.10)

where
5Wertz, Spacecraft Attitude Determination and Control, page 414
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q = the attitude quaternion equivalent of A
V = (v,0) = (v1,v2,v3,0)
V ′ = (v′ ,0)

Quaternion multiplication is associative, so q∗V q = q∗(V q) = (q∗V )q.
Equation 1.10 is sufficiently different from its matrix equation counterpart
that we recommend that you experiment with a few examples to verify that
V ′ = q∗V q does indeed give the same results as v′ = Av. (You may need to
refresh your memory on trig half-angle identities along the way.)

Given two “active” rotations: φa,ea followed by φb,eb, with correspond-
ing quaternions qa and qb as computed via Equation 1.8, the combined rota-
tion quaternion is given by the product qaqb. One can see this from Equation
1.10 by letting V0 be the quaternion-formatted vector in the initial frame, Va
be its representation following rotation ‘a’, and Vab be its representation fol-
lowing the combined rotation ‘a’ followed by ‘b’:

Vab = q∗bVaqb = q∗b(q
∗
aV0qa)qb = (q∗bq∗a)V0(qaqb) = (qaqb)

∗V0(qaqb)

In contrast, the corresponding DCM multiplication is in the reverse order

vab = Abva = Ab(Aav0) = (AbAa)v0

There’s nothing magic about the quaternion vs. DCM multiplication order
reversal here. It is just a matter of the convention(s) one chooses for rep-
resenting the algebraic operations. One could, for example, have chosen to
write vectors as 1 × 3 row matrices and use the transpose of the preceding
equation for vector transformation between frames:

[vab]
T = [(AbAa)v0]T = [v0]T [(AbAa)]

T = [v0]T [(Aa)
T (Ab)

T ]

which has the matrix multiplication, (Aa)T (Ab)T , in the same order as the cor-
responding quaternion multiplication qaqb. Alternatively, one could follow
a different convention with quaternion multiplication. Many authors6 pre-
fer a convention that, although not expressed as such, essentially redefines
Hamilton’s hyper-complex commutation relations (Equation 1.5b above) into

ij = −k,kj = −i,ki = −j

The net effect is that the product of two quaternions using this alternative
convention is equal to the reverse product using Hamilton’s convention, with
the result that (AbAa) maps to (qbqa) when the alternative convention is
used. So, when reading about using quaternions, give a care to which con-
vention pertains.

6See e.g., Markley and Crassidis, Fundamentals of Attitude Determination and
Control, Section 2.7, and references therein.



1.6 Defining Attitude via Quarternions 17

There is yet another caveat we must give regarding quaternion multipli-
cation ordering. Equation 1.7 is linear in the elements of p and q individu-
ally. This means that the product can be recast as a matrix equation in various
forms, e.g.,

q→ [q1 q2 q3 q4]T

pq→ f (p,q) =


p4 −p3 p2 p1
p3 p4 −p1 p2
−p2 p1 p4 p3
−p1 −p2 −p3 p4



q1
q2
q3
q4

 (1.11)

or
p→ [p1 p2 p3 p4]T

pq→ g(q,p) =


q4 q3 −q2 q1
−q3 q4 q1 q2
q2 −q1 q4 q3
−q1 −q2 −q3 q4



p1
p2
p3
p4

 (1.12)

or two similar variations that cast the matrix multiplication in a [1×4] [4×4]
form. The underlying meaning remains the same, so all are equally valid,
but the apparent ordering of p and q changes in the representation. As it
turns out, representing the pq product in the g(q,p) matrix multiplication
form is fairly common7, which may confusingly simplify to a notation “qp”.
All we can do is (again) caution you to be careful about authors’ conventions
regarding quaternion multiplication ordering, as they may differ. For that
matter, you also need to be careful about the conventions used in quater-
nion multiplication subroutines when using utility libraries. The meaning of
“first” and “second” quaternion in a given coder’s documentation will de-
pend on the convention used by the author from which the coder took the
equations. This means that before you call a quaternion multiplication util-
ity subroutine, you better carefully read the internal documentation (Stop
laughing. Most coder comments nowadays are both readable and consistent
with the code they’re documenting), otherwise you may end up in software
Unsafemode as opposed to spacecraft Safemode. If it turns out that the doc-
umentation doesn’t make the convention clear, it is always prudent to verify
empirically that the output result corresponds with what you expect for the
input that you’re providing.

So, given that attitude quaternions are more abstract than visual formu-
lations like Euler angle or rotation angle-plus-vector format, given that you
can inadvertently multiply your attitude quaternions in the wrong order,
and given that you can even mess up the order of the components (the real
component being “zeroth” vs. “fourth”), why are attitude quaternions used

7Wertz, Spacecraft Attitude Determination and Control, Appendix D
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as the prime attitude formulation aboard most three-axis-stabilized space-
craft? Part of the answer is that flight computers can’t visualize anything and
find attitude quaternions easy to manipulate mathematically. Specifically,
there are no trig functions, no singularities, and only 4 numbers to deal with
instead of 9. The other part of the answer is that attitude quaternions have
many nice compensating features that even computationally challenged hu-
man beings like. First, because attitude quaternions have an association with
the eigen-vector-plus-slew-angle angle format, there are fewer consistency
issues than with Euler angle format, where you have to build up your at-
titude from a non-universal set of 3 rotations. Second, taking an attitude
quaternion’s inverse is very easy, just negate the vector (hyper-complex) com-
ponents. The effect mathematically is equivalent to reversing the axis of ro-
tation or negating the angle of rotation (recall Equation 1.8). Third, it’s easy
to compute attitude differences between two attitude quaternions. Just take
the inverse of one of the attitude quaternions and perform quaternion multi-
plication with the other one, making sure to get the order right (see Equation
1.13).

∆q = q∗iqf (1.13a)

= g(qf ,q
∗
i ) (1.13b)

=


qf 4 qf 3 −qf 2 qf 1
−qf 3 qf 4 qf 1 qf 2
qf 2 −qf 1 qf 4 qf 3
−qf 1 −qf 2 −qf 3 qf 4



−qi1
−qi2
−qi3
qi4

 (1.13c)

where

∆q = the delta attitude quaternion
qi = starting attitude quaternion = (qi1,qi2,qi3,qi4)
qf = final attitude quaternion = (qf 1,qf 2,qf 3,qf 4)

You can then extract the angular difference from the scalar component of
the attitude quaternion, and the directional difference (i.e., the eigenvector
rotating the first attitude into the second) from the vector components. As
discussed previously, the angular difference could be the slew angle if the
spacecraft is being slewed to a new target attitude, or an error angle if the
two attitude quaternions are the commanded and measured attitude quater-
nions. If the angular error is small, first order approximations are valid, and
one can replace the sine of an angle with the value of the angle in radians.
So for small angular differences, Equation 1-8 says that the vector attitude
quaternion components reduce to half the angular difference times the eigen-
vector. In other words, the first component is half the roll error, the second
component is half the pitch error, and the third component is half the yaw
error, all specified in radians. Then, using a rule of thumb that an arcsec-
ond is about 5×10−6 radians, it’s fairly easy to “eyeball” an error quaternion
and estimate your pointing error in more human friendly terms. Note that
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because first order approximations are often utilized in onboard equations,
and because the small angle approximation between the sine of the angle
and the angle itself only works if the angle’s units are radians, it’s a good
programming practice always to use radians (not degrees, arcseconds, etc.)
for all internal computations.

Before allowing you to escape this section, we have one last side com-
ment on quaternions. With the DF-224 flight computer originally flown on
HST (it was replaced with a more modern computer on a Servicing Mis-
sion, and that computer by now is also obsolete), unitized quaternions hav-
ing components many orders of magnitude different from each other could
introduce scaling-related computational errors that might not be ignorable
relative to HST’s high pointing accuracy requirements (specifically several
milliarcseconds). This typically would occur on HST when dealing with uni-
tized quaternions near identity, i.e. (0,0,0,1), where precision loss could oc-
cur when dealing with 4th components that looked like 0.9999 . . . To deal
with this problem, the HST Pointing Control Subsystem (PCS) (every other
spacecraft calls it ACS) flight software (FSW) utilized what the programmers
called “pseudo-quaternions”, where they subtracted the identity quater-
nion (0,0,0,1) from the actual quaternion before performing any down-
stream application processing. They also introduced a separate pseudo-
quaternion multiplication convention defining the rules for operating on
pseudo-quaternions. As pseudo-quaternions have not been employed on any
other missions, there’s no value in burdening the reader with the details for
manipulating pseudo-quaternions. However, any reader with an archaeolog-
ical bent may check out Lockheed Missiles and Space Company’s (LMSC’s),
massive documentation of their original FSW, which also includes a quote
from the movie The Vikings placing the “Curse of Odin” on anyone who
tampers with a particularly intricate portion of their attitude maneuver con-
trol logic.

1.7 Attitude Format Applications

At this point, a legitimate question a reader might ask is “Why do I need all
these attitude formats”? Why isn’t one enough? Why can’t I take a cafeteria
approach and learn the ones I like and ignore the rest? The answer is not
only do each of the formats described have real aerospace applications, but
what’s more, each of these applications may even be required to support a
single science observation. To illustrate (and convince the skeptical reader
of) this point, let’s examine (at a high level) the process of planning, schedul-
ing, and executing a hypothetical science observation for a celestial-pointing
spacecraft, like the HST.

The first step, using Euler angle format, is for the astronomer who has
authored the observation to specify the direction of the science target to be
observed by a given science instrument (SI), and to specify where in the SI’s



20 1 Attitude Conventions & Definitions

FOV the target should be positioned. The science target’s coordinates are
defined as right ascension and declination, while the science target’s offset
from the SI boresight is defined as pitch and yaw angles. In addition, the
astronomer indicates whether the observation requires a special orientation
about the SI boresight, or whether the spacecraft can be oriented so as to
optimize solar power generation. This is done by specifying a deviation from
optimal roll, which later in the process is associated with an actual roll angle
to go with the already specified target right ascension and declination.

The second step is for the ground system to figure out what spacecraft
pointing is needed to support the science observation. Using the SI align-
ment matrix (a DCM specifying how the SI is oriented relative to the space-
craft body reference frame), the ground software determines what the space-
craft right ascension and declination need to be in order to place the science
target at the desired location in the SI FOV. Then, using the deviation from
optimal roll and solar ephemeris, the ground software determines the abso-
lute roll angle for the spacecraft that will produce the desired relative Sun
geometry. At this point, the three pieces of information needed to specify the
spacecraft’s orientation in inertial space uniquely are known.

However, the ground system has other responsibilities beyond defining
the spacecraft pointing for each science observation. For example, teleme-
try downlink must be enabled by orienting the spacecraft’s antenna prop-
erly to establish communications with a Tracking Data and Relay Satellite
(TDRS) or with a ground station. To determine the appropriate antenna gim-
bal angles to command, the ground system must first determine the line-of-
sight (LOS) vector from the spacecraft to a TDRS (or a ground station an-
tenna). This requires that ephemeris information in the GCI reference frame
be transformed into (first) the spacecraft body frame and then into the an-
tenna frame. The most straightforward way to perform this frame change is
to transform the spacecraft attitude from Euler angle format to DCM format,
and then use the attitude matrix to rotate the GCI frame LOS vector into the
body frame.

Potentially, the ground system could uplink the attitude matrix to the
spacecraft in order to direct the spacecraft to its new target attitude, but in
practice this is not done for two reasons. First, uplinking the nine numbers of
a DCM is a pretty inefficient way to command a spacecraft orientation whose
specification requires only three numbers. Second, the format the spacecraft
really “wants” for its attitude bookkeeping is a different format, namely atti-
tude quaternion format, which is ideal for figuring out what sort of reorien-
tation maneuver must be executed in order to arrive at its new commanded
attitude. So in practice, the ground system either uplinks the attitude quater-
nion directly (possibly with adjustments for the effects of velocity aberration,
which will be discussed in Chapter 6), or uplinks the Euler angles the FSW
would need to calculate the commanded attitude quaternion on its own. The
first approach was used for the HST mission; the second approach was used
for the Rossi X-ray Timing Explorer (RXTE) mission.
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Either way, the FSW then will compute the delta attitude quaternion,
which defines the reorientation needed to slew the spacecraft from its cur-
rent attitude quaternion to the new target attitude quaternion. The compo-
nents of the delta attitude quaternion provide a convenient means for ex-
tracting the eigenvector and slew angle associated with the desired slew,
from which the FSW can determine the appropriate actuator commands
needed to realize the attitude change. Finally, to command appropriate ori-
entations of solar arrays and antennas, the FSW usually transforms the com-
manded attitude quaternion to DCM format to support calculation of the
Sun vector and communication LOS vector in the body frame.





2

General Orbit Background

Unlike our first topic, attitude, orbit is a word for which most people prob-
ably could conjure up a reasonable visual image. They might envision the
Earth and the other planets circling the Sun, or the Moon or a spacecraft cir-
cling the Earth. But beyond that, their perceptions can get kind of fuzzy, and
sometimes pretty inaccurate. For example, our experiences on the surface of
the Earth lead us to assume that if you want to catch up with something you
should move faster. For example, if you are trailing another car and want
to overtake it, your natural reaction is to lean on the accelerator to increase
your speed. But when orbiting the Earth, this would be exactly the wrong
strategy. As Earth-orbiting objects move from perigee (their point of closest
approach to the Earth) to apogee (their point of furthest separation from the
Earth), they exchange kinetic energy for potential energy, and as a result fly
slower at higher altitudes than at lower altitudes. This counterintuitive as-
pect of orbital motion is also relevant to astronauts performing rendezvous
operations with other spacecraft. In orbit, the effect of the equivalent action
(relative to the car chase scenario), firing a thruster in the direction of your
motion, will be to raise your orbital altitude, causing you to move slower,
and thereby losing ground with your rendezvous partner. What you need to
do instead is to fire your thruster opposite to your direction of motion, low-
ering your orbital altitude, causing you to move faster, and resulting in an
eventual overtaking of your quarry. So even though we think of the classi-
cal dynamics engendered by Newton’s law of gravitation over 300 hundred
years ago as being sensible and down to Earth (sorry), the motion of objects
in the presence of gravitational fields is not always what you’d expect based
on your interactions with the Earth’s gravitational field in your daily lives.

2.1 Historical Perspective

For everyday life spent at or near the surface of the Earth, dropped objects
appear to fall at a constant acceleration of about 9.8 m/sec2 (or 32 feet/sec2
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if you prefer English units). This value is accurate to 1% over a spectrum of
locations ranging from the Earth’s poles, to its equatorial regions, to points
located up to 20 miles above the equator. So Galileo’s 400 year old obser-
vation (that, in the absence of air resistance, two dropped objects of differ-
ent mass experience the same acceleration independent of altitude) has been
something you could count on pretty reliably (Aristotelian ivory tower phi-
losophizing to the contrary) for most of human existence. However, when
people started looking up at the heavens in a serious, quantitative fashion,
a handful of very smart people began to realize that if things worked up-
stairs (in the heavens) the way things appeared to work downstairs (on the
Earth), Galileo’s law of falling bodies could not be a reliable guide to explain-
ing how celestial bodies interacted with each other, even though they had an
instinctive feeling that the force that caused the Sun and planets to follow
predictable paths in the sky relative to the Earth was the same force that
caused a dropped hammer to fall and hit your big toe. The force that causes
your hammer to hit your thumbnail instead of a steel nail is a different one
(see poltergeists or gremlins).

Actually, the idea that things should work upstairs the same way they
work downstairs would have been considered downright silly, possibly even
depraved, 1,600 years ago. Even someone like Aristotle, whose work in the
biological sciences was based soundly on observation and measurement, took
at times what we would view today as almost a theologically based view of
the physical sciences. To Aristotle, and nearly everybody else from his age
(Aristarchus of Samos, the birthplace of Pythagoras, being an exception), the
real world here on the Earth’s surface was (probably with good reason) seen
as messy, complicated, and inelegant. By contrast, the heavens were perfect,
simple, and elegant. Since the circle was for the Greeks an expression of
perfection, it followed that objects that lived in the perfect heavens must
follow paths composed of perfect circles.

The Greeks’ obstinate commitment to heavenly bodies only being al-
lowed to move in immutable circles (because that’s the way things are in-
tended to be as opposed to the way we find them to be, also a not unfamiliar
modern day phenomenon), coupled with an unshakable belief that the Earth
was the center of the Universe, shackled them to a cumbersome system that
required that the known planets of the time follow paths composed of circles
within circles. The coming of the Renaissance began a revolution (yes, that
pun was intended) from a conceptual standpoint that promoted the Sun as
the central body (supported by Copernicus’ measurements of planetary mo-
tions made about 500 years ago), displacing Aristotle and Company’s Earth-
centered model. Galileo further raised the discussion (about 400 years ago)
from metaphysics to actual physics when he aimed his custom-built tele-
scope at Jupiter and observed its moons in orbit, suggesting that just as that
planet’s moons orbited the planet, the planets themselves could be orbiting
the Sun. However, the key to burying the Earth-centered model was pro-
vided by an Odd Couple that together embodied the fundamentals on which
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modern science is based, namely careful quantitative measurements, elegant
mathematics and models, and uncompromising intellectual honesty.

The Odd Couple in question, Tycho Brahe and Johannes Kepler, made
their contributions around the same time as Galileo, but worked in a politi-
cally safer location, Denmark. Brahe was an expert at making positional mea-
surements (providing major improvements over those produced by Coper-
nicus) and accurately recording them, but lacked theoretical vision and was
awful at mathematics. By contrast, Kepler’s optical vision was terrible, but
he could see meaning in Brahe’s mountain of data and had the extraordinary
mathematical skills required to organize the data within a working model.
After several years of empirical efforts with Brahe’s Mars positions, Kepler
concluded that an ellipse was the simplest curve to which Brahe’s data could
be fit to the level of accuracy demanded by Brahe’s highly precise observa-
tions. Kepler summarized the impact of his discovery in his Three Laws,1

namely,

1. Each planet follows an elliptical orbit with the Sun at one focus of the
ellipse.

2. A line connecting the Sun and a planet sweeps out equal areas in equal
times.

3. The square of a planet’s orbital period is proportional to the cube of the
major axis of the ellipse.

Kepler’s laws and associated model finally ended the science controversy
(though not the religious or political ones) regarding who orbited whom,
and made quantitative confirmed predictions regarding the relative posi-
tions and rates of the objects. On the downside, Kepler’s work in no way
explained why any of these neat facts should be true. That’s where Isaac
Newton enters the story. When plague closed down Cambridge University
for two years (1665 to 1667), Newton spent his free time creating the basis
for differential calculus and developing his laws of motion and gravitation
(not bad for a vacation). But because he had some initial problems explaining
details of the Moon’s motion, Newton did not publish his Principia2 (describ-
ing Newton’s Laws of Motion and Gravitation) until 1687. In the Principia,
Newton’s Law of Gravitation (see Equation 2.1) appears in print for the first
time. As applied to the gravitational interaction between two idealized point
masses, it states that

1. The magnitude of the force experienced by one of the objects is propor-
tional to the product of the two masses and inversely proportional to the
square of their separation distance.

1See, e.g., http://www-spof.gsfc.nasa.gov/stargaze/Kep3laws.htm
2I. Newton, Philosophiae Naturalis Principia Mathematica (Mathematical Princi-

ples of Natural Philosophy), 1687; cf. the translation by I. Cohen and A. Whitman,
University of California Press, Berkeley, Los Angeles, London, 1999
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2. The direction of the force on one of the objects is towards the other object
and is along the line connecting the centers of the two objects.

F12 =
Gm1m2

|R12|3
R12 (2.1)

where

F12 = the force exerted on object 1 by object 2 (newtons)
G = gravitational constant = 6.67428× 10−11m3kg−1sec−2

m1 = mass of object 1 (kg)
m2 = mass of object 2 (kg)
R12 = position vector from object 1 to object 2 (m)
|R12| = magnitude of position vector from object 1 to object 2 (m)

Newton further showed that the external gravitational force exerted by
an object with a spherically symmetric mass distribution is equivalent to that
which would be exerted if all of the mass were concentrated at the object’s
center. (The demonstration is actually fairly straightforward, but we’ll leave
it to bored readers who enjoy integrations involving spherical coordinates.)
In real world applications, celestial objects are never such perfect spheres,
and the problem to be solved usually involves more than two objects (of-
ten with non-gravitational perturbing forces thrown into the mix as well).
But Newton’s Law of Gravitation still is the key to solving the classic prob-
lem of orbital motion. To deal with non-spherical masses, one can integrate
over the object’s mass distribution to obtain the influence of the entire celes-
tial object. Similarly, if more than two objects are interacting gravitationally
with each other, just sum the effects of all the other bodies on the one you’re
looking at. However, because the other bodies will interact with each other,
no closed-form solution exists for the N -body problem once N is 3 or larger,
hence Newton’s problems with the Moon, primarily influenced by the Earth
and Sun. For such problems, approximations must be used and the analyti-
cal approach used is to integrate the equations of motion–an easy thing to
do in our computer age, but a far more difficult problem in Newton’s time.
Such approximation methods are particularly appropriate once the problem
is further complicated by including non-gravitational perturbing influences
such as atmospheric drag, solar radiation pressure, and propulsive forces
along with gravity when determining the orbital motion of a spacecraft (as
opposed to the motion of planets or moons).

2.2 Orbital Shapes

For the time being, let’s not worry about the details regarding how you pre-
dict an object’s orbit; that will be covered in a later chapter (or as we often
say in bullet slide presentations, “Great question! Dave will talk about that
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later today.”). Instead, let’s consider the best way to describe an object’s or-
bit assuming you have all the information required to define it. First, you
have to know where the object is at a given instant in time, say right now. An
easy way to define an object’s position is by specifying the three-dimensional
vector (magnitude and direction) that connects the object to the origin of a
three-dimensional coordinate frame. But when discussing an object’s orbit,
you need to know both where the object is right now as well as where the
object is going to be in the future (or where it came from in the past if your
interests lean more towards history than current events). In general, if you
want to predict an object’s future position (relative to its current position)
you at least need to know in what direction it’s heading and how fast it’s go-
ing (i.e., its velocity vector relative to its current position). So if you know an
object’s position and velocity vector relative to the coordinate frame’s origin
at a given instant in time, you can guess at what its position will be at some
later (or earlier) point in time. If the new time is very close to the original
time, you can compute the new position pretty accurately just by multiply-
ing the velocity vector by the time difference and adding it to the starting
position (a crude integration over time).

The problem with this solution is that if the object is following a wildly
varying path, the error in the position prediction will rise quickly as the
time difference increases, or to put it another way, the original information
will go stale very rapidly. However, when examining the orbital behavior of
two (and only two) spherically symmetric masses acting under the influence
of an inverse square law force like gravity, the orbital motion of one of the
objects relative to the other will always be a conic section (i.e., circle, ellipse,
parabola, or hyperbola). In such a case, the predictive power of those seven
pieces of information (time, three position vector coordinates, and three ve-
locity vector coordinates) will be extremely good. For all such trajectories,
knowing an object’s position and velocity vectors at a given instant in time
is sufficient information to predict its motion at all other instants in time,
future or past, along that curve.

As a specific example of a conic section, let’s imagine an object in an
elliptical orbit (recall that Kepler demonstrated that the planetary orbits are
ellipses with the Sun at a focus) and ask how many pieces of information you
need to define all points on the ellipse as a function of time. First, you need to
define the size and shape of the ellipse. Figure 2.1 illustrates how this is done.
Given a pair of points, the foci of the ellipse (F1 and F2 in the figure), and a
distance d, an ellipse is defined as the set of points {X} for which the sum of
lengths F1-to-X plus F2-to-X is equal to d. The major axis is the longest line
segment connecting two points on the ellipse; in Figure 2.1 it connects points
A and B, and passes through both foci. Half the major axis is called the semi-
major axis, symbolized by a. The ellipse minor axis bisects the major axis at
right angles, connecting points C and D in the figure. Half the minor axis is
called the semi-minor axis, symbolized by b. The semi-major and semi-minor
axes of an ellipse define its contours in the same manner that the radius of a
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circle defines its contours. Indeed, a circle is the special case of an ellipse in
which the values of the semi-major and semi-minor axes are identical (equal
to the circle radius), with the distance d being the circle diameter.

A B

C

D X

F1 F2

b

ae·a

Fig. 2.1. Parameters that Shape an Elliptical Orbit.

Another way of describing the shape of the ellipse is via the eccentricity,
a unitless parameter that is related to the semi-major and semi-minor axes
via Equation 2.2:

e =

√
a2 − b2

a
(2.2)

where

e = eccentricity (unitless)
a = semimajor axis
b = semiminor axis

Before moving on (in the next section) with parameters that characterize
the orientation of an ellipse in space, let’s explore some physics associated
with various elliptical orbits. Let’s consider a sequence of ellipses defined by
a small satellite orbiting a massive central body (at F1), with the satellite at
some initial time located a distance R0 from the massive body and having
velocity V0 perpendicular to the line segment back to the central body. It
is important for this discussion that V0 is perpendicular to the line back to
the central body; it implies that at our initial time the satellite is at either a
point of closest approach to or farthest retreat from the central body (perigee
or apogee, if the central body is Earth). As it turns out, if V 2

0 = GM/R0, the
orbit is a circle. If V 2

0 < GM/R0 (but not zero), then the orbit is an ellipse
with 0 < e < 1, and the initial position is one of furthest retreat. The satellite
falls in towards the central body, speeding up as it does so. Because the satel-
lite’s initial velocity was perpendicular to the line back to the central body,
the satellite at first moves away from that line. Eventually, however, gravity
pulls it back towards the line (after it passes the minor axis line), causing the
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satellite to whip around the central body. After passing the point of closest
approach, the satellite rises back up to its initial position. If V 2

0 = 0, then
we’re just dropping the object from rest, and it falls into the central body.
Although this orbit is still formally an ellipse, in this limit it is a simple line
segment connecting the two foci (F1 being the location of the central body,
and F2 the initial position of the satellite). The minor axis has shrunk to 0,
and the eccentricity for the line segment is 1. (Well, strictly speaking, this
discussion for the “V 2

0 = 0” case should really be taken as the limiting case
as V 2

0 approaches infinitesimally close to 0. Since we’re dealing with a point
mass approximation for the central body, we really can’t deal with the in-
finite forces that would apply as the orbiting body encounters the central
point.)

Now let’s go in the other direction, one of increasing V 2
0 . For GM/R0 <

V 2
0 < 2GM/R0, we again have an ellipse with e increasing from 0 to just un-

der 1. Our initial position now is one of closest approach, the initial velocity
being as large as it will ever be. As the body moves away from its point of
closest approach, the gravitational force from the central body slows it down
until it reaches its point of furthest retreat, after which it falls back to its
initial position. For V 2

0 = 2GM/R0, the satellite never reaches its point of
further retreat. Indeed, for our initial conditions, the velocity (2GM/R0)1/2

is just enough for the satellite to escape from the central body with zero ve-
locity at infinite distance. Although e was heading towards 1 in this limit,
equation 2.2 is only well defined for finite a and b. Both a and b become
infinite at V 2

0 = 2GM/R0. Suffice it to say that the orbit is no longer an el-
lipse, but rather has become a parabola with arms that continue to extend
outwards forever. (You can imagine that the location of F2, as well as the
lengths a and b, have been pulled out to infinity.)

If V 2
0 is increased further, the arms of the orbit pull apart yet further

and the orbit becomes that other conic section, the hyperbola. “Hyperbola”
comes from the same Greek root as “hyperbole”, meaning excess; satellites in
hyperbolic orbits may be considered as having excess (greater than zero) en-
ergy at infinite distance. Geometrically, with appropriate redefinitions of pa-
rameters a, b, and e that we won’t go into here, hyperbolas have eccentricity
e > 1. They accurately model the orbits of uninvited (and usually undesired)
guests to our Solar System, as they (hopefully) follow near-miss trajectories
relative to the permanent residents. And for departing residents, parabolas
and hyperbolas describe the paths followed by objects that have reached es-
cape velocity and are departing from the central body to which they had
previously been bound.

2.3 Specifying the Orbit’s Orientation in Inertial Space

Getting back to ellipses and how to specify their orientation in space, we
now need to specify how the plane defined by the ellipse is oriented relative
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to a coordinate frame, e.g., GCI for an Earth orbiting satellite (which we’ll
assume for the remainder of this section). Imagine the ellipse superimposed
on the GCI frame’s equatorial plane with the minor axis aligned with the
vernal equinox. Now tilt the ellipse about a line that runs through the cen-
ter of the Earth and parallel to the minor axis. The line about which the tilt
is done is called the line of nodes (only coincidentally parallel to the minor
axis in this example). The tilt angle is called the inclination and is a right-
handed rotation about the line of nodes. The inclination’s range of rotation
is 0 to 180◦, where 90◦ will yield a polar orbit and inclinations greater than
90◦ yield retrograde orbits. But placing the ellipse’s minor axis at a special
orientation relative to the vernal equinox was, well special. We can gener-
alize further by rotating the ellipse’s plane about the GCI z-axis. This angle
is called the right ascension of the orbit’s ascending node, where the ascend-
ing node is the point on the orbital ellipse where the object rises from the
GCI frame’s southern hemisphere and enters the northern hemisphere. (The
point where the object moves from the northern to southern hemisphere is
called the descending node, hence line of nodes as the term for the line connect-
ing the nodes.) The right ascension of the ascending node is measured from
the vernal equinox (the GCI x-axis) and has a range from 0 to 360◦. Note that
for an equatorial orbit (inclination equal to zero) there is no orbital ascend-
ing node or descending node, so the right ascension of the ascending node is
undefined. This is an orbital equivalent of the singularity situation we talked
about in Chapter 1 when mentioning that the right ascension Euler angle is
undefined when the declination is ±90◦. Figure 2.2 illustrates how these two
angles (right ascension of ascending node and inclination) define the orien-
tation of orbital plane in space. It also illustrates two other important angles,
to be described in the next paragraph and next section.

Another parameter is still needed for full generality, because there’s no
requirement that the ellipse’s major axis be aligned so that those points on
the ellipse (at the ends of the major axis) take on the largest positive and
negative Z-component values. Instead, we can envision a rotation about the
orbital plane normal vector that places the major axis in a more general con-
figuration within the (now) fixed orbital plane. For example, a 90◦ rotation
about orbit normal would interchange major axis with minor axis. This angle
of rotation within the orbit plane is called the argument of perigee for Earth
orbits, or in general is called the argument of periapsis (again, see Figure 2.2).
By convention, it is the angle measured in the orbital plane from the orbit
ascending node to (for Earth orbits) perigee, the object’s closest approach to
the Earth during an orbital period. The range of the argument of perigee is
0 to 360◦. As with the right ascension of the ascending node, the argument
of perigee is undefined for equatorial orbits (i.e., inclination equal to zero)
because the ascending node (from which it is measured) is undefined. Al-
though the two angles are undefined when inclination is exactly zero, you
can consider any given such orbit as the limiting case for a family of orbits
with non-zero but infinitesimal inclination, all with different ascending node
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Fig. 2.2. Parameters that Orient an Elliptical Orbit.

right ascension and argument of perigee, but all having the same value for
the sum of the two angles, as long as the orbit is not circular.

2.4 The Location of the Spacecraft in the Orbit

So now with five parameters (semimajor axis, eccentricity, inclination, right
ascension of the ascending node, and argument of perigee), we’re able to fix
the orbit ellipse’s size and shape, orbit plane orientation, and orbit orienta-
tion within the orbit plane. But there’s one thing we need to know that has
not yet been mentioned, namely the position of the orbiting object within the
orbit at the current time, or some other time of interest. That information is
supplied via the true anomaly at a given epoch time, which is the actual angu-
lar position of the object along the orbit relative to perigee. So this geometric
model for describing an orbit as a whole requires exactly six parameters and
a time to define an object’s orbit, just as the previously described “vecto-
rial’ perspective (where we looked at what the object was doing while in its
orbit) required exactly six parameters (position and velocity vectors) and a
time. The epoch time is usually the time associated with the start time of an
ephemeris file or the beginning of a new orbit, for example as a result of an
orbit modification maneuver.

However, the true anomaly is difficult to calculate (it is the root of a tran-
scendental equation), so in practice a more straightforwardly determined pa-
rameter, the mean anomaly, is provided instead. The mean anomaly is also
an angular displacement from perigee, but is determined simply by dividing
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the time since perigee passage by the orbital period, then multiplying by 2π
radians:

M =
2π
T

(t − TP ) (2.3)

where

M = mean anomaly at time t (radians)
T = orbital period
TP = time of perigee passage
(t, T , and TP are all measured in the same time units)

In other words, it is the fraction of the period of the orbit covered since
perigee passage. The mean anomaly does not have the true anomaly’s con-
crete geometric meaning (except for circular orbits, where they have the
same value), but the two can be related via the following two equations:

M = E − e sin(E) “Kepler’s Equation” (2.4)

tan(ν/2) = ((1 + e)/(1− e))1/2 tan(E/2) “Gauss’s Equation” (2.5)

where

ν = true anomaly
M = mean anomaly
E = eccentric anomaly
e = eccentricity

Since this book is supposed to be the Kinder, Gentler ACS, we’ll avoid
getting caught up too much in these different anomaly flavors; it is suffi-
cient to consider E an intermediate variable to compute ν from M. (It would
have been nice if E could be expressed as an analytic function of M, as op-
posed to the other way around, but we’ll take what we can get.) Let’s con-
centrate now on the mean anomaly at epoch and see under what conditions
it becomes undefined, as we did with right ascension of the ascending node
and argument of perigee. First, if the orbit is circular, perigee is undefined
and so is mean anomaly, but again we have a situation where the orbit may
be considered a limiting case for a family of orbits defined by the sum of
two angles, in this case it is the sum of the argument of perigee (ω) and the
mean anomaly (M) that is well-behaved (for a non-equatorial orbit). This bit
of hocus-pocus works because the angle from the ascending node (a well-
defined point for non-equatorial orbits) and the spacecraft location (always
a well-defined point) is equal to the sum of ω and M. Similarly, if the incli-
nation is zero and the orbit is circular, then the mean anomaly, argument of
perigee, and the right ascension of the ascending node will all individually
be ill-defined, but the quantity representing their geometric sum (i.e., the
angle from the the GCI x-axis to the spacecraft) will be constant for a family
of Kepler parameter sets all representing the same orbit.
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Although this focus (no pun intended) on singularities seems somewhat
esoteric, utilization of these relationships between orbital parameters for
“degenerate” orbits can be of great value when transforming an orbital
(position, velocity) pair into equivalent Keplerian elements. For example,
these singularity relationships were utilized repeatedly when developing the
ground system algorithms for computing the uplink parameters required to
refresh HST’s onboard ephemeris models.

2.5 Keplerian Element Types

Putting all six of these parameters (called Keplerian elements) and an epoch
time together, we have all the information required to define the current po-
sition of an object in a perfect elliptical orbit and, in the absence of orbit
perturbations, have all the information required to determine the orbital po-
sition of the object at any other time as well, future or past. It also can be
shown (but not here) that specifying the six components of two object posi-
tion vectors on the ellipse at two different times (as long as the vectors are
not parallel) provides the same information as the other two approaches (i.e.,
Keplerian elements and (position, velocity) vector pair, both with associated
times) although, if the angle between the two position vectors is near 0 or
180◦, the results of the computation of new position vectors may be numer-
ically unstable. These relationships were also utilized when developing the
ground system ephemeris uplink parameter generation algorithms for HST.
So we have a similar situation with orbit formulations as we had with the at-
titude formulations discussed in Chapter 1. There are lots of ways to describe
an orbit, each having its own advantages and disadvantages.

The Keplerian elements provide for orbits the sort of visualization ad-
vantages that the Euler angles provided for attitude. You can easily grasp the
size and shape of the orbit, how the orbital plane is oriented, where perigee
is located, and where the spacecraft is located on the ellipse at the epoch
time. Also, in the absence of orbit perturbations, only the mean anomaly
changes with time. On the downside, we have seen that three out of six
Keplerian elements become ill-defined for special geometries, circular and
equatorial orbits that tend to be very “popular” for Earth orbiting science
missions. And although the (position, velocity) vector formulation is pretty
user-hostile from a visualization standpoint, it is ideal for numerical calcula-
tions of “real” orbits in the presence of perturbative effects, especially when
an ephemeris file with many vector pairs is provided, enabling interpolation
between points. So in practice, you pick your formulation for its convenience
relative to the problem you’re trying to solve or the function you’re trying to
perform.

There are even two types of Keplerian elements, each having their own
uses. Implicitly, the type we’ve been talking about are Keplerian osculating
elements, so called because they will generate an ideal orbit that will “kiss”
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the physical orbit (when orbit perturbation effects are included) at a single
point, the point corresponding to the epoch time. However, in the presence of
perturbations, the ideal osculating orbit and real physical orbit will diverge
over time. A more accurate fit to the physical orbit can be achieved through
the use of Brouwer mean elements. Brouwer mean elements effectively provide
averaged elements over several orbits, thereby averaging out the influence of
periodic perturbative effects rather than (as would the osculating elements)
incorporating the value of the perturbation value at the epoch time as if it
was constant in time. So osculating elements may propagate and amplify the
effects of periodic perturbations with time, while mean elements will bound
their effects. But without inclusion of explicit time dependence (i.e., adding
derivative terms to the basic six-term Keplerian set), neither approach will
deal effectively with secular (i.e., ramping) perturbations over long propa-
gation periods. Probably by now the term “perturbative effects” is sounding
like some sort of physics deus ex machina invoked to intimidate an audience
from asking orbit questions. (“Quaternion” is another good term for that pur-
pose when presenting attitude material to a review board.) Just to put that
suspicion to rest, we’ll spend the rest of this chapter discussing the physical
phenomena (and manmade machinery) that perturb orbits and the orbital
geometries particularly susceptible to those influences.

2.6 Orbit Perturbations - Oblate Earth

Perturbative effects on Earth orbits are caused by forces other than those
associated with a “point Earth” (i.e., spherically symmetric Earth) attracting
the object. An analytical approach in which you treat all other influences
as perturbations will only be successful numerically if any additional forces
are much smaller in magnitude than that generated by the point Earth, but
fortunately (for overworked flight dynamics analysts) that is usually the case
for spacecraft orbiting the Earth. For the missions we’ve worked with here at
GSFC so far, there are five forces that exert particularly significant influence
on spacecraft orbits, namely non-point Earth gravitational forces, non-two-
body gravitational forces, aerodynamic drag, solar radiation pressure, and
thrusters.

Back in elementary school you probably learned that the Earth is shaped
more like a pear than an apple (disregarding flat bottoms and pointy tops).
This is still true today, and this aspect of the Earth’s structure, referred to
as Earth oblateness, is the key enabler of two major mission classes. If you
model the Earth as an oblate spheroid (a good approximation to the slightly
pear-shaped distortion mentioned by your teacher), great circles along a
meridian on the Earth’s surface are replaced by ellipses whose semi-major
axes are equal to the Earth’s equatorial radius (about 6,378 km) while their
semi-minor axes are equal to the Earth’s polar radius (about 6,357 km), yield-
ing an ellipse eccentricity of about 0.08. Small circles at constant latitudes
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will remain small circles, but their radii will be slightly modified (from the
spherical Earth model) because of the equatorial bulge relative to the poles.

To get an idea how oblateness influences a spacecraft’s orbit, let’s start
with the spherical Earth. Assume the radius of the sphere is the “real” Earth’s
polar radius. In the absence of any perturbing influences, the orbit sketched
out previously in Figure 2.2 will be constant in time. Next, replace the spher-
ically symmetric Earth model with one in which some of the mass is moved
into an equatorial bulge extending about 20 km out from the immediate
vicinity of the equator. When the spacecraft is at its orbital nodes, the force
arising from the mass in the bulge exerts an in-plane force on the spacecraft
in the direction of the bulge’s (and Earth’s) center. Visualizing the space-
craft’s orbit with orbit normals sticking out of it as if it were a rotating top
(where the spacecraft as it orbits is sitting on the external edge of the top),
the effect of the bulge at the nodes is just a force applied to the center-of-
mass of the top. By contrast, at the points 90◦ from the nodes, the bulge
mass exerts an out-of-plane force that is trying to tip the top down (i.e., re-
duce the orbit inclination). As we’ll see in Chapter 3, that’s the same thing
as saying the bulge is exerting a torque on the top, whose effect will cause
the top’s spin axis (i.e., the orbit normal) to precess westwards (when incli-
nation is less than 90◦) about the Earth’s spin axis. The direction of rotation
is determined by the cross product of the spacecraft position vector with the
direction of the force. Expressed in terms of Keplerian elements, that’s equiv-
alent to saying that the equatorial bulge will cause the orbit’s right ascension
of the ascending node to rotate.

The rate of the nodal rotation depends mostly on the altitude and incli-
nation of the spacecraft’s orbit. As you get farther and farther away from the
Earth, the Earth acts more and more like a single point of gravitational at-
traction. Mathematically, you can show (but we won’t for fear of losing what
little readership we have left) that the nodal precession rate varies inversely
with the 3.5th power of the semi-major axis, so the rate drops off very quickly
with altitude. The effect of inclination is also easy to see. If the spacecraft is
in a perfect polar orbit (90◦ inclination), the orbital plane cuts symmetrically
through the equatorial plane and therefore the torque generated by the bulge
must go to zero (to first order). As you decrease inclination, the influence of
the bulge steadily increases, although you reach a singularity at inclination
zero since the right ascension of the ascending node becomes undefined.

To get a more quantitative feel for the size of the nodal rotation induced
by the bulge, let’s look at a couple of standard orbits. For a 500-km altitude
near-circular orbit with an inclination of 28.5◦ (the inclination you get for
“free” by launching from Kennedy Space Center (KSC), whose latitude is
28.5◦), the nodal rotation will be about -6.7 deg/day, i.e., a westward nodal
rotation. By contrast, if you’re in an orbit with inclination 97.4◦ and altitude
500 km, the nodal rotation rate (eastwards) becomes 1 rotation/year (about 1
deg/day), which keeps the orbit synchronized with the annual movement of
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the Sun, i.e., Sun synchronous.3 We’ll talk more about these very special, and
useful, orbits in the last chapter. Also, keep in mind that this is the simple
picture you get from just looking at the first order perturbations, also called
the J2 term in reference to the coefficient of the second term (after the point
mass term) in a spherical harmonic expansion of the gravitational potential
(that mathematical derivation we mentioned but refused to present earlier).
When the inclination is near 90◦, the effects of Earth oblateness on the orbit
typically become smaller than that produced by less symmetric components
of the Earth’s mass distribution, and the real evolution of the orbit becomes
correspondingly more complicated.4

But wait, there’s more (don’t worry; we’re not selling Ginsu knives). In
addition to causing the line of nodes to rotate, the Earth’s oblateness will
also cause the line of apsides (the line joining apogee and perigee) to rotate.
Again, imagine we’ve generated a static orbit as a result of the gravitational
force exerted by a spherically symmetric Earth, which we can shrink to a sin-
gle point at the focus of the spacecraft’s elliptical orbit. Again, pull some of
that mass into a ring modeling the equatorial bulge. For validity of the ap-
proximation, assume the bulge is even smaller than the Earth’s 20-km one.
Let’s also (referring to Figure 2.2) visualize that the spacecraft orbit is lying
in the equatorial plane (i.e., has inclination zero) and that the spacecraft’s
orbit is highly elliptical. At perigee (in particular), the spacecraft will feel
a stronger force than that resulting from the entire bulge mass being con-
centrated at the Earth’s center. The effect is dominated by the portion of the
bulge closest to the spacecraft.5 Since the extra tug at perigee is perpendicu-
lar to the velocity vector, it won’t add or detract from the spacecraft’s kinetic
energy, so the height at apogee will stay constant, unlike the case where we
can raise (or lower) apogee by adding (or removing) kinetic energy at perigee
by thrusting parallel (or anti-parallel) to the direction of the velocity vector.
Instead, the extra gravitational pull at perigee will cause a tighter deflection
of the spacecraft’s path than would have been the case for an orbit about
a point-mass Earth. This will cause the new apogee point to be shifted in a
positive orbit sense relative to the previous apogee without changing the dis-
tance between apogee and the Earth’s center. As a shift in apogee will occur
on each orbit, what we end up with is (to first order) a constant rotation of

3Wertz, Spacecraft Attitude Determination and Control, pages 68 to 69
4In more formal mathematical terms, the secular J2 term becomes smaller than

the periodic terms associated with the zonal, sectorial, and tesseral coefficients that
model the more complex (latitude, longitude) dependent mass distributions, as we’ll
discuss in the section on the Earth’s geopotential in Chapter 6.

5Using a simple model in which the bulge is represented by a thin, massive wire
girdling the equator, one can show that in the limit in which the spacecraft almost
grazes the wire at perigee, the gravitational pull from a small fraction of the wire clos-
est to the spacecraft will be inversely proportional to the distance between the wire
and the spacecraft (becoming infinite if the separation is zero) and will completely
dominate the pull from the rest of the wire.
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apogee (and its associated perigee) in the direction of the spacecraft’s orbital
motion.

By contrast, for a polar orbit with perigee initially located at a pole, the
spacecraft at perigee (in particular) will feel a little bit weaker force from the
bulge than that resulting from all the bulge mass being concentrated at the
Earth’s center. Note that the Earth’s center is closer to the pole than is any
point on the equator, so moving mass from the center to an equatorial ring
reduces the pull felt at the pole. Once again, the diminished tug at perigee is
perpendicular to the velocity vector, so no change in the spacecraft’s kinetic
energy results. But the reduced gravitational attraction at perigee will cause
the spacecraft’s path not to be deflected as tightly as would be true if the
spacecraft had been orbiting a point-mass Earth, so the new apogee point will
be shifted in a negative orbit sense relative to the previous apogee without
changing the distance between apogee and the Earth’s center. So for polar
orbits we get a rotation of perigee in the direction opposite of the spacecraft’s
orbital motion.

Logically, if perigee rotations at zero inclination are positive and perigee
rotations at polar inclination are negative, there should be some “magic” in-
clination angle between 0 and 90◦ at which the perigee rotation is nulled,
and in fact there is. At an inclination of 63.435◦ (ignoring terms of higher or-
der than the secular J2 term), the perigee rotation rate goes to zero, yielding
a “frozen” orbit. This type of orbit has very useful communications appli-
cations for countries located in high latitudes, like Russia, as we’ll see in
the last chapter if you survive the intervening 9 chapters of material. As an
example of the size of the effect, for a 500-km near-circular orbit with incli-
nation 28.5◦, the perigee rotation rate is 10.9 degrees per day in a positive
direction.6

Nearby the Earth, oblateness effects are the dominant influence on space-
craft orbits. However, as you get further from the Earth, perturbative effects
arising from the Sun’s and Moon’s gravity become more important. As a rule
of thumb, if the spacecraft altitude is below 700 km, lunar and solar grav-
itational effects can be ignored, while at 8000 km, lunar perturbations are
comparable in importance to Earth oblateness.7 For a great many missions,
for example those orbiting Lagrange points, two-body approximations break
down completely and the spacecraft’s orbital behavior can only be defined
by analyzing the combined influences of two celestial bodies. Continuing
the running gag for this chapter, a discussion of Lagrange points and their
associated missions also will be provided in Chapter 12.

6J. Wertz, Spacecraft Attitude Determination and Control, page 69
7Ibid, page 63



38 2 General Orbit Background

2.7 Orbit Perturbations - Aerodynamic Drag

Returning closer to home, aerodynamic drag dominates at altitudes below
100 km, and is an important influence on spacecraft orbits up to about 1,000
km.8 Of the various perturbations discussed here, drag may be the most com-
plicated, as there are so many factors entering into the picture. In particular,
the drag force is proportional to atmospheric density (which is affected by al-
titude, latitude, constituent composition and chemistry, time of day, season
of year, point in solar cycle, butterfly migration patterns, etc.), the square of
the spacecraft velocity relative to the atmosphere, and the spacecraft cross-
sectional area normal to the wind. Like friction, drag is a retarding force,
so it acts to oppose the spacecraft direction of motion. Over the long term,
drag eventually causes the orbit to decay, leading to a decrease in the semi-
major axis. So unlike Earth oblateness, drag actually removes energy from
the orbit. Drag also tends to make the orbit more circular for the following
reason. Since drag has its greatest effect at the point in the orbit where the at-
mosphere is densest (drag decreases exponentially with altitude), the effects
of drag will be highest at perigee. Therefore at perigee, more energy will be
removed than at apogee. But removing energy at perigee (or apogee) means
the swingby at apogee (or perigee) will not reach as high an altitude as on the
previous orbit. So the perigee and apogee altitudes will be lower on each suc-
ceeding orbit, but the amount of lowering will be greater at apogee than at
perigee. This also is due to the inverse distance behavior of the gravitational
potential energy, which will cause the same amount of energy reduction to
produce a larger altitude decrease at apogee than at perigee. So until the two
altitudes roughly become identical, the effect of drag will be to make the or-
bit steadily more circular, i.e., it will steadily lower eccentricity. Note that
these changes from energy loss are only in-plane. Drag has no effect on incli-
nation or right ascension of ascending node, nor for that matter on argument
of perigee (at least until it circularizes the orbit).

Before leaving our discussion of atmospheric drag, it’s worthwhile to
spend a little time talking about how you model the key input to drag com-
putations, atmospheric density. Of course, the higher you go, the thinner
the air, following an exponential drop-off. The atmospheric density will also
be influenced by temperature (via the Ideal Gas Law), which decreases as
we move away from the equator. But the dominant factor determining the
molecule’s energy content is solar heating, the effects from which vary over
several time scales. The highest frequency influence is the daily variation
caused by ultraviolet radiation heating the atmosphere by conduction, caus-
ing atmospheric density to increase to its maximum level by 2 to 3 hours
after local noon. There also is a 27-day solar activity period, the yearly pe-
riod (i.e., seasonal patterns), and the 11-year solar cycle, which reached a
maximum in 2001. Lumped in with these fairly predictable events, we also

8Ibid, page 63
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have short-term fluctuations in atmospheric density arising from the solar
wind and completely unpredictable, violent perturbations from solar flares
and coronal mass ejections. At GSFC, two models in particular have found
popular use, especially as input to GSFC’s orbit determination program, the
Goddard Trajectory Determination System (GTDS).9 The simpler of the two
is the Harris-Priester model,10 which accounts for diurnal (a fancy word for
daily) influences. The Jacchia-Roberts model11 includes seasonal variations
and constituent composition (at least at the level of molecular weight behav-
ior as a function of altitude) as well as atmospheric density changes caused
by solar flares and geomagnetic activity.

2.8 Orbit Perturbations - Solar Radiation Pressure

Once you get up high enough that the atmosphere has virtually disap-
peared and the Earth looks round (i.e., away from the neighborhood that
Low Earth Orbit (LEO) spacecraft call home), solar radiation pressure takes
over as the major environmental orbital perturbation. Solar radiation pres-
sure is much easier to model, depending largely on solar luminosity, space-
craft reflectivity, distance from the spacecraft to the Sun, and spacecraft
cross-sectional area. The cross-sectional area itself is a function of attitude,
which for celestial-pointing missions will change whenever the science tar-
get changes. So the actual solar radiation pressure orbit perturbations are
closely tied to the science observing schedule. In practice, as when atmo-
spheric drag is modeled, GTDS is not set up to deal with this dynamic at-
titude behavior, so an average cross-sectional area approximately valid for
the time duration of interest is what’s input. In any event, solar radiation
pressure is proportional to the spacecraft cross-sectional area normal to the
sunline (as opposed to the cross-sectional area normal to the spacecraft ve-
locity vector as in the case of atmospheric drag). It also is proportional to the
momentum flux from the Sun. The flux, in turn, is proportional to the solar
luminosity and is inversely proportional to the square of the distance from
the Sun. To see that, no pun intended, just imagine light emitted by the Sun
evenly distributed over a sphere of radius equal to the separation distance.
The constant of proportionality for the pressure calculation is a function of
the spacecraft reflectivity. A reflectivity of 2 is perfectly reflective, while a
value of 1 denotes perfectly absorbent, and a value of 0 means perfectly

9A. Long, J. Cappellari, C. Velez, and A. Fuchs. Goddard Trajectory Determina-
tion System (GTDS) Mathematical Theory, Revision 1. Technical report, NASA/GSFC
Flight Dynamics Division Code 550, 1989

10I. Harris and W. Priester, Time-dependent Structure of the Upper Atmosphere,
Journal of Atmospheric Science, 19, pp 286-301, 1962

11C. Roberts, An Analytic Model for Upper Atmosphere Densities Based Upon Jac-
chia’s 1970 Models, Celestial Mechanics, Volume 4, Issue 3, pp 368 - 377, Dec 1971
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transparent. Most spacecraft are pretty shiny, so aluminum’s reflectivity of
1.95 is characteristic of most spacecraft.

2.9 Orbit Perturbations - Orbit Maneuvers with Thrusters

The last perturbation we’ll talk about, thrust, is completely artificial and, un-
less something goes badly wrong, planned, predictable, and easily modeled.
Depending on the size of the thrusters mounted on the spacecraft, thrust can
be the dominant influence on the spacecraft orbit. Thrusters often come in
two functional flavors, orbit thrusters and attitude thrusters. Orbit thrusters,
of course, are designed to generate major orbit changes and trims. Although
attitude thrusters, as their name implies, are designed to enable attitude con-
trol and angular momentum management, misalignments in the thrusters
can produce minor, undesirable, but somewhat predictable orbit perturba-
tions. We’ll have a lot more to say about thruster hardware and electronics
in Chapter 5, but for now we’ll just mention briefly some strategies for their
use.

Recall in our discussion of drag, frictional removal of energy at perigee
will lower apogee while frictional removal of energy at apogee will lower
perigee. This same physical effect can be achieved artificially by firing thrust-
ers so as to decelerate the spacecraft at those points (actually on an arc cen-
tered on those points). By contrast, firing orbit thrusters so as to accelerate
the spacecraft (i.e., artificially adding kinetic energy) at perigee will raise
apogee while doing the same at apogee will raise perigee. These kinds of or-
bit maneuvers are called in-plane maneuvers, and tend to cost much less fuel
than out-of-plane maneuvers (nodal rotation or inclination change), which
change both the magnitude and direction of the orbital angular momentum
vector (in-plane maneuvers can only change the magnitude). If you want to
produce pure orbit inclination changes (say, lowering the “automatic” 28.5◦

you get with a KSC launch to an equatorial orbit), the most cost-effective
place to perform your “burns” is at the orbital nodes. Note that because of
fuel budget limitations you often accomplish the desired orbital modifica-
tion simply by initiating a slow, steady drift in the orbital elements in the
appropriate direction. At a later time, possibly months later, an inverse orbit
maneuver can be performed to cancel the drift, leaving the spacecraft in the
desired orbit.
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Angular Momentum and Torque

3.1 Historical Digression

During the 17th century, great physicists and mathematicians such as Des-
cartes, Huygens, Newton, and Leibniz laid the foundations for our current
classical understanding of translational motion, orbital motion, momentum,
force, and energy, connecting to the physical world via the phenomena of
mass and gravitation. But it wasn’t until Euler’s work in the middle of the
18th century that a formal description of general rotational motion was es-
tablished. When you look at all of Euler’s contributions to the field of math-
ematics (he played a part in advancing the state of the art in every branch of
mathematics known at the time), it’s unclear whether his seminal “Theory of
the Motions of Rigid Bodies” was a conscious intent to fill an existing void
(it was at least in part stimulated by what, at that time, was the unsolved
problem of the precession of the equinoxes, which was discussed in Chapter
1) with malice of forethought or a generic effort to tidy things up. Regard-
less, most of the non-phenomenological stuff we’ll talk about in this chap-
ter, in effect the fundamental physics upon which spacecraft attitude control
is based, was developed by Euler about 200 years before the first satellite
was launched, but 100 years after Newton developed his Law of Gravitation,
which even now is sufficiently accurate to describe the motion of spacecraft
in their orbits in most situations of practical interest.

3.2 Translational Motion

Most people are very comfortable with the basics of translational motion.
Specifying an object’s position vector is a mathematical way of saying you
know where it is relative to something or somewhere else. An object’s veloc-
ity vector, which is the first derivative (with respect to time) of its position
vector, just tells you how fast the object is going and in what direction, again
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relative to something or somewhere else. And an object’s acceleration vec-
tor (the second derivative of its position vector) describes how quickly the
object’s speed and direction of motion are changing. All these mathemati-
cal creations have quite a pedigree, dating back to the time of Galileo (over
400 years ago) and earlier. Translational momentum, force, and energy are
somewhat less intuitive concepts, but can be related to everyday experience
fairly easily. The translational momentum vector, the product of an object’s
mass with its velocity vector, is a quantitative way of saying that heavier ob-
jects are more difficult to deflect or slow down than light ones (e.g., if you’re
a cornerback trying to stop a fullback who has a full head of steam, better
tackle him low or he’ll shrug you off or carry you in for a touchdown along
with the football). The force vector, the product of an object’s mass with its
acceleration vector, and therefore the first derivative of momentum, says that
heavier objects deliver bigger wallops than lighter ones (e.g., you don’t use a
sledgehammer to crack the shell of a hardboiled egg). Note that since force is
the first derivative of translational momentum, if the total force acting on a
body is zero, its translational momentum is conserved (i.e., is constant with
time).

Although each of these five quantities represents different physical things
with different units, being vectors they still have many things in common.
For example, you can add vectors of the same type (say, two force vectors),
a particularly convenient property if you’re interested in knowing what is
the net force acting on a body (a relevant concern both in physics and in
politics). You can also rotate vectors from one coordinate reference frame to
another (as we discussed in Chapter 1), which allows you to examine and
solve problems in the most convenient reference frame, i.e., the one where
the equations look simplest. By contrast, work and energy are rather differ-
ent from vectors. Like non-relativistic time and mass, they are scalars, not
vectors, and at least from a classical perspective are invariants under rota-
tion and translation, as opposed to vectors whose components change when
the reference frame changes. Keeping things on the simple side, work is the
energy expended when force is applied over a distance – it’s a lot harder to
carry a non-productive team member for a year than it is to carry him for a
month.

Energy itself covers such a wide spectrum of phenomenon that it would
take much of this chapter just to list all its manifestations, but there are two
generic flavors that should be mentioned at this point. Translational kinetic
energy describes an object’s energy of translational motion (big surprise) and
is equal to half the product of the object’s mass and the square of its veloc-
ity. So it takes more energy to increase something’s speed by 1 mph when
it’s traveling at 60 mph than when it’s moving at 6 mph (even ignoring fric-
tional energy loss and wind resistance). This algebraic definition makes in-
tuitive sense if you imagine you started with a particle at rest and then ask
how much energy it would take to increase its momentum up to its current
level. A natural way to calculate this is to integrate the particle’s momentum
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over velocity from its starting value (zero) to its current velocity, which gives
you the simple formula described previously, and accounts for the factor of
one half. This also is really what’s going on when you calculate the work
performed. By that we mean you’re integrating the force vector on the ob-
ject over the distance vector the object moves, an operation on vector quan-
tities called a line integral, rather than simply multiplying the force times
distance. So the mathematically fancier line integral takes into account the
actual path traveled rather than just the net change in position (e.g., running
around in circles uses up a lot of energy even if you end up at your original
starting point).

Potential energy is like a phenomenological bank account you can draw
on for conversion into kinetic energy. For example, gravitational potential
energy (as opposed to Newton’s force law for gravity) varies inversely with
distance, where the sign of the potential term is negative. So an object at a
higher altitude will have a higher (less negative) potential energy than an
object at a lower altitude. Therefore an object in an elliptical orbit about the
Earth, as we’ve seen, trades off potential energy for kinetic energy (i.e., alti-
tude for speed) as it moves from apogee to perigee. For those of you wonder-
ing when we’re going to make a reference to some equation numbers, you’ll
find the ones we’ve been talking about in the last few paragraphs summa-
rized in Table 3.1.

Quantity Symbol Units (MKS system) Equations
Position R meter R = (x,y,z)
Translational Velocity v meter/second v = (vx,vy ,vz)

v = dR/dt
Translational Acceleration a meter/second2 a = (ax, ay , az)

a = dv/dt
a = d2R/dt2

Mass m kilogram
Translational Momentum p kilogram-meter/second p = (px,py ,pz)

p =mv
p =m dR/dt

Force F newton F = (Fx,Fy ,Fz)
(kilogram-meter/second2) F =ma

F = dp/dt
F =m dv/dt
F =md2R/dt2

Kinetic Energy T Joule T =mv2/2
(kilogram-meter2/second2)

Work W Joule W =
∫

F dR
(newton-meters =
kilogram-meter2/second2

Table 3.1. Definitions of Translational Motion Quantities
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3.3 Rotational Motion

Getting back to the actual topic of this chapter, there are some straightfor-
ward parallels between translational motion and rotational motion. For ex-
ample, we know from Newton’s First Law of Motion that if no forces are
acting on an object in motion, the object will continue moving in the same
direction at the same rate forever. But suppose the object is in a circular or-
bit about a perfectly spherical Earth, with no orbital perturbations. In this
case the object will remain in that same orbit forever. Although the magni-
tude of the object’s velocity vector stays the same for all time, the individual
components of the velocity vector will display a periodic behavior, with X-,
Y-, and Z-components flipping signs every half orbit (for non-equatorial or-
bits), as illustrated in Figure 3.1. For example, at Point 1 the velocity vector
V1 has a positive Y-component, while at Point 3 the velocity vector V3 has
a negative Y-component of equal magnitude. The velocity vector’s direction
must change smoothly over the orbital period because the velocity vector is
tangent to the object’s orbital path. Still, the magnitude of the velocity vector
stays constant. To appreciate what’s unchanging about the object’s motion
and why, we need to leave behind quantities defined with translational mo-
tion in mind and work instead with parameters more directly geared towards
the physical rotational motion that’s actually occurring.

Z 

V1 

Y 

X 

V2 

V3 V4 

Fig. 3.1. Variation of velocity vector components over a circular orbit.

So what is constant? Well, we said a moment ago that the magnitude of
the translational velocity vector was constant although its direction (i.e., its
individual components) varied periodically. Another constant is the radius
of the circle, but that information is really redundant to the magnitude of
the velocity vector when viewed from an energy standpoint (remember, the
higher the altitude, the slower the velocity), provided we keep the central
body’s mass constant. We can also package this information as the angular
rate (in units of radians/sec), which is equal to the magnitude of the trans-
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lational velocity divided by the circle’s radius. The only other independent
constant (unless we count the value of the eccentricity, which is a constant
value of zero just because we defined the problem that way) is the orientation
of the orbit, which is most naturally defined by the orbit normal. Tradition-
ally, positive orbit normal (what you get by applying right-hand rule with
the fingers of your right hand curling in the direction of the orbital motion
and the thumb pointing in the normal direction) is the polarity option that
is selected (see Figure 3.2). So two natural quantities describing in essence
what the orbiting object is doing are the angular speed (also called the an-
gular frequency or rate) and the positive orbit normal vector. If we multiply
the vector and scalar quantities together, we get a vector called the angular
velocity that tells us how fast the object is rotating and what its direction of
rotation is – a nice rotational analog to the translational velocity vector.

Positive orbit normal

V

V

Fig. 3.2. Right-hand Rule Applied to Orbital Motion.

If we want a quantity that tells us how difficult it is to change the object
from doing what it’s doing, we’ll need a rotational analog to translational
momentum. Obviously, it should involve the object’s angular velocity and
mass. But a simple product of the mass and angular velocity doesn’t really
capture fully what’s going on. That’s because you know intuitively, for ex-
ample from your childhood experience swinging a rock tied to a string in a
circle around your head, that the larger the radius (i.e., the longer the string)
the more effort you have to exert to keep the object (rock) rotating at the
same rate. So it seems natural to define an angular momentum as some kind
of product, in fact a vector cross product, between the object’s instantaneous
position vector (whose magnitude in a circular orbit is the radius of the or-
bit, a constant) and the object’s instantaneous translational momentum vec-
tor (whose magnitude in a circular orbit will also be a constant and whose
direction is tangent to the circle at the orbiting object’s position), as shown
in Figure 3.3.



46 3 Angular Momentum and Torque

m

V

R

L

L = R×p = R× (mV)
= angular momentum (kg ∗m2/sec)

R = position (m)
p = translational momentum (kg ∗m/sec)
m = mass of object (kg)
V = velocity (m/sec)

Fig. 3.3. Definition of Angular Momentum.

Note that although the directions of the instantaneous position vec-
tor and instantaneous translational momentum vector keep changing, their
cross product vector has a constant direction and is the positive normal to
the circular orbit. This is exactly the property we were looking for as a rota-
tional analog to the translational momentum vector, a vector quantity whose
direction won’t change if the rotational motion stays constant and whose al-
gebraic structure suggests that greater efforts would be needed to deflect it
from its rotational path if its mass or speed were increased. Written as a vec-
tor equation, we can then define the object’s angular momentum (symbolized
by L) to be L = R×p, where R and p are the instantaneous position and trans-
lational momentum vectors, respectively, and where their vector nature has
been expressed symbolically through the use of “bold” font. Note that angu-
lar momentum is defined relative to a specific (position, velocity) coordinate
system origin pair, and so will change if you change either aspect of the ref-
erence frame. For our current conversation, we are talking about the angular
momentum of a point-mass object about a coordinate origin, e.g., a planet or
satellite about the orbit center.

We can similarly find a nice rotational analog for force. Force was de-
fined as the first derivative of translational momentum, so a logical rota-
tional analog to force would be the first derivative of angular momentum,
which is called torque. Note that if we take the time derivative of our previ-
ous equation for angular momentum (L = R×p), we get a similar expression
for torque, N = R × F, where the second term you get when differentiating
(V×p) is zero since translational momentum has the same direction as trans-
lational velocity, and the cross product of two parallel or anti-parallel vectors
is zero. This formal definition of torque also makes sense physically if you
visualize (or remember painfully) the resulting motion (at least until you hit
the ground) if you are sitting at the elevated end of a seesaw and a so-called
friend of comparable weight sitting at the other end gets off the seesaw with-
out warning (see Figure 3.4).
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M

F

R

N = R×F = R× (MA)
= torque (kg ∗m2/sec2)

R = position (m)
F = force (kg ∗m/sec2)
M = mass of object (kg)
A = acceleration (m/sec2)

Fig. 3.4. Definition of Torque.

To see the relationships between all these rotational quantities together
in one place, see Table 3.2.

Quantity Symbol Units (MKS system) Equations
Angular Displacement Θ radian Euler Set= Θ = (θ,φ,ψ)
Angular Velocity ω radian/second ω = (ωx,ωy ,ωz)

ωx = dθ/dt
ωy = dφ/dt
ωz = dψ/dt

Angular Acceleration α radian/second2 α = (αx,αy ,αz)
α = dω/dt
αx = d2θ/dt2

αy = d2φ/d2

αz = d2ψ/dt2

Moment of Inertia I kilogram-meter2 I = {Iij }, where
Tensor i = 1,2,3 and j = 1,2,3
Angular Momentum L kilogram-meter2/second L = (Lx,Ly ,Lz)

L = Iω
L = R×p
L =mR× v

Torque N Joule N = (Nx,Ny ,Nz)
(newton-meter = N = Iα

kilogram-meter2/second2) N = Idω/dt
N =ω×L

Kinetic Energy T Joule T =ωIω/2
(kilogram-meter2/second2)

Work W Joule W =
∫

N · dΘ
(newton-meter =
kilogram-meter2/second2)

Table 3.2. Definitions of Rotational Motion Quantities.

Some of the parameters in the rotation table may look a little weird at
this point. For example, what’s that I thing that seems to play the same role
that mass did for translational motion, and why is it a 3 × 3 matrix instead
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of a simple scalar? At the root of that question is one of the big differences
between translational motion of an object and rotational motion of the ob-
ject about its own center-of-mass. For translational motion we can at least
imagine that we can squeeze all of an object’s mass down to a point (called
the object’s center of mass) and just follow where that point goes in order to
figure out where the whole object will go. By contrast, if you’re not care-
ful about how you toss an oblong object in the air, you’ll see it tumble in
all directions, even though its center of mass just goes up and comes back
down. So in order to describe the object’s full range of motions, you need
to describe how it’s moving relative to its center of mass as well as how the
center of mass is moving. And in order to do that, you need to be able to
describe what the shape and mass distribution of the object is, not just its to-
tal mass. That’s where the more complicated quantity I comes in. We’ll talk
more about I (without getting too egotistical) and motions about the center
of mass in the next two sections.

3.4 Motion of the Center of Mass vs. Motion about the
Center of Mass

At first glance it would seem that we’re in pretty good shape, but what
we’ve come up with must be incomplete by the very nature of the approach
we’ve used. Using our experience with objects in translational motion, we’ve
successfully found rotational analogs for each of the translational vectors.
Specifically, angular velocity goes with translational velocity, angular mo-
mentum goes with translational momentum, and torque goes with force.
And there are others we haven’t talked about yet, such as angular acceler-
ation vs. translational acceleration that could be added to the list. But there’s
a subtle question that hasn’t been addressed explicitly, namely just what is
it that is in motion? When speaking of an object undergoing translational
motion or simple orbital rotational motion, what we’ve really been modeling
with equations is the translational or rotational motion of the object’s center
of mass. So in the preceding discussions, when we’ve said there’s a force on
the object, what we’ve meant is that the force will cause the center of mass
of the object to accelerate (assuming the object is not nailed down, or other
forces are present that produce a cancelation). And this is the way things
work as long as we restrict ourselves to forces acting through the object’s
center of mass. But what happens if you apply a force to the object in a more
general direction? Suppose we define a coordinate system whose origin is lo-
cated at the object’s center of mass. Then a force that is applied directly to the
object’s center of mass will produce a pure translational motion and, ignor-
ing perturbative effects (such as atmospheric drag), the shape and structure
of the object is irrelevant. But a force applied offset to the object’s center of
mass will generate a non-zero torque on the object, leading to a rotational
motion about the object’s center of mass as well (see Figure 3.5).
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(a) N = Torque = RxF = 0
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F

(b) N = Torque = RxF , 0

Fig. 3.5. Forces through the Center-of-Mass (C.M.) vs. Forces Offset from the C.M.

So what is the object actually doing as a result of the torque applied, i.e.,
what is its rotational rate and rotational acceleration about its center of mass?
At this point we can’t answer that question because we haven’t said anything
about what the object looks like, or how it’s put together, or how those issues
relate to the problem. Why should those issues matter? Because now we’re
asking what is the motion of all the component pieces of the object (if we
imagine decomposing the object into a great many bite-sized point-masses
held together by mathematical constraints), not simply what is the motion of
the object’s center of mass, which is a kind of average of all the component
pieces. If this was a problem in translational motion, all we’d have to do is
take an average of the translational momenta of all the point masses and
we could know (at least empirically) what the object’s center of mass was
doing. And since the center of mass sort of carries the object along with it
(ignoring complications like flexible dynamics), we would therefore know
what the object itself was doing. We even can describe the rotational motion
associated with an object in orbit (provided we can approximate the object as
a point mass) by, for example, relating angular velocity in a circular orbit to
instantaneous translational velocity as discussed earlier in this chapter. But
what if we can’t approximate the object by a point mass? Clearly we need to
introduce some new quantity that describes the intrinsic nature of the object
itself.

3.5 How the Moment of Inertia Tensor Describes the
Object’s Nature

In the real world, objects are not idealized point masses; they have size,
shape, and structure as well. (Maybe that’s the three esses of satellites, kind
of like the four cees of diamonds, namely carat, color, clarity, and cut. Actu-
ally five cees if you count cost, a more important quality for most folks.) So
we need some mathematical construct that also expresses those features. As
a first step, let’s consider again what purpose the mass term in the transla-
tional motion equations serves. Comparing translational velocity to transla-
tional momentum, multiplication by the object’s mass (or more formally, the
object’s inertial mass) in effect transforms a measure of the object’s current
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motion into a measure of what it takes to change the object’s motion. So at an
abstracted level, what we now need to define for rotational motion about an
object’s center of mass is something (put technically, an operator) that will
transform the object’s angular velocity about its center of mass into its asso-
ciated angular momentum. Just from a units analysis, it’s clear this operator
will be much more complicated than a scalar mass multiplication since its
units will be the product of mass times the square of a distance. Also, al-
though for the simple circular orbit motions we’ve been talking about the
two vectors are parallel, in general (as we’ll see later in this chapter) the
direction of an object’s angular velocity and angular momentum can be dif-
ferent. So the operator connecting these two physical quantities must at least
have the mathematical complexity of a 3× 3 linear transformation matrix, a
subset of which is the rotation matrices we encountered in Chapter 1. Sup-
pose then we try as a candidate L = Iω, where I is the desired operator
(which we’ll call the moment of inertia tensor), and the vector natures of L
andω are again indicated via “bold” font.

At this point, some of you might be saying “OK, the word ‘moment’ kind
of invokes ‘moment arm’, which involves a twisting around some point (ap-
propriate for the topic), and ‘inertia’ is related to mass and the ease or diffi-
culty of changing an object’s motion, but what is a ‘tensor’?” Good question.
Tensor is a piece of geometric jargon. It basically refers to a geometrical en-
tity that has a fundamental essence independent of any reference frame, can
be expressed in component form relative to any particular reference frame,
and can be transformed between reference frames by well defined rules. A
position vector, R, is an example of a tensor. The moment of inertia tensor is
a somewhat more complicated example. Just as R is well-defined mathemat-
ically independent of any particular reference frame, we will find that I is
similarly intrinsically well-defined independent of specific reference frames.

Now we have a name for the operator, and we’ve made a guess at its struc-
ture and units. But what does it really look like? Sometimes when you’re
hopelessly confused by a problem, and can’t think of anyway to dump it in
someone else’s lap, it helps to simplify the problem as much as possible. So
let’s consider a very simple object, a hoop of massM kilograms with radius R
meters having negligible thickness, and let’s also make the geometry as sim-
ple as possible by locating the coordinate system at the hoop’s center of mass,
with the z-axis perpendicular to the hoop plane. This is a simple extension
of Figure 3.3, used for the definition of angular momentum of a point-mass
relative to some coordinate origin. Imagine extending that single mass M
over the whole circular orbit there discussed and we’ve got our hoop. Now,
in Section 3.3, we explained that L was a constant of the satellite’s motion
about orbit center, independent of specifically where the satellite was at any
given time. Smearing M uniformly over the hoop (effectively making many
little satellites out of one big one) therefore doesn’t change L if all of the little
satellites are moving at the same angular rate about the origin. For our hoop,
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with rotation about the z-axis, L is therefore given by

L = R×P = R× (MV) = ωMR2 [0,0,1]T (3.1)

where ω is the the magnitude of the angular velocity about Z. This implies
that for the hoop, in the reference frame with the z-axis perpendicular to the
hoop, the zz component of I (i.e., Izz) ismR2. We don’t care at this point what
Ixx and Iyy are, because they can’t contribute anything to the angular mo-
mentum since the rotation is exclusively about the z-axis. And for now we’re
ignoring the cross terms (Ixy , Ixz, Iyx, Iyz, Izx, and Izy) because this solution for
the tensor I gives us the “right” answer. But it’s important to recognize that
we haven’t as yet proven that the cross terms actually are equal to zero for
this problem.

So, how do we determine the components Ixx and Iyy , which we would
need if the hoop were spinning about an axis in the plane of the hoop? From
symmetry, it should be clear that Ixx and Iyy , each characterizing rotation
about a particular axis in the plane of the hoop, are equal to each other and
independent of their actual orientation in the plane. So let’s consider rotation
about the x-axis. We’ll need to explicitly consider the contribution of each
mass point individually, since they are at different distances from the axis of
rotation. Each small element of the hoop has mass

dm =M(dθ/2π)

where θ is an angular measure around the hoop, which we can arbitrarily
take as measured from the x-axis. Each mass element will be “in orbit” about
a fixed point on the x-axis (although different points for different mass el-
ements). A mass element at angular position θ around the hoop will be a
distance Rsin(θ) from the rotation axis. As for the problem of rotation about
the z-axis, the angular momentum contribution of each element about the
axis of rotation is a constant of the motion. The differential contribution to
angular momentum about the x-axis from each mass element is therefore
given by:

dL =ωdm(Rsin(θ))2 [1,0,0]T

where ω is now the magnitude of angular momentum about the x-axis. To
get the full value for L, we integrate around the hoop:

L =
∫ 2π

0
ωdm(Rsin(θ))2 [1,0,0]T

= (ωMR2/2π)(
∫ 2π

0
sin2(θ)dθ) [1,0,0]T

= (ωMR2/2π)(π) [1,0,0]T

= (ωMR2/2)[1,0,0]T
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From this we see that, for the hoop, Ixx = Iyy = Izz/2. This makes qualita-
tive sense; the mean distance of the hoop’s mass from the X and Y axes is less
than from the z-axis, so for a given angular rate, angular momentum about
the x- or y-axis is less than that about the z-axis.

That’s fine for this very special problem we’ve constructed, but obviously
most spacecraft are solid, not hollow (let alone a wire hoop), so we’re go-
ing to need something a bit more general. But we now know that if we’re
dealing with a set of point masses (or a continuous distribution of differen-
tial mass elements), the contribution from a single mass element is easy to
compute if we know its mass and its distance from the axis of rotation. We
also know that if we can decompose the object into a set of point masses, we
can get the moment of inertia (or at least the diagonal elements thereof) for
the whole object if we can figure out how to sum together the contributions
from each of the individual point masses. In other words, the key to comput-
ing the moment of inertia of a complex object is performing an integration
over infinitesimal components of the object. The result is:

Ixx =
∫ M

0
(y2 + z2)dm (3.2)

Iyy =
∫ M

0
(x2 + z2)dm (3.3)

Izz =
∫ M

0
(x2 + y2)dm (3.4)

OK - so now you know how to compute the diagonal elements of I in
some reference frame. We still have six more terms that need to be calcu-
lated, namely the cross terms (which are called the products of inertia) that we
intentionally ignored earlier. The key distinction between the diagonal and
cross terms lies in the definition of the object’s body frame axes. Although
we pretty much have the freedom to define the object’s coordinate frame
however we like, so long as the axes of the frame span a three-dimensional
space, it’s usually the case that some definitions will be more convenient
than others. In other words, some reference frame selections will make solv-
ing physics problems easier than others. First, we know from experience that
orthogonal frames are easier to work with than non-orthogonal frames. (Our
preceding discussion of the diagonal elements of I assumed an orthogonal
frame.) Second, instinctively one would think that “natural” body frame co-
ordinate axes “should” line up with the axes of the symmetry of the object,
e.g., one body axis for a cylinder “should” be its long central axis, while the
natural axes of a rectilinear solid should be parallel to its sides. Third, we
should place the origin of the frame at the object’s center-of-mass since the
problems we’re examining involve motions about the object’s center-of-mass.
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It turns out that all objects have natural axes of symmetry, even those ob-
jects for which such symmetry is not immediately apparent. The implication
is that when I is computed in said “natural” reference frame, then you will
find that its off-diagonal elements are all zero. Following this natural ref-
erence frame definition physically aligns the axes of the coordinate system
with the symmetry axes of the object, also called the object’s principal axes.
What’s physically special about these axes is that if you start the object spin-
ning about a principal axis, and there are no dissipative torques (see Section
3.7), the object will continue spinning about that axis (i.e., the object is bal-
anced) at a constant rate. That in turn tells us that for this geometry there
is a special relationship between the object’s angular velocity and angular
momentum. Here’s why. Going back to translational motion, we know that
in the absence of external forces, translational momentum will be conserved,
i.e., the translational momentum is constant, as is the translational velocity
since translational momentum is proportional to velocity. Since (in the ab-
sence of external torques) angular momentum is also conserved, and since
the direction of the angular velocity in this scenario is constant, it follows
that the direction of the angular momentum vector is parallel to the angular
velocity vector, i.e., the angular momentum is proportional to the angular
velocity if the object is rotating about a principal axis. What’s different for
rotational motion compared to translational motion is that the constant of
proportionality for translational motion is the same (the object’s mass) re-
gardless what direction the object is moving. But for rotational motion about
the center of mass, the constant of proportionality will depend on the struc-
ture of the object, and therefore need not (and typically, will not) be the same
for rotations about the three principal axes. What this means mathematically
is that the moment of inertia tensor (for this scenario) will be diagonal, but
its diagonal terms need not, and probably will not, be the same.

As another example, consider an idealized dumbbell (two equal masses of
massM/2 connected by a massless rod) rotating about an axis perpendicular
to the rod (see Figure 3.6). By symmetry, the moment of inertia about any axis
perpendicular to the rod is the same as it would be for the hoop previously
considered.

So, what if an object (say, our dumbbell of the previous paragraph) is
rotating about an axis other than one of its principal axes (see Figure 3.7)?
In this case, we can project the angular velocity vector onto the principal
axes and determine the components of the vector relative to the principal
axis reference frame. But the motion of the object will no longer be as sim-
ple as in the case of motion about a principal axis unless the diagonal terms
of the moment of inertia tensor are the same (again, typically not the case).
That’s because the angular momentum vector will no longer be proportional
to the angular velocity vector. Since in the absence of external torques an-
gular momentum is conserved (requiring that its direction be constant in an
inertial frame), and since the angular velocity vector will not be in the same
direction as the angular momentum vector if the diagonal elements of I are
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Rotation axis same as 
angular momentum axis 

Fig. 3.6. Rotation about a principal axis.

Angular  
momentum  
axis 

Rotation axis 

Fig. 3.7. Rotation about a non-principal axis.

not all equal, it follows that in an inertial reference frame in the absence of
external torques the angular velocity vector must rotate about the angular
momentum vector. Alternatively, for the angular velocity vector to maintain
a constant direction in an inertial frame, an external torque must be applied
to the system, causing the angular momentum vector to rotate about the an-
gular velocity vector (again, see Figure 3.7).

At this point you’re probably saying, wait a minute, what happened to
those off-diagonal terms you were supposed to be talking about? Well, hav-
ing non-zero off-diagonal terms means that the body frame we have se-
lected is not coincident with the object’s principal axes, and as a result the
components of the angular momentum vector will not be proportional to
their corresponding angular velocity vector components. For example, the
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z-component of the angular momentum vector may depend on the values
of all three components of the angular velocity vector. Let’s consider what
the simplest functional form would be for coefficients multiplying the x and
y angular velocity components. Remembering that to compute the moment
of inertia tensor elements we have to sum over the volume of the object, it’s
clear we need a functional form (inside the mass integral) for the off-diagonal
elements that will vanish if the z-axis is an axis of symmetry. We can guaran-
tee that to be true if the positional dependence of the off-diagonal elements
(inside the mass integral) is odd (so, e.g., mass at negative x positions cancel
against mass at positive x positions in the computation of Ixz), as opposed to
even as was the case for the diagonal terms. From a units analysis, we also
know that the off-diagonal terms are of order 2 in position. That implies that
the most natural form of the off-diagonal terms (inside the mass integral)
would be some combination of things like xy, xz, and yz.

Next, suppose we introduce a small misalignment of the axes, say via a
tiny positive rotation of our selected body reference frame about the y-axis
of the symmetry axes frame. The body frame mass distribution will still be
symmetrically distributed relative to the y-axis, so the y-component of the
angular momentum vector will still be proportional to the angular velocity
vector. However the z-component of the angular momentum will no longer
exclusively depend on the z-component of angular velocity; it should pick
up a small term proportional to the x-component of the angular velocity as
well. Since the term would go to zero if there was any odd y-dependence in
it, it’s a reasonable guess that the positional term (inside the mass integral)
associated with x-axis angular velocity contribution to the z-axis component
of the angular momentum should be xz. This argument also suggests that Ixz
should be equal to Izx, i.e., the moment of inertia tensor is symmetric.

Both these suppositions indeed are the case, and can be demonstrated
mathematically, but the exact form of the off-diagonal elements, unlike the
case of the form of the diagonal terms, is not easy to show by simple verbal
argument. At this point, though, the math shouldn’t be too intimidating. Re-
call the fundamental equation for angular momentum of an individual mass
element, dm:

dL = R× (Vdm) = R× (dR/dt)dm (3.5)

where Vdm is the momentum of the element.
Let’s suppose that we’re working in an inertial frame instantaneously

aligned with the body coordinate frame (with the origin at the center of mass
of the object), and that in said frame the body is rotating at an instantaneous
angular rateω. In that case, dR/dt =ω×R, which allows us to rewrite equa-
tion 3.5 as

dL = R× (ω×R)dm (3.6)

So, now integrate:
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L =
∫

R× (ω×R)dm (3.7)

You can see that the result is linear inω, which means that we should be
able somehow to pullω out to the right side, leaving the rest of the integral
as a 3 × 3 matrix. The required approach is fairly straight-forward algebra.
First expand the cross product (ω ×R) into a vector in terms of the compo-
nents ofω and R, and then do the same with R× (ω×R). We’ll leave that bit
as an exercise for the reader. With the parts expressed in terms of the vector
components, you can reconstruct the total as Iω, with the diagonal terms
given via equations 3.2 – 3.4, and the off diagonal terms via:

Ixy = Iyx = −
∫
xydm (3.8a)

Ixz = Izx = −
∫
xzdm (3.8b)

Iyz = Izy = −
∫
yzdm (3.8c)

With the full form of I known, we’d like you to now recall that we men-
tioned that I is a tensor, i.e., a geometric object with intrinsic meaning in-
dependent of reference frames, and a specific rule for its transformation be-
tween frames. This implies that if you happen to know I in any arbitrary
reference frame, you can compute it in all other frames. If RB<A is the rota-
tion matrix that transforms vectors from frame A to some other frame B (i.e.,
vectors transform between frames as VB = RB<AVA), then I is transformed
as:

IB =RB<AIAR
−1
B<A =RB<AIAR

T
B<A (3.9)

In particular, this will be true if frame A is defined by the object’s prin-
cipal axes (in which the off-diagonal elements are zero) and frame B is some
other frame (say, the official satellite coordinate frame). The off-diagonal el-
ements of IB capture information regarding the rotation needed to express I
as a diagonal (principal axis) matrix.

There’s one last thing to mention regarding the moment of inertia ten-
sor and rigid body motion. For clarity of explanation, we’ve decomposed an
object’s motion into two major pieces, namely translations and rotations of
the object’s center-of-mass and rotations about the object’s center-of-mass.
Although it’s nice to treat each of these phenomena separately when trying
to understand what a rigid object can do, when it comes time to describe
quantitatively and accurately what the object is actually doing we need to be
able to combine all these phenomena together, because ultimately the object
couldn’t care less about our human desire to compartmentalize. In practice,
the object simply responds physically to the aggregate of forces and torques
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applied to it. Specifically, since angular momentum is a vector, we know that
the total angular momentum of a solid rigid body will just be the sum of the
angular momentum of the center-of-mass about our reference frame origin
(where we imagine concentrating the mass of the object at a single point, the
center-of-mass) plus the angular momentum of the body about its center-of-
mass.

3.6 Types of Torque-free Rotational Motion

Now that we’ve finally defined all the physical quantities describing rota-
tional motion (compare Tables 3.1 and 3.2 for rotational analogs to trans-
lational quantities), let’s talk about the different ways an object can rotate
relative to its center of mass. In this section we consider torque-free motion.
The simplest type of such angular motion is called pure rotation (see Fig-
ure 3.8a). For this type of motion, the rotation axis is aligned with a body
principal axis, which also happens to be one of the body-frame reference
axes. The first condition implies that the angular momentum vector will be
aligned with the rotation axis and will remain that way as long as no torques
are applied. The second condition is just a convenience for the users, who
were clever enough to have aligned their reference axis with a principal axis.
(Note, if the mass distribution is such that the moment of inertia matrix is
proportional to the 3×3 identity matrix, then all axes are effectively principal
axes and any rotation would be pure rotation as defined here.)

The next level of complexity is to allow the body axes to be misaligned
relative to the principal axes. This misalignment will not change the physi-
cal motion of the object; if the rotation axis is lined up with a principal axis,
the angular momentum vector will still be proportional to the angular veloc-
ity. However, the body axis corresponding to the rotation axis will now trace
out a conical shape about the object’s rotation axis (see Figure 3.8b). This
behavior is, not surprisingly, called coning. Coning should not be viewed as
an entirely artificial mathematical quirk that can easily be removed just by
changing body axes. As an example of why it matters, you typically place
sensors to “look” in “natural” directions relative to a spacecraft’s body axes.
If the body axes are then badly misaligned relative to the principal axes of a
spinning spacecraft, a key attitude sensor needed for determination of space-
craft rotation rate may fail to generate a sufficiently accurate value until the
misalignment is calibrated and compensated for.

The next level of complexity in rotational motion about an object’s center
of mass is called nutation (not to be confused with the same term referring
to the wobble of a spinning top). Nutation is present when the instantaneous
rotation axis is not aligned with a principal axis. Assuming no external per-
turbative torques are acting on the object, angular momentum will be con-
served, so the direction of the angular momentum vector will remain fixed
in inertial space. However, the instantaneous angular momentum vector no
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Fig. 3.8a. Rotation types: pure rotation.
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Fig. 3.8b. Rotation types: coning of non-principal axis reference frame (X′ ,Y ′ ,Z′)
about rotation axis Z.

longer is proportional to the angular velocity vector, nor are either of them
lined up with a principal axis. Viewed from an inertial reference frame, nu-
tation then causes the angular velocity vector and the principal axes to rotate
about the angular momentum vector, as illustrated in Figure 3.8c. The figure
is actually drawn for the special case of Ixx = Iyy < Izz, which results in the
angular velocity vector,ω, the principal axis Z, and the angular momentum
vector, h, being coplanar, with h directed betweenω and Z. If Ixx = Iyy > Izz,
the three vectors would still be coplanar, but ω would be directed between
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h and Z (see, e.g., Wertz1). If we also have misalignments between the body
axes and principal axes, the object can experience both coning and nutation
simultaneously.

h"

X"
Y"

Z"

ω

ω : Instantaneous)angular)rate)
h":"Angular)momentum"

Fig. 3.8c. Rotation types: nutation.

Let’s look at how all this applies to a nice symmetrical object like a cylin-
der. First, let’s make the origin of the coordinate system the center of mass of
the object and allow no external torques to be present (i.e., angular momen-
tum is conserved). Since we’re also going to work with an inertial reference
frame, the angular momentum vector will be fixed in our frame. For conve-
nience, we’ll make it the inertial reference frame’s z-axis. Next, we’ll select
the body axes so that they line up perfectly with the principal axes in order
to make the moment of inertia tensor diagonal. Because of the cylindrical
symmetry, selection of the x-axis is arbitrary, but after that selection the y-
axis is fixed by the orthogonality condition on the axes. In addition, for a
cylinder, two of the principal moments will be identical. Specifically, if the
body frame’s z-axis lines up with the cylinder’s symmetry axis, the moments
Ixx and Iyy will be equal (again, see Figures 3.8a; we’re just elaborating on
the same scenario).

Now that we’ve defined a reference frame in which something can hap-
pen, let’s put something in the frame that’s doing something. Suppose our
cylinder is nutating. How can we decompose that rather complex motion in
order to understand it better? Well, if the motion was a pure rotation, we’d
only be concerned with motions of body frame vectors about a principal axis
(say, the z-axis). But when the object is nutating, what we have instead is a
superposition of rotation about the principal axis with rotation of the prin-

1J. Wertz, Spacecraft Attitude Determination and Control, pp. 489–492
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cipal axis about the one fixed vector in our reference frame, the angular mo-
mentum vector. That means that the instantaneous rotation vector will be
a vector sum of these two rotations, which also means that the three vec-
tors (the instantaneous rotation vector, the principal axis vector, and angular
momentum vector) will be coplanar (as previously mentioned), and both the
principal axis and instantaneous rotation vector will rotate about the fixed
angular momentum vector in the inertial reference frame. The angle defining
the cone on which the principal axis rotates about the angular momentum
vector is called the nutation angle, and will be constant. Similarly, the angle
defining the cone on which the instantaneous angular velocity vector rotates
about the angular momentum vector is called the space cone angle, and also
will be constant. If we now imagine ourselves in the non-inertial body frame
defined by the principal axes, both the angular momentum vector and in-
stantaneous angular velocity vector will appear to rotate about the principal
z-axis. The angle defining the cone on which the instantaneous angular ve-
locity vector appears to rotate about the principal axis is called the body cone.

Abstractly, this all is pretty straightforward based on the coplanarity of
the three vectors, but envisioning what it looks like physically can be rather
difficult. Suffice it to say for now that although the spacecraft may be under-
going an apparently chaotic tumble, there is in fact method in the madness.
(See, e.g., Wertz2 for more detail.)

3.7 How Torques Can Influence an Object’s Rotational
Motion

All our discussions of physical problems so far have dealt with torque-free
motion. But in the real world of spacecraft applications, torques (both inten-
tional and unintentional) are always acting on the spacecraft. The environ-
ment in which the spacecraft “lives” exerts on it a wide variety of pertur-
bative torques generically referred to as disturbance torques. To counteract
these natural effects, a spacecraft will initiate its own control torques typi-
cally via reaction wheels, thrusters, or magnetic torquer bars. Torques come
in two other flavors, external and internal. External torques actually change
the spacecraft’s total angular momentum, for good or ill. So if you want to
nullify fully the effects of a disturbance torque, you have to apply a control
torque with an attitude actuator like a magnetic torquer bar (MTB) that in-
teracts with the outside, or thrusters that cause part of the spacecraft itself
(i.e., thruster fuel) to be cast off along with unwanted angular momentum.
By contrast, internal torques may change the angular momentum of a space-
craft component, but do not change the spacecraft’s total angular momen-
tum. For example, if you speed up a reaction wheel (thereby increasing the

2ibid
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wheel’s angular momentum), the spacecraft body’s angular rate will change
(thereby changing its angular momentum) such that the sum of the wheel’s
and spacecraft’s angular momenta will remain constant. From a practical
applications standpoint, typically both types of control torques are utilized
onboard. As reaction wheels provide very precise control and are at least
moderately powerful, wheels may initially be used to null the effects of dis-
turbance torques. But over time, eventually the wheels may saturate (i.e.,
reach their maximum allowed speeds), so an external torque attitude actu-
ator is needed to unload excess wheel momenta so the reaction wheels can
continue to perform their control function. For this purpose, weak MTBs can
be used continuously to keep the wheels far from their saturation limits at
all times, or powerful thrusters can be used intermittently to dump wheel
momenta whenever their speeds approach saturation levels. We’ll discuss
wheels, MTBs and thrusters in much more detail in Chapter 5.

Torques can affect the spacecraft’s angular momentum in either or both of
two ways, by changing the angular momentum vector’s direction or changing
its magnitude. For example, for an object rotating about one of its principal
axes, applying a torque perpendicular to the direction of the object’s angular
momentum vector will cause the momentum vector to precess (like a tilted
spinning top precessing, or the Earth’s spin axis precessing). A familiar ex-
ample of this behavior is the precession of a top’s spin axis as a response to
the torque exerted on it by gravity. If the torque is weak, a slow precession
results, which is also called drift. By contrast, a torque applied parallel to the
direction of the angular momentum vector will leave its direction unchanged
but will instead increase or decrease its magnitude.

As is the case for all vectors, the directions of the angular momentum
and torque vectors will change depending on the reference frame selected.
For example, although the angular momentum vector will, in the absence of
external torques, be constant in both direction and magnitude in an inertial
reference frame, the components of the angular momentum vector usually
will be time-dependent quantities as seen in the spacecraft body frame, even
though the magnitude of the vector will be conserved. Another important
conserved quantity (in the absence of external torques and dissipative ef-
fects) is the rotational kinetic energy. Rotational kinetic energy is the analog to
translational kinetic energy. Recall that translational kinetic energy is equal
tomv2/2 (wherem is the mass of the object and v is its translational velocity),
which also can be expressed as p2/2m (where p is the object’s translational
momentum). It should then come as no surprise that the rotational kinetic
energy is given by (L2

x/Ixx +L2
y /Iyy +L2

z /Izz)/2, where L = (Lx,Ly ,Lz) is the an-
gular momentum in the body frame (where we’ll assume the body frame and
principal axis frame are coincident) and Ixx, Iyy , and Izz are the object’s prin-
cipal moments of inertia (i.e., the diagonal elements of its moment of inertia
tensor in a body frame where the body axes coincide with the principal axes).
Since by conservation of momentum we know that the magnitude of the an-
gular momentum vector (given by L2

x+L2
y+L2

z ) is also a constant, we have two
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constraints on allowed values of the components of the angular momentum
vector in the body frame. Expressed geometrically, conservation of rotational
kinetic energy defines the surface of an ellipsoid on which the components
of the angular momentum vector in the body frame must lie. Similarly, con-
servation of angular momentum defines the surface of a sphere on which the
components of the angular momentum vector in the body frame must lie.
Imposing both constraints, then, is the same as saying that in the absence of
external torques the components of the object’s angular momentum vector,
as seen in the body frame, must lie on the intersection of the energy ellipsoid
with the angular momentum sphere.

For simplicity of analysis, let’s assume the object once again is cylin-
drically symmetric, with the axis of symmetry lying along the z-axis (i.e.,
Ixx = Iyy). Then the intersection of the sphere and ellipsoid will consist of
two parallel circles in body frame angular momentum space (see Figures 3.9a
and 3.9b). In other words, the angular momentum vector in the body frame
rotates about one of the two circles at a constant rate with the z-component
of the angular momentum vector held constant. This is equivalent to saying
that in the inertial frame the axis of rotation (the z-axis of the body frame) ro-
tates about the angular momentum vector which is fixed, the nutation effect
we discussed earlier.

L3 

L2 

L1 

Energy Ellipsoid 

Angular 
Momentum 
Sphere 

Fig. 3.9a. Intersection of the Energy Ellipsoid and Angular Momentum Sphere when
the Largest Principle Moment of Inertia is not along the z-axis.
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Fig. 3.9b. Intersection of the Energy Ellipsoid and Angular Momentum Sphere when
the Largest Principle Moment of Inertia is along the z-axis.

Now let’s introduce dissipative effects that remove rotational energy from
the system, e.g., frictional effects from liquid sloshing in a spacecraft nu-
tation damper. How will that affect the object’s angular momentum? Since
a dissipative effect by its nature has no preferred axis (otherwise we’d be
dealing with a systematic effect), its influence on the object will be to shrink
down the rotational kinetic energy ellipsoid without changing the ellipsoid’s
shape. By contrast, since no external torques are present, the angular mo-
mentum sphere will retain both its size and shape. This means that while
the ellipsoid shrinks under the influence of the dissipative effects, the angu-
lar momentum vector, for the case where Izz is the largest of the principal
moments, will steadily spiral into smaller and smaller circles, eventually be-
coming parallel to the z-axis. For the case where Izz is the smallest of the
principal moments, the two circles draw together until they coincide along
the x-y plane and the angular momentum vector remains fixed on a point on
the circle with zero z-component. Once either of these states is reached, the
angular momentum vector is now fixed in the body frame as well as the iner-
tial frame, so no nutation is present any longer and the body simply rotates
about a fixed principal axis. Energy dissipation also ends at this point.

If there is no symmetry axis (for example, Ixx < Iyy < Izz), when energy
dissipation ceases, the angular momentum vector will become aligned with
the principal axis having the largest principal moment since for this geome-
try the rotational kinetic energy will be minimized. So if a spacecraft initially
is spinning about the principal axis having the largest principal moment and
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nutation is introduced as a perturbation (meaning a small effect relative to
the primary motion about the principal axis), any frictional effects present
will cause the nutation to be damped out with time, hence the utility of a
nutation damper filled with sloshing liquid for a spacecraft spinning about
its major principal axis. On the other hand, if the spacecraft spin axis is a mi-
nor principal axis, energy dissipation will introduce motions about the major
axis resulting in an increase in nutation. If continued unabated, the energy
dissipation will eventually “suck out” all the rotation about the minor axis
while pumping rotation into the major axis, producing a pure rotation about
an axis perpendicular to what had been the nominal spin axis, a condition re-
ferred to as flat spin. This actually happened on orbit to Explorer 1, the first
American satellite, back in February 1958. Explorer 1 was a pencil-shaped
spacecraft (see Figure 3.10) that was spin-stabilized about the principal axis
associated with its smallest principal moment. However, vibrational motions
built up in the spacecraft antennas that drove the energy dissipation effects
we’ve been talking about, leading to a condition of flat spin and loss of the
spacecraft.

Fig. 3.10. Explorer 1 Spacecraft (see https://www.nasa.gov/mission_pages/

explorer/explorer-overview.html). Credits: NASA.

3.8 Attitude Control Torques

Although many of the first spacecraft relied on spin-stabilization to provide
passive attitude control, nowadays most spacecraft utilize active control atti-
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tude actuators to maintain their desired orientation, or to reorient the space-
craft to a new pointing. In the next couple of chapters we’ll provide a lot
of descriptive material regarding attitude actuators, and the attitude sensors
that supply the measurements that are processed onboard to determine how
the actuators should be commanded. For now though we’ll just spend a little
time discussing the nature of the control torques generated by the attitude
actuators, as well as the environmental disturbance torques for which the
control torques must compensate.

An attitude control torque is usually produced by one of three actua-
tor types: thrusters, reaction wheels, or magnetic torque bars. Thrusters are
capable of supplying the quickest and most powerful torques, although re-
cently considerable effort has been made to develop very precise low force
(micronewton) thrusters to support special high accuracy pointing require-
ments. Thrusters can supply attitude control torques in any orbit, albeit
with some significant negatives (e.g., finite lifetime due to finite fuel sup-
ply, and for hydrazine-based thrusters a corrosive influence on sensitive op-
tics). Ideally, to cover both polarities of the 3 degrees of freedom associated
with a general rotation, a minimum of 6 attitude thrusters are required for
three-axis stabilized spacecraft. For spin-stabilized spacecraft, you only need
two thrusters to control the spin rate (spin-up or spin-down) and two more
thrusters to precess the spin axis (increasing Sun angle or decreasing Sun
angle). However, most missions require some redundancy in case of hard-
ware failure, so actual spacecraft may fly as many as twice the number of
attitude thrusters listed above, although in many cases the redundancy is
achieved by using combinations of orbit thrusters that provide the needed
torque about the spacecraft center of mass without introducing excessive
forces on the center of mass, thereby not significantly perturbing the orbit.
By the same token, the attitude thrusters themselves, due to thrust centroid
misalignments, may introduce forces on the spacecraft center of mass that
can perturb the orbit.

Unlike thrusters, wheels don’t control spacecraft momentum by cast-
ing off material that carries some net angular momentum (relative to the
spacecraft center of mass) with it; rather, they “merely” redistribute angu-
lar momentum between parts of the spacecraft. They tend to be weaker
than thrusters, with typical maximum wheel torques ranging from 0.01 to
1 newton-meters.3 Unlike thrusters, wheels don’t push against or interact
with the world outside the spacecraft. So the torques that wheels generate
are internal ones that cannot change the spacecraft’s total angular momen-
tum. Instead, they orchestrate an exchange of angular momentum between
the wheels and the spacecraft body. For example, if a pitch wheel spins up
positively, a previously “stationary” spacecraft will rotate in the negative
pitch direction so as to keep the total angular momentum constant. Of course
the spacecraft’s spin rate will be much smaller, reflected by the ratio of the

3Larson and Wertz, Space Mission Analysis and Design, page 355, Table 11-11
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wheel moment of inertia and the spacecraft’s pitch-axis moment of inertia.
The major negative regarding use of wheels for attitude control is that they
can saturate. In other words, if you keep commanding torques to the wheel
to compensate for environmental torques acting in about the same direction
(a secular torque term), eventually the wheel will reach its maximum spin
rate and spacecraft attitude control may be lost. So use of wheels as the pri-
mary mechanism for attitude control requires employment of a secondary
system (thrusters or MTBs) to allow angular momentum to be dumped from
the wheels before their spin rates get too high. For a three-axis stabilized
spacecraft, covering the three degrees of freedom associated with a general
rotation requires employment of a minimum of 3 wheels. In practice, most
spacecraft of this type fly 4 wheels, which enables a wider distribution of
angular momentum (ameliorating somewhat the saturation problem) and
also provides redundancy if a wheel fails. By contrast, if attitude accuracy is
not terribly tight, it is possible with spinning spacecraft (e.g., Earth-pointing
spacecraft with 1 revolution per orbit (RPO) motion) to use only 2 wheels.
One wheel supplies pitch control to enable the 1 RPO motion while the sec-
ond wheel provides roll and yaw control, taking advantage of quarter orbit
roll-yaw coupling (the interchange of roll and yaw attitude errors as viewed
in the body frame). For spacecraft designed with this strategy, the roll and
yaw errors oscillate over a quarter of an orbit but stay within some bounded
magnitude.

MTBs tend to be the weakest and most limited control torque sources.
MTBs require a significant geomagnetic field with which to interact. They
normally only are usable below synchronous altitude (35,000 km) because of
the altitude dependent drop-off in the geomagnetic field. Even at low Earth
orbit (LEO), typical maximum torques from magnetic coils range between
about 0.0005 to 0.2 newton-meters.4 Their use also can degrade magnetome-
ter accuracy, unless their perturbing influence is compensated for via a cou-
pling matrix. Offsetting these negatives, the advantage of magnetic torquers
is that they’re operated solely with renewable electrical power, and there-
fore do not suffer from the lifetime limitations of attitude thrusters. As such,
they are a very convenient means to provide continuous dumping of angular
momentum from the wheels. They also are a very “patient” mechanism for
nulling anomalously high body rates following spacecraft separation from
the launch vehicle, or high rates induced by a stuck-on thruster.

3.9 Environmental Torques

Having mentioned the control torques that can be used to fix problems,
let’s spend the rest of the chapter discussing the environmental torques that
can cause problems. Four major sources of external, environmental torques

4Larson and Wertz, Space Mission Analysis and Design, page 355, Table 11-11
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are gravity gradient, Solar radiation, aerodynamics, and flexible dynamics.
Gravity gradient torque arises from variations in the gravitational force over
a non-spherical object. An equation for calculating torque, approximating
the Earth as a spherically symmetric body, is provided in Equation 3.10.

NGG = (3µ/ |R|3)R× (IR)/ |R|2 (3.10)

where

NGG = gravity gradient torque (kg m2/sec2)
µ = the Earth’s gravitational constant (GMe) (m3/sec2)
R = the geocentric position vector of the object’s body reference
frame (note that the center of the frame need not be the center of
mass) (m)
|R| = magnitude of the position vector (m)
I = the object’s moment of inertia tensor (kg m2)

Its general features of interest are that the torque is normal to local ver-
tical (so it will cause rotational alignment with local vertical, not rotations
around it), it is inversely proportional to the cube of the distance (so it drops
off faster than the gravitational force on the center of mass), and it vanishes
for a spherically symmetric object. For a fixed-pointing spacecraft where the
duration of the pointing is comparable to or longer than the orbital period,
gravity gradient torque will consist of two components, a periodic term and a
secular term. The secular term is the one that introduces problems for wheel-
controlled spacecraft as it will cause the wheel speeds to ramp upward with
time, eventually leading to saturation unless angular momentum is dumped.
The periodic term will simply cause the wheel speeds to oscillate up and
down as the spacecraft follows its orbital path. Recall that Earth oblateness
was most important near the Earth because the farther you got away from
the Earth the rounder it “looked” to the spacecraft; it also is the case that
the farther you get away from the Earth, the more symmetric the spacecraft
looks to the Earth and so the less important gravity gradient torque becomes.
However, if you get too close to the Earth, the influence of atmospheric drag
becomes more important. Trading the relative drop-offs of gravity gradient
and atmospheric torques with altitude, gravity gradient’s region of domi-
nance is LEO above 400 km altitude.5

Solar radiation torque also arises from asymmetries, but in its case the
source is the displacement between the object’s center of mass and its center
of pressure. The effect of solar radiation pressure can be viewed as a force
applied to the object’s center of pressure. But because the center of pressure
is determined by the object’s cross-section displayed to the Sun, while the
center of mass is determined by the object’s mass structure independent of
its orientation relative to the Sun, it can easily be the case that the two points
will not coincide. That displacement will result in a torque about the object’s

5Wertz, Spacecraft Attitude Determination and Control, page 573
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center of mass, where the lever arm is given by the displacement between
the center of mass and the center of pressure projected into local plane per-
pendicular to the Sun line.

The magnitude of the solar radiation pressure is driven by the vector dif-
ference between the translational momentum associated with the incident
and reflected radiation flux. In other words, the amount of momentum per
unit time that gets imparted to the object’s cross-section defines the force be-
ing applied to the object by the solar radiation flux. The flux itself, as expe-
rienced by the spacecraft, is influenced by several effects. First, the intrinsic
nature of the flux itself is determined by the intensity and spectral distribu-
tion of the light emitted by the Sun. Second, the effect of the flux will dimin-
ish as the square of the distance between the object and the Sun. This is easy
to visualize when considered from an energy standpoint. If we approximate
the Sun as a point object emitting light energy in a homogenous, spherical
pattern, a given package of energy at a specified post-emission time will be
distributed evenly over the surface of a sphere whose radius (r) is the time
multiplied by the speed of light. Since the area of the sphere is 4πr2, the den-
sity of the energy distributed on the sphere will diminish with the square of
the radius. So the flux felt by the spacecraft will also drop off with the square
of the distance separation. A third influence is the geometry of the space-
craft’s surface and its associated optical properties. Reflected light imparts
twice the momentum to the surface it strikes as does absorbed light, so what
the spacecraft is made of and how it’s coated plays a large part in determin-
ing what influence a given amount of solar flux will have. Fourth, the ori-
entation of the Sun vector relative to the spacecraft determines the size and
shape of the cross-section being presented and plays a role in defining the
displacement between the center of pressure and the center of mass. Fifth,
spacecraft structure shadowing effects can influence solar radiation torque in
two ways: by reducing the effective force being applied, and by shifting the
location of the center of pressure. Although at LEO altitudes gravity gradi-
ent and atmospheric effects vie with each other for dominance of spacecraft
attitude perturbations, once you get to high altitudes solar radiation torque
is the prime perturbation.

By contrast, below 400 km, aerodynamic torque dominates all other en-
vironmental torques.6 A fairly accurate way to model the influence of the at-
mosphere on spacecraft attitude is to treat its effect as if the momenta of any
impacting molecules are absorbed by the spacecraft. In other words, instead
of visualizing an air molecule as impacting the spacecraft and then bounc-
ing off in an elastic collision, just assume the molecule joins the spacecraft
surface molecules, reaches thermal equilibrium with them (the spacecraft),
and then just escapes away. Since the surface thermal velocity is much less
than the air molecule’s incident velocity, it is basically the same as assuming
the air molecule gives up all its kinetic energy to the spacecraft at the time of

6Wertz, Spacecraft Attitude Determination and Control, page 573
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collision. As with solar radiation pressure, aerodynamic torque is influenced
by the size of the displacement between the center of mass and the center
of pressure (i.e., the longer the lever arm length, the greater the torque).
The aerodynamic torque corollary to solar radiation pressure’s radiation in-
tensity and spectral distribution is the atmospheric density, which we know
from Chapter 2 is pretty complicated to model and is affected by things like
altitude, time of day, and day of year. We also have to be concerned with the
spacecraft orientation relative to its flight path through the atmosphere. This
is called the angle of attack, and is defined as the angle between the spacecraft
velocity vector and the outward normal of the cross-section presented to the
atmosphere. Also, as with solar radiation torque, shadowing effects (relative
to atmospheric impingement) can reduce the force being applied and shift
the center of pressure.

The last class of attitude torques, flexible dynamics, is more a description
of what’s happening to the spacecraft than a description of an environmental
phenomenon that’s acting on the spacecraft. Flexible dynamics refers to mo-
tions of spacecraft appendages, such as antenna booms or solar arrays that
can impact the accuracy of the spacecraft’s pointing. Contributing causes to
flexible dynamics perturbations effectively include all the phenomena we’ve
already discussed in this chapter, i.e. gravity gradient forces, heating due to
solar radiation, solar pressure, aerodynamic drag, and thrust forces. Gravity
gradient forces can affect spacecraft structures in several ways. First, long,
flexible components such as antenna booms may be deformed as they “feel”
unequal gravitational forces along the length of the structure. Also, as these
effects vary throughout the orbit (as a result of non-zero orbit eccentric-
ity), periodic time-dependent variations may be experienced as well. Second,
large deformations can even change the spacecraft’s moments of inertia, fur-
ther perturbing the spacecraft’s motion. Third, the additional force applied
to the structure can introduce an axial tension, which can increase bending
stiffness, which in turn will increase the structure’s natural resonance fre-
quencies. So when designing the spacecraft’s attitude control law, one must
consider how the spacecraft may respond in the frequency domain as gravity
gradient shifts its resonance locations at different points in the orbit.

Temperature gradients due to unequal solar heating can also introduce
deformations. When these effects manifest themselves gradually, tempera-
ture variations over an entire orbital period can induce spacecraft motions
characterized by the orbital frequency. These motions in turn can excite
spacecraft natural frequencies that are close to integer multiples of the or-
bital frequency, producing undesirable resonance behavior. Thermal gradi-
ents can also manifest themselves in a more violent fashion, such as the
“slip-stick” phenomenon experienced by HST soon after launch. In that case,
temperature gradients during day-night transitions led to a build up in me-
chanical energy within HST’s original solar arrays, which when released pro-
duced large amplitude transients leading to frequent guide star loss-of-lock.
This problem was initially ameliorated via development of a more robust at-



70 3 Angular Momentum and Torque

titude control law, and later was solved by replacing the original solar arrays
with those of an improved design during HST’s First Servicing Mission.

Structural deformations can also introduce changes in the solar radiation
torques experienced by the spacecraft because structural changes can change
the angle of incidence of the solar radiation “falling” on the spacecraft. The
deformations may also change the location of the center of pressure relative
to the center of mass, thereby modifying the lever arm length over which
the radiation pressure is being applied. Flexible dynamics effects of this type
do not become important (relative to the other three sources) until you get
up to geosynchronous altitude. Below 500 km7, we’re back in the “soup” of
the atmosphere, and aerodynamic influences become important. As when we
discussed the torques directly inflicted by these sources, aerodynamic drag
acts in a similar manner to solar pressure, except the spacecraft is being bom-
barded by air molecules instead of photons. Finally, operating thrusters can
also introduce flexible dynamics effects. As a series of thrust pulses are fired,
structural deformation may build up, as for example as a result of thruster
plume impingement on a spacecraft boom. Also, the simple expulsion of fuel
from the spacecraft will change the spacecraft’s moment of inertia tensor and
will shift the spacecraft’s center of mass relative to its center of pressure,
again modifying the lever arm length over which solar radiation pressure
and aerodynamic drag are applied.

7Wertz, Spacecraft Attitude Determination and Control, page 17, Table 1-2
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Attitude Measurement Sensors

One of the original things about the Columbo television series was that you
got to see the murderer commit a murder, and then got to watch Peter Falk
try to learn what you already knew over the course of the rest of the program.
Columbo would always go to the scene of the crime and view the carefully
preserved murder site with his own eyes. Forensic staff, fully equipped with
appropriate state-of-the-art investigative equipment, were there already col-
lecting the on-site information he’d need to solve the crime, and he’d make
his own unique, disruptive contributions to the process. Then Columbo
would gather more information off-site, by interviewing people in the neigh-
borhood, doing some research, and otherwise making a nuisance of himself.
He then analyzed the accumulated information (i.e., he hit his forehead with
his hand and smoked a cigar) to develop an initial list of suspects, which then
would be narrowed to a prime suspect after collecting more data, irritating
more people with his one last question shtick, hitting his forehead again, and
smoking some more cigars. Miraculously, the prime suspect was always the
guy who we saw commit the murder at the start of the show, and by the end
of the show he had always confessed to having committed the crime just so
Columbo wouldn’t burn anymore holes in his furniture with his cigars.

Without having any direct knowledge of how a real murder investigation
managed by real police detectives works, the process described above (with
the Columbo comedy removed) actually seems at a high level to be a fairly
plausible model for how the problem of determining the guilty party might
be solved, and how a whole host of real-world problems in other applica-
tions might be solved. Now where does this logical, well-ordered process
break down when you’re working a spacecraft operational problem? Unfor-
tunately, pretty much everywhere. As opposed to collecting information you
need to solve your problem after the fact, you’re usually stuck with whatever
information happened to be collected before the problem occurred. And un-
less you’re one of a handful of astronauts, it’s not likely you’ll be personally
visiting the scene of the crime to see for yourself what happened and how it
occurred.
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So part of the spacecraft design process must consist of anticipating what
problems might happen in-flight, which translates as including information-
gathering devices onboard that are capable of generating the data needed to
analyze the problems when they happen, installing software that will iden-
tify the problems as they happen (placing the spacecraft in at least a safe
condition until the problem can be solved and the solution implemented),
and recording the information collected onboard in an organized fashion so
an orderly analysis of the data can be performed. For spacecraft operations,
as opposed to murder investigations (fictional, or otherwise), the most im-
portant actions then must be taken before (in fact many years before) the
problem occurs if a quick, economical solution is to be achieved. And one
must view the crime scene through the “eyes” of the “dumb” electronic infor-
mation gatherers, not through the eyes of a smart, experienced professional.
Fortunately although there are thousands of murderers and victims in this
country each year (that probably didn’t come out the way we intended), with
a fairly wide range of motives and methodologies, there are only a relatively
few number of spacecraft mission types that are flown, with a relatively lim-
ited number of problems to solve. So there are many fewer potential victims
to be monitored and a lot less information and information types that need
to be collected.

For spacecraft attitude determination and control purposes, the informa-
tion gatherers are called attitude measurement sensors. These sensors are
used to collect information needed to deal with (hopefully) infrequent in-
flight anomalies, and more importantly are used to supply the attitude data
required to operate the spacecraft when conducting its nominal science ac-
tivities. There are five major classes of attitude sensors: namely, Sun sensors,
Earth sensors, magnetometers, star sensors, and gyros. The first four are ab-
solute attitude sensors, i.e., they provide measurements that can enable de-
termination of the spacecraft’s orientation in inertial space. The fifth sensor
type, gyros, only measures the change in attitude between the current mea-
surement and the time of the previous measurement. Each sensor type has
its own range of accuracy and reliability, its own natural orbital geometry
for application, its own responsiveness and processing speed, and its own
strengths and weaknesses. When designing the attitude sensor suite to sup-
port a specific mission, all these elements must be factored in, along with
more mundane issues such as cost and availability.

But before you run out and start designing your own spacecraft, let’s
spend some time talking about each sensor type, starting first with a com-
parison of their relative accuracies, without getting into the details of how
they work until later. The first sensor type we’ll look at is Sun sensors. Sun
sensors generally measure the direction of the Sun’s center (called the Sun
vector) in the sensor frame (transformable to the body frame through multi-
plication by the sensor alignment matrix), although for spinning spacecraft
the measurement is just the angle between the Sun vector and the spin axis.
There are two types of Sun sensors typically used: coarse Sun sensors (CSSs)



4 Attitude Measurement Sensors 73

and fine or digital Sun sensors (FSSs or DSSs), with the CSSs not surprisingly
being the less accurate of the two types. Sun sensor accuracies range from 3◦

to 0.005◦ (18 asec).1 In rare cases, typically for solar observing missions, a
DSS may (with a lot of effort) be calibrated accurate to a few arcseconds. By
contrast, even after calibration, CSS accuracy will always be limited by their
less sophisticated construction and by Earth albedo effects, i.e., sunlight re-
flected from the Earth into the CSS that is interpreted by the CSS electronics
as coming directly from the Sun, thereby producing significant measurement
errors.

Earth sensors measure quantities from which you can deduce the direc-
tion vector to the Earth center (called the nadir vector) relative to the space-
craft. Like Sun sensors, there are also two basic types of Earth sensors: scan-
ning sensors and fixed sensors. Scanner accuracies range from 1.0◦ to 0.1◦,
while fixed sensors are good from about 0.25◦ to 0.1◦.2 Most Earth sensors
trigger on the Earth’s atmosphere rather than the Earth’s surface. They re-
spond to infrared (IR) radiation at what’s called the CO2 level about 40 km
above the Earth’s surface. The altitude of this level is greatly affected by daily
and seasonal factors related to solar radiation, so interpretation of the sen-
sor’s data requires use of a horizon radiance model, the accuracy of which
limits the effective accuracy of the sensor.

Magnetometers, or more precisely three-axis magnetometers (TAMs) mea-
sure the local geomagnetic field vector relative to the spacecraft. Their accu-
racies range from 3◦ to 0.5◦.3 When used in single-frame attitude determina-
tion (i.e., computing individual attitudes from individual measurement sets
as opposed to computing an average attitude over a range of data), the ac-
curacies of the results are limited by the accuracy of the geomagnetic field
model. However, better results can be obtained by averaging out field model
errors over a swath of data.

Star sensors measure the direction to a star (or set of stars) relative to the
spacecraft. Unlike the previously described sensors that have remained basi-
cally the same over the past 20 years, star sensors have undergone enormous
increases in sophistication, largely due to the inclusion of software function-
ality and star catalog data directly in the star sensor “box”. But more on those
details later. For “standard” star sensors, accuracies range from an arcminute
(60 arcseconds) to several arcseconds. However, using special customized
fine error sensors (FESs), such as the Hubble Space Telescope’s (HST’s) fine
guidance sensors (FGSs), sub-arcsecond accuracies can be achieved, where
the absolute (as opposed to relative) accuracy of attitudes derived from the
sensor data largely is limited by that of the associated star catalog.

Gyros measure the instantaneous spacecraft angular velocity, and by in-
tegration the change in orientation of the spacecraft over a period of time

1Larson & Wertz, Space Mission Analysis and Design, page 360, Table 11-14
2Ibid
3Larson & Wertz, Space Mission Analysis and Design, page 360, Table 11-14
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(e.g., since the last star tracker attitude measurement). There have also been
broad-based advances in space-qualified gyro technology. Whereas previ-
ously the term gyro was effectively synonymous with mechanical gyro, the
class of gyros has now been expanded to include vibrating gyros and opti-
cal gyros. Because gyros only measure relative attitude changes, not absolute
ones, small systematic measurement errors when integrated over time will
generate very large errors if not regularly corrected. This secular, ramping
error is called the gyro drift bias, and has an associated accuracy for mechan-
ical gyros ranging from 0.003 deg/hr to 1 deg/hr.4 Hemispheric resonating
gyros (HRGs), a class of vibrating gyro, deliver comparable drift bias errors,
ranging down to 0.005 deg/hr, or for a lot of additional cost down as low as
0.001 deg/hr.5 At the coarse end, there’s a particularly rugged class of vibrat-
ing gyro that can survive being fired from a gun and still be reliable to 0.1 to
0.01 deg/hr.6 The third class of gyro, optical gyros, itself comes in a couple
different “flavors”, fiber optic gyros (FOGs) and Ring Laser Gyros (RLGs).
We’ll have a lot more information on these various types of gyros later in
this chapter, but for now let’s return to the first sensor type we mentioned,
Sun sensors, and cover it in more detail.

4.1 Sun Sensors

Since Sun sensors have many positive qualities and very few negatives, just
about every GSFC spacecraft flies at least one type of Sun sensor. Unlike
the case of Earth sensors, where the apparent size of the Earth varies dra-
matically with orbit altitude, the large distance from the Earth to the Sun
(almost 4 orders of magnitude larger than the spacecraft-to-Earth distance
for even high altitude Earth orbits) causes the Sun to appear (from the point
of view of a spacecraft in Earth orbit) to be a disk of constant angular diam-
eter, about a half a degree in diameter. For some calculations, the Sun can
be approximated simply as a point source. So, unlike many Earth sensors, a
Sun sensor does not need to be pre-tuned to the anticipated orbit altitude.
Furthermore, unlike the case of star trackers and the star directions they
measure, the Sun is so bright that nothing else can be mistaken for it (i.e.,
there are no potential spoiler sources). Also because of the Sun’s extraordi-
narily high brightness, Sun sensors require little external electrical power.
In fact, the energy delivered by solar radiation falling on the sensor (at the
Solar separation distances associated with most Earth orbits) is sufficiently
high that CSSs are powered by the object they’re measuring. In addition to
their specialized role in attitude determination, Sun sensors also are used
to support the other subsystems’ needs by enabling bright object constraint

4Ibid
5Lawrence, Modern Inertial Technology, pages 158 and 167
6Lawrence, Modern Inertial Technology, page 167
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checking (relevant to optics and thermal protection), facilitating solar array
positioning (relevant to power maintenance), and providing timing initial-
ization for spinning spacecraft (relevant to thruster firing).

There are three significant issues associated with Sun sensor use. First,
when the spacecraft is in orbit night, the Sun is occulted by the Earth, so
no Sun sensor data is available. This will particularly impact low-Earth or-
biting spacecraft where extended periods of shadow are inevitable. But for
most of these missions, the Sun sensors are primarily used during the early
operations phase immediately after separation from the launch vehicle, and
when the spacecraft enters safemode as the result of an inflight anomaly.
Typically, the launch window is selected to avoid shadow periods right at
separation because of the need (from a spacecraft health and safety stand-
point) to restore the spacecraft battery to a fully charged state, so Sun sensor
data is usually available for an extended time period after separation. Once
the Sun is acquired via the Sun sensor, there usually is a non-Sun sensor fall-
back option (for example, gyro hold or passive gyroscopic stiffness) that will
keep the spacecraft properly oriented relative to the Sun during shadow peri-
ods. These fall-back options are also used to support Sun-pointing safemodes
when the Sun is not in view. The second issue also relates to Sun visibility,
but from a more immediate blockage source, the spacecraft itself. Clearly, if
the Sun sensor does not have an unobstructed view of the Sun, either a mea-
surement will fail to be made or the measurement will suffer a high level of
error. Third, reflections off a spacecraft structure that fall into the Sun sensor
could make the Sun appear to be shifted from its true direction. So to avoid
being shadowed by masts, booms, etc., the Sun sensors are often mounted at
the ends of the vehicle, or directly on its solar array wings (a mounting strat-
egy utilized only for CSSs) where structural bending can limit the accuracy
of attitudes computed using the associated Sun sensor data.

Now having talked about why most spacecraft fly Sun sensors, let’s de-
scribe more fully the three different classes of Sun sensors: Sun presence
sensors, analog sensors, and digital sensors. All that a Sun presence sensor
measures is whether it sees the Sun or not. So the output signal is above
a threshold if the Sun is in the sensor’s field of view (FOV) and is below a
threshold if the Sun is not in the sensor’s FOV. A Sun presence sensor has
many important uses independent of attitude determination. It can be used
as a bright object detector to protect light sensitive instrumentation. It can
be used as a trigger to activate hardware and or software. It also can be used
to reorient the spacecraft, possibly as a precursor to higher accuracy activi-
ties. For example, a bright object sensor that identifies that the Sun is on the
“wrong” side of the spacecraft can initiate and control an attitude reorienta-
tion to bring the Sun into the FOV of more sophisticated Sun sensors. And
onboard a spinning spacecraft, you can place two Sun presence detectors in
a V-shaped configuration to form a 2-slit Sun sensor that can measure the
angle between the Sun vector and the spin axis of the spacecraft (see Figure
4.1).
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Fig. 4.1. V-slit Sun sensor.

As opposed to Sun presence detectors, analog Sun sensors (also called
coarse Sun sensors (CSSs)) measure the angle between the sun sensor normal
and the Sun direction. When the Sun is in a CSS’s FOV, its silicon photocell
generates an output signal that is a continuous, monotonic function of the
Sun angle. The output current is proportional to the cosine of the angle be-
tween the sensor boresight and the Sunline, which is why the sensor is often
called a cosine detector (see Figure 4.2).

Photocell

Normal

Sun
Angle

Sunlight

Fig. 4.2. Cosine detector sun sensor.

Because the device is so simple, it can’t tell the difference between direct
light from the Sun and Earth albedo, i.e., sunlight reflected off the Earth.
Because the angle output by the detector is a measurement of the center of
the light distribution input to the sensor, spurious light generated by Earth
albedo will cause the sensor to “believe” the Sun direction is shifted from
its true direction. Error due to Earth albedo can be quite large (the Global
Precipitation Measurement team saw errors of upwards of 30 degrees when
flying near Antarctica). Consequently, you only want to use CSS data for
applications having fairly low accuracy requirements, for example last gasp
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bright object constraint checking, pointing control during safemode, attitude
sanity checking, etc. With 2 photocells arranged as shown in Figure 4.3a, you
can difference the output from the two detectors to yield a nice linear signal
over a conical FOV (of half angle about 45 degrees) centered on the boresight
(see Figure 4.3b).

Reference Axis 

~55° ~55° 

Detector 1 
Photocell 

Detector 2 
Photocell 

normal normal 

Fig. 4.3a. Cosine detectors used together.

Fig. 4.3b. Output current difference between two cosine detectors.

With 4 photocells you can measure the angle the sunline makes with re-
spect to two orthogonal planes, which is sufficient information to define the
direction of the Sun vector in the spacecraft body frame (the corollary to
defining a star direction from two angles, right ascension and declination, as
discussed in Chapter 1). The direct output of a CSS is two angles, which the
flight software (FSW) processes to convert to vector format for use by other
onboard applications and the ground. Note that although the reliable mea-
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Fig. 4.4a. Interpreting digital sun sensor output.
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Fig. 4.4b. Interpreting digital sun sensor output.

surement range of a CSS is only a cone of half-angle 45 degrees, since CSSs
are so cheap you can economically cover the full sphere about the spacecraft
simply by flying several CSSs with overlapping FOVs.

Like CSSs, digital Sun Sensors (DSSs), also called fine Sun sensors (FSSs),
measure angles that the FSW can transform into the Sun vector direction.
And also like CSSs, DSSs output a Sun presence flag that tells you when the
Sun is in the FOV of the sensor. However, to achieve its much higher accuracy
compared to that of a CSS (arcminute accuracy as compared to degrees), the
construction of the DSS must be far more complex (and expensive) than that
of a CSS. The way a DSS works is shown in Figure 4.4a/b.

Light from the Sun comes into the DSS entrance slit and illuminates a pat-
tern of slits sitting on top of a series of photocells, with a photocell positioned
under each row of measurement slits. As with the CSS, the photocell voltage
is proportional to the cosine of the Sun angle. The first row of measurement
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slits (the slit to the extreme right in Figure 4.4b) is used as a threshold set-
ting with respect to using data from the other rows. Specifically, measure-
ment slits (and the bits they represent in the Sun angle measurement) are
deemed to be “on” if their intensity is greater than the threshold slit output.
Since the threshold slit is half the width of the other measurement slits, a
slit’s bit is therefore considered to be “on” if it is at least half-illuminated by
the Sun. The next row of slits to the left of the threshold slit is the sign bit,
which (depending on which photocell is illuminated above threshold) de-
fines which side of the sensor the Sun is on. The bits defining the magnitude
of the Sun angle then are derived from the remaining rows. The central rows
are referred to as the “Gray code”, and provide Sun angle resolution good to
a half a degree, approximately the apparent angular diameter of the Sun as
viewed from the Earth (about 0.53◦ from LEO altitude). The rows of slits that
are situated most to the left then generate the fine bits supplying the highest
degree of resolution, typically up to 0.125◦, although DSSs have been cal-
ibrated to even higher levels of accuracy (5 arcsec in the case of the Solar
Maximum Mission (SMM)). Of course, in order to define the direction of the
Sun vector we need to measure two angles relative to the sensor’s boresight.
This can be accomplished via a two-axis DSS.

For more information on Sun sensors, see Wertz, Spacecraft Attitude De-
termination and Control, section 6.1.

4.2 Earth Sensors

Just as the target of a Sun sensor, the Sun, is easy to find, the target of an
Earth sensor, the Earth, is pretty easy to acquire as well. As a matter of fact,
at LEO altitudes, the Earth will appear to cover up to 40% of the celestial
sphere.7 And if your mission is an Earth imager, your science instrument
will be approximately pointing in the same direction as the Earth sensor
(i.e., along the nadir vector), so it is natural to couple the Earth sensor out-
put directly into the fine attitude control law, pointing accuracy constraints
permitting. However, use of Earth sensors for pointing control can engender
a number of problems not characteristic of Sun sensor use. First, the accu-
racy of the Earth sensor-inferred attitudes is limited by the accuracy of its
reference model. For example, for IR Earth sensors, the associated horizon
radiance model typically is only good to about 0.1◦, although data averaging
can significantly reduce the effects of the modeling errors. Second, as with
CSSs, extraneous light can degrade measurement accuracy. In this case, the
extraneous light can result from reflections from high altitude clouds. Third,
although the large apparent angular diameter of the Earth can make acquisi-
tion of the Earth by the sensor easier, the large angular diameter (as opposed
to the near-point source size of the Sun) requires identifying the Earth’s hori-

7J. Wertz, Spacecraft Attitude Determination and Control, page 167
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zon, rather than measuring the center of a small light distribution, in order
to achieve reasonable attitude accuracy.

Identification of the hard edge of the Earth’s horizon (as seen in visible
light) can be difficult because energy radiated from the Earth decreases grad-
ually due to the presence of atmosphere and variations between illuminated
and non-illuminated regions. Simply modeling the visible light terminator is
an issue by itself. These problems can be ameliorated somewhat by viewing
the Earth in the infrared. Most Earth sensors utilize the CO2 band, whose
wavelength lies between 14 and 16 µm and whose edge is about 40 km above
the Earth’s surface.8 Use of the CO2 band eliminates the terminator model-
ing and albedo issues pretty successfully as the Earth “looks” pretty uniform
across its disk at CO2 wavelengths (heat stays trapped in the atmosphere
overnight so there’s no terminator phenomenon between sunlit Earth and
shadow), and IR detectors are less susceptible (than visible light detectors,
including Sun sensors) to reflected light from spacecraft structures.

An Earth sensor contains three major functions, namely scanning (sup-
plied by the spacecraft itself for spinners), optics, and detection. The optics
portion needs both a lens to focus the target image on the detector and a
narrow-band filter to limit the observed spectral band of the target (e.g., 14
to 16 µm). The detector typically is a bolometer. When light hits a bolome-
ter, the incident radiation heats a resistor, thereby changing its resistance.
Since the bolometer electronics maintains a constant current through the re-
sistor, the change in resistance can be quantified by measuring the voltage
change across the resistor, which is correlated with the change in light inten-
sity incident on the detector. So the detector can “see” the horizon edge by
identifying the sharp intensity drop-off as the scanner rotates the bolometer
line-of-sight past the Earth and into space. Put more formally, the output of
the Earth sensor is a measurement of the time between sensing a reference
and the time associated with an electronic pulse created when the detector’s
measured voltage crosses a threshold (above or below), as illustrated in Fig-
ure 4.5.

For a spinning, body-mounted Earth sensor, the reference usually is the
electronic pulse associated with the leading slit of a V-slit Sun sensor “see-
ing” the Sun. For a wheel-mounted sensor, the reference usually is a mag-
netic pick-off on the body. When the detector signal increases across the
threshold, the detector is said to experience acquisition of signal (AOS), and
when the signal decreases across the threshold we have loss of signal (LOS).

There are three generic types of Earth sensors, horizon-crossing indi-
cators, static sensors, and conical scanning sensors. The simple horizon-
crossing indicators are mounted on the bodies of spinning spacecraft, like the
“old-fashioned” Geostationary Operational Environmental Satellite (GOES)-
D through -F series. They directly measured AOS and LOS times. When that
information is combined with the known angular size of the Earth based on

8Ibid
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scan 

Earth 

output 

Fig. 4.5. Earth sensor output.

the spacecraft’s distance from Earth, you can calculate the nadir angle, i.e.,
the angle between the spacecraft spin axis and the direction to Earth’s center
relative to the location of the spacecraft. See Figure 4.6a for an example in
which the radius of the scan cone (the angle between the spin axis and the
Earth sensor direction) is larger than the angular radius of the Earth, result-
ing in two solutions for the nadir angle. (Note, it is assumed that the space-
craft spin period is sufficiently short that spacecraft translational motion can
be neglected during a single spin period.) The nadir angle solutions together
with the Sun angle (the angle between the spin axis and the Sun vector) mea-
sured by a Sun presence sensor can then be used to determine the direction of
the spacecraft spin axis in inertial space given the known directions to Earth
center and Sun in inertial space; see Figure 4.6b, for which you’re to imagine
viewing the Earth (center) and Sun in inertial space and the spacecraft spin
axis pointing towards one of the two indicated solutions. This solution also
has an 2-fold ambiguity. The total four-fold ambiguity for spin axis direc-
tion in inertial space can be resolved by accumulating additional Earth and
Sun sensor data over a period long enough for the Earth direction to change
significantly, but short enough for the spacecraft spin axis direction to re-
main essentially constant. The proper solution will remain fixed while the
spurious solutions drift as the relative direction to Earth changes.

The second class of Earth sensors, static sensors of the type flown on
Landsat-7 and the Tropical Rain Measuring Mission (TRMM) (see Figure
4.7), employ four oscillating detectors that dither across the horizon edge,
thereby generating sets of rectangular pulses. The width and spacing of the
pulses depend on the detector position with respect to the horizon. Process-
ing this data through an onboard control law, the ACS FSW for these mis-
sions corrects the measured errors in pointing using reaction wheels, thereby
centering the Earth in the FOV of the sensor. When the centered state is
achieved, the horizon penetration computed for opposite quadrants of the
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T: True solution 

F: False solution 
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Fig. 4.6a. Earth Scanning Horizon Sensor: scan path crossing IR Earth image from
AOS to LOS as viewed from satellite location.
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Fig. 4.6b. Determining spacecraft inertial-space spin axis given the Earth nadir angle
and the Sun angle relative to the spacecraft spin axis.

Earth sensor will be the same. Note that for the four quadrants to be able to
bracket the Earth horizon, the Earth sensor must be built so as to be tuned
to a fairly narrow range of mission orbits and attitudes. So there is not much
flexibility for using the sensor if anomalous geometries occur.

Conical scanning Earth sensors, such as the one flown on the Earth Ob-
serving System (EOS)-AM mission, constitute the third class of Earth sensor
(see Figure 4.8). By canting the boresight of the sensor 45◦ from (for exam-
ple) the direction of flight, the scanner causes the boresight to rotate over a
cone of 45◦ half-angle. When the detector crosses into the Earth, the temper-
ature difference between the Earth and space is sensed by the detector and
a pulse is generated by the detector electronics. From those measurements,
pitch and roll attitude errors (relative to the orbit frame) can be generated.

For LEO spacecraft, selecting the sensor scanning axis to be the pitch or
roll axis (without a cant angle) will guarantee that the sensor FOV will inter-
sect the Earth. At higher altitudes the sensor boresight must be canted down
in order to ensure intersecting the Earth. For example, at geosynchronous
altitude, a typical cant angle is 40◦. As with the static Earth sensor previ-
ously described, since the Earth width is a function of altitude, you have to
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Fig. 4.7. Static Earth sensor: Left - Earth not centered relative to eyes Right - Earth
centered.

Scan cone 

Scan across Earth 

Fig. 4.8. Conical scanning Earth sensor.

tune the conical scanning Earth sensor to the expected orbit. Note that we’ve
tacitly assumed up to now that the mission orbit is circular, so the Earth
width could be assumed to be constant over the entire orbit. However, for
elliptical orbits this is not the case. Therefore for missions employing ellipti-
cal orbits, you might need two conical scanners to deal with the variation of
Earth widths over the orbit.

4.3 Magnetometers

Of all the types of attitude sensors from which to choose, magnetometers
(which measure both the magnitude and direction of the magnetic field in
which they’re immersed, specifically the geomagnetic field for Earth orbiting
spacecraft) are the bargain basement option from three standpoints. First,
the instrument itself is cheap. Second, magnetometers are lightweight so
they don’t affect launch vehicle trades much. Third, they draw very little
power, so they don’t affect power system trades either. In addition, they are
very robust, i.e., they’re fairly reliable, have no moving parts, and operate
consistently over a wide range of temperatures. On the downside, they’re not
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very accurate. Limited for attitude determination purposes by the accuracy
of the geomagnetic field reference, attitudes computed from magnetometer
and Sun sensor data typically are only good to about 2 degrees, although
using data collected over a significant portion of the orbit can help average
out the reference errors and improve results. “Serious” use of magnetometer
data above 1,000 km usually is avoided, since at those altitudes uncertainties
in the spacecraft’s residual dipole moment can dominate the Earth’s field.9

As you’d expect given its inexpensive cost, a magnetometer is a pretty
simple device. It consists of a magnetic sensor and an electronics unit to pro-
cess the sensor signals. Most magnetometers flying today utilize the princi-
pal of magnetic inductance to make their measurements, although there are
some designs based on atomic properties such as Zeeman splitting or nu-
clear magnetic resonance (NMR). Our discussion here will be limited to the
magnetic induction type since it is pretty standard on GSFC spacecraft, and
that type often is provided at GSFC as an in-house product.

The dual-core fluxgate type is a good example of a magnetic induction
magnetometer. The fluxgate converts an external magnetic field (say, from
the Earth) into a measurable voltage. For a dual-core fluxgate magnetometer,
there are two magnetically saturable cores, each wound by identical coils (see
Figure 4.9), but with opposite winding directions.

cs 

Amp 

cs: A.C. current source  

Amp 
meter 

Fig. 4.9. Dual-core flux magnetometer.

By applying a sufficiently high alternating current through the coils (see
Figure 4.10a), you can drive the cores to states of opposite saturation, where
saturation means that the magnetic fields generated in the cores (by the cur-

9J. Wertz, Spacecraft Attitude Determination and Control, page 181
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rent in the coils) reach their maxima at magnetic field values below that gen-
erated by the coils.

time 

T 

0 

voltage 

Fig. 4.10a. Variation in voltage driven by alternating current.

In the absence of any external magnetic fields, the signs of maximum coil
fields will flip-flop at half the period of the alternating current. Now, let’s
assume the cores are sitting in an external magnetic field, in our case the ge-
omagnetic field. The external field will introduce an asymmetry between the
time interval spent at positive saturation versus the time spent at negative
saturation (see Figures 4.10b and 4.10c).

time 
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ΔH+HD 
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-HC 

ΔH-HD 

ΔH 

Fig. 4.10b. Asymmetric magnetic intensity induced by external field.

For example, assume the direction of the external field is parallel to and
smaller than the coil field. If the external field is positive, the net field “felt”
at the core (the sum of the external field and the field produced by the
current in the coil) for positive current will be larger than if the external
field was zero, the core will reach saturation sooner, and maintain saturation
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Fig. 4.10c. Asymmetric time durations at positive and negative saturation.

longer. By contrast (again assuming the external field is positive), the net
field felt at the core for negative current will be smaller than if the external
field was zero, the core will reach saturation later, and maintain saturation
shorter. So in the presence of an external magnetic field, the times between
zero crossings, calculated from zero crossing times identified by the mag-
netometer’s output coil, will no longer be half the period of the alternating
current (see Figure 4.10d).

time0

Induced voltage
in secondary

VS

-VS

K1T

(1-K2)T

K2T

Fig. 4.10d. Induced voltage in secondary.

This in turn means that given a measurement of the time asymmetry
there should be some way to calculate the external field that has produced
the asymmetry, and in fact Equation 4.1 supplies a simple formula for doing
just that.

∆H = (1− 2K2)HD (4.1)
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where

∆H = magnitude of the external field (gauss).
K2T = time interval between zero crossings relative to crossings
bracketing the time spent at saturation having sign opposite to ex-
ternal magnetic field component parallel to the coil (sec), where T is
the period of the alternating current applied to the coils.
(1−K2)T = time interval between zero crossings relative to crossings
bracketing the time spent at saturation having the same sign as the
external magnetic field component parallel to the coil (sec).
HD = magnetic intensity achieved when the coil voltage is at maxi-
mum (gauss).

The sign of the external field (whose magnitude is computed via Equation
4.1) is determined by examining a Fourier expansion of the coil voltage. Note
also that by using two cores wound oppositely, the output coil is insensitive
to the alternating current frequency.

4.4 Star Sensors

If what you want is the most accurate way to measure your absolute pointing
in inertial space, and you have a reasonable amount of money burning a hole
in your pocket, a star tracker would be your sensor of choice. Compared to
very bright objects like the Sun or the Earth observed by Sun sensors and
Earth sensors, respectively, the stars sensed by star trackers will be much
fainter in intensity by many orders of magnitude. Star trackers typically use
stars between magnitudes 2 and 6, as compared to magnitude -26.7 for the
Sun as seen from the Earth10 and magnitude -12.7 for a full moon11, where
magnitude is a linear function of the logarithm of the intensity (see Equation
4.2).

m =m0 − 2.5log10 i (4.2)

where

m = object’s magnitude
m0 = scale constant
i = object’s intensity (relative to intensity of a source of magnitude
m0)

Put a little more concretely, a handy rule-of-thumb is that a difference of 5
in magnitude is equivalent to a factor of 100 in intensity.12 Also, the scale
factor relating intensity to magnitude is negative, so negative magnitudes

10J. Wertz, Spacecraft Attitude Determination and Control, page 79
11Larson & Wertz, Space Mission Analysis and Design, page 808
12J. Wertz, Spacecraft Attitude Determination and Control page 78
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are brighter than positive magnitudes, and small positive magnitudes are
brighter than large positive magnitudes.

A star sensor is a much more complicated instrument than an Earth sen-
sor or a Sun sensor. For example, a star sensor designer has to be equally
concerned with keeping out undesirable light as with bringing in the light
from the source it’s trying to measure. To satisfy the former need, there’s a
limiter on the star sensor FOV and a Sun shade to keep stray or reflected
light from entering the optical components and degrading the accuracy of
the sensor’s measurements, or even preventing the sensor from functioning
at all. The fixed head star tracker (FHST) that was the NASA standard star
tracker back in the 1980s and early 1990s also had a shutter that would snap
shut automatically if sensed incoming light exceeded a threshold, thereby
protecting sensitive optics electronics from being burnt out. A generic illus-
tration of a star tracker is presented in Figure 4.11.

Light shade 
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Fig. 4.11. Generic Star Tracker.

The remaining components sound, at a high level, a lot like the Earth sen-
sor we’ve just examined. There’s a lens to focus the light onto a detector and
electronics to control and process the detected signal. Specifically, the elec-
tronics includes a commandable thresholding capability that rejects signals
for further processing if they fall below a specified intensity threshold. More
sophisticated star sensors, such as the Hubble Space Telescopes’s (HST’s) fine
guidance sensors (FGSs) also have a maximum intensity threshold (i.e., sig-
nals are rejected if their intensity rises above some maximum value).

Returning briefly to the past, the primary output of the FHSTs, as well as
the first generation of charge-coupled device (CCD) star trackers, were star
horizontal and vertical coordinates within the FHST FOV, as well as the mea-
sured intensity of the star. Nowadays, advanced star trackers (ASTs) come
equipped with star catalogs and software that allow the sensor itself to iden-
tify detected stars, match measured coordinates in the star tracker frame up
with reference coordinates in inertial space (star right ascensions and decli-
nations), and calculate the corresponding transformation from inertial space
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into the star tracker frame in quaternion format. Flight software (FSW) can
then take the output star tracker quaternions, correct for the star tracker
alignment relative to the spacecraft body frame, compensate for the effects
of velocity aberration (to be discussed further in section 6.6), and generate
the spacecraft attitude quaternion (a transformation from inertial space to
the body frame). For some ASTs, the FSW does not even have to compute
the velocity aberration compensation. Instead, the FSW periodically sends
the AST the spacecraft total velocity vector, and the AST performs its own
velocity aberration compensations on each star it observes.

There are so many advantages to using star trackers as the prime source
for absolute spacecraft orientation information that they are flown on most
well funded missions. Star trackers and other star sensors provide the most
accurate source of absolute attitude information. FHSTs could measure atti-
tude good to 10 - 20 arcseconds and modern star trackers are easily capable
of providing accuracies to a few arcseconds. And for just a few million more,
fine error sensors (FESs), for example HST’s FGSs and the science instrument
(SI) itself on other missions, can deliver measurements in the milliarcsec-
ond range by utilizing the light gathering capabilities of the science optics
itself. In addition, as star trackers have few moving parts, they tend to be
very durable and reliable. And, unlike the previous three sensors we’ve dis-
cussed, technological advances just keep improving the quality, capabilities,
and performance of the sensors. In the 1990s, we went from the old FHST
design that could only track one star at a time, outputting only that star’s
coordinates and intensity, to ASTs that can track as many as 50 stars at a
time and output both an orientation quaternion and the spacecraft rate (in
the sensor frame).

On the downside, star trackers used to be both heavy and expensive,
though both of these issues have been greatly ameliorated as lighter, cheaper
star trackers have been developed. Also, in the past, the need to accelerate
electrons in the old FHSTs from the photocathode to the anode required the
use of high voltage, causing the FHST to use a lot more electrical power than
other attitude sensors. Again, this is less an issue with modern ASTs. How-
ever, use of any type of star sensor can introduce the need (on a mission-
dependent basis) to deal with geometric issues such as occultation and inter-
ference from bright sources.

Occultation can be a big problem for star trackers since the stars they ac-
quire and track can regularly be blocked by the Earth and interfered with
by the Moon. For some missions, such as a Lagrange point Earth- or Sun-
pointer, the star trackers can be mounted so that occultations will not occur
once the spacecraft is on station doing nominal science. For other missions,
such as LEO celestial-pointers, occultations will be a regular occurrence ev-
ery orbit, unless the sensor happens to be pointed near orbit-normal. Con-
fusion with other similar bright objects (the spoiler problem) also is a star
tracker-unique problem. Although it’s hard to mistake anything else in the
sky for the Earth, and impossible to mistake anything else for the Sun, it’s
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easy to confuse one star with another star of similar magnitude unless you
have a good estimate of your current pointing, or you use a star identifi-
cation algorithm that can compare the pattern of stars (mathematically put,
the specification of angular separations between observed stars) you see with
actual patterns from a large star catalog.

As successful operation of a star tracker during a mission clearly involves
more than just turning it on, there are more commandable features and op-
tions than you find on other attitude sensors. Two functions typically are
provided to deal with the spoiler problem. First, a thresholding system al-
lows the sensor to reject signals from stars (or Solar System objects) outside
the magnitude range of the star you want to guide on, not surprisingly called
a guide star. With ASTs, this is less of an issue as powerful star identification
algorithms based on distance separations are used to identify stars the same
way ground system software used to process FHST full-field map data. So
individual guide stars are no longer key to conventional star tracker opera-
tions, although guide star strategies often are still employed when utilizing
FESs. Second, a reduced field of view (RFOV) capability allows you to isolate
the star you’re interested in from other stars of similar magnitude. In full
FOV mode, the star tracker will search its total FOV (TFOV) until it finds
a star (or several stars in the case of modern star trackers) that satisfies the
intensity thresholding condition(s). Depending on the commanding, the star
tracker then continues tracking that star “forever”, or breaks track and re-
sumes searching the TFOV. Using RFOV mode (1.5◦ × 1.5◦ for FHSTs), also
called offset mode, the area of the star tracker you scan is much smaller than
the total tracker search area (8◦ × 8◦ for FHSTs), so there are fewer stars you
can blunder into and mistake for the star you want. Again, this was a more
useful strategy when using FHSTs than is now the case for ASTs.

So the advent of the quaternion star trackers has significantly simplified
both the associated FSW functionality and mission operations. Before quater-
nion star trackers were developed, storage limitations on onboard space for
star catalogs, central processing unit (CPU) limitations on the sophistication
of onboard star identification and attitude determination algorithms, and the
inability of FHSTs to track more than one star at a time typically necessitated
the use of offset mode with guide stars. Nowadays, quaternion star trackers
can track many stars at a time, do their own star identification from their
own star catalogs, and compute attitudes directly in quaternion format. As a
result, full-field mode has pretty much replaced offset mode operationally.

4.5 Gyros

One thing all the previous four sensor types have in common is that they
measure the direction of some entity external to the spacecraft. By contrast,
gyros measure the motion, or attempted motion, of an object internal to the
spacecraft. Leaving vibrating and optical gyros for later discussions, one can
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visualize a gyro as if it were a spinning top (supported by a gimbal) whose
angular momentum vector is fixed in magnitude and parallel to the top’s
spin axis. When the spacecraft rotates about the gyro input axis, the gyro
(supported by a gimbal) attempts to precess about the output axis (see Figure
4.12).

Gyro spin axis 

Input axis (spacecraft 
rotation being sensed) 

Attempted change in 
spin axis due to imposed 
change in gyro momentum 
direction (cancelled by 
resistance torque, which is 
measured) 

Fig. 4.12. Simple single degree-of-freedom gyro.

This motion, of course, is a consequence of the definition of torque, as we
discussed in Chapter 3 (i.e., torque is the cross product of the vector pointing
to where the force is applied and the force vector itself). A single-degree-of-
freedom (SDOF) gyro has just one gimbal, and so has only one output axis.
A two-degree-of-freedom (TDOF) gyro has two gimbals, and consequently
has two output axes. With 2 TDOF gyros or 3 SDOF gyros you can there-
fore provide full three-axis attitude rate information. In actuality, to provide
redundancy in the event of hardware failure, more than the minimum gyro
complement usually is flown. Also, when more than the minimum required
number of gyros is powered-up, data from all the active gyros can be utilized
to improve the accuracy of the computed body rate. Rate gyros (RGs) mea-
sure spacecraft rates directly, while rate integrating gyros (RIGs) measure
angular displacements over a fixed time interval. Either way, unlike the pre-
vious four sensors we’ve talked about, gyros only measure relative attitude
change; they cannot measure the spacecraft’s absolute pointing in inertial
space.
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In practice, the gyro actually is not free to rotate about the output axis
as suggested in Figure 4.12. If it were, the measurement would be the phys-
ical precession of the gyro’s spin axis, which could be hundreds of degrees.
A much better approach is to reduce the amplitude of the motion artificially,
and then measure the small change in gyro pointing that is (approximately)
proportional to the large, physical vehicle pointing change. This scaling of
the gyro motion to the vehicle motion can be achieved through use of vis-
cous damping and spring restraint. A yet better approach is to apply a
torque artificially that inhibits gyro spin axis precession entirely. By mea-
suring the torque required to inhibit the gyro motion, you obtain a quantity
from which you can “back-out” the vehicle physical motion that must have
occurred, thereby necessitating the application of the inhibiting torque. One
type of gyro that utilizes this approach is an electromagnetic torque rebal-
anced gyro, where the current that needs to be applied to null the gyro spin
axis precession is proportional to the physical motion of the spacecraft.

The mechanical gyros used on the HST mission are among the highest
quality mechanical gyros flown to date. HST’s gyros have two modes of
operation. Low mode (threshold at 0.00025 arcsec/count, saturation at 38
arcsec/sec) provides greater precision for fine pointing, while high mode
(threshold at 0.015 arcsec/count, saturation at 2300 arcsec/sec) provides
greater dynamic range during slews. The requirement on the ground sys-
tem for calibration of the low mode drift bias is 0.006 arcsec/sec (3σ ) while
the gyro scale factor and alignment has been calibrated as accurate as a third
of an arcsecond per degree of slew.

Gyros are ideal partners to star trackers or FESs. They usually have a
faster read-out than the other sensor and can be extremely accurate, allow-
ing you to “fly” on gyros in-between star tracker or FES updates, and then
update both attitude knowledge and gyro drift bias calibrations with abso-
lute attitude sensor information when it is available for processing by, for
example, a Kalman filter (we’ll discuss Kalman filters in detail in Chapter
7). Gyros also are easy to operate (no occultations or acquisition issues to
worry about, and simple onboard processing), are lightweight, and require
little power. The down-side is that a mechanical gyro’s moving parts make
it failure-prone and, since a gyro only can provide relative attitude infor-
mation and its drift bias ramps with time, gyros must be coupled with an
absolute attitude sensor (like a star tracker) to provide a spacecraft with the
full onboard attitude knowledge needed to perform a mission, and to main-
tain the gyro’s accuracy throughout the lifetime of the mission. The gyro’s
scale factor and alignment, by contrast, are more stable and often need to be
calibrated only once by the ground system at the start of the mission, then
uplinked to the spacecraft for use throughout the rest of the mission.

The vulnerability to failure of the mechanical gyro has stimulated the
development of two other gyro classes, vibrating gyros and optical gyros,
neither of which utilizes a “spinning top” to define a reference angular mo-
mentum vector. A nice way to visualize how a vibrating gyro works is to
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imagine a vibrating, light-weight string, attached to top and bottom sup-
ports, oscillating in a plane (see Figure 4.13).

Fig. 4.13. Vibrating string gyro.

Now suppose the string supports are attached to a large object that ro-
tates about the axis defined by the line passing through the two support
points. Then, by conservation of angular momentum, the plane of the string
vibration will remain fixed in inertial space while the object rotates, just as
the plane of a swinging Foucault pendulum remains fixed relative to the
Earth rotating beneath it. So by observing on the rotating object how the vi-
brating string plane appears to rotate relative to the object, you can measure
how the object itself is rotating relative to inertial space, i.e., you can mea-
sure the object’s body rate. In practice, a vibrating string would not be very
accurate because the momentum stored in the string is small relative to error
torques and because of frictional forces at the attach points. The principle il-
lustrated by the vibrating string does, however, apply to two more practical
approaches, the tuning fork (see Figure 4.14 and the hemispheric resonator.

Replacing the vibrating string by a tuning fork deals with the low an-
gular momentum problem by replacing a lightweight string by, for exam-
ple, metal. If you’ve ever played with a musical tuning fork by moving it
around after striking it (and thereby starting it vibrating), you found that the
pure tone you started with changed as the tuning fork’s plane rotated. Put
more technically, rotation of a struck tuning fork about its axis introduces a
sinusoidally-varying precession amplitude. Tuning fork gyros naturally have
their own problems. First, the elastic moduli of the materials constituting a
metal tuning fork can vary with temperature, leading to instability in the
gyro’s measurements unless very complicated corrections are made. Elab-
orate calculations of this sort would detract from one of the gyro’s prime
advantages for onboard use, namely the simplicity of the required data pro-
cessing facilitating rapid utilization of the gyro’s high rate output. Second,
as a metal tuning fork vibrates, its tines shift position, thereby changing the
tuning fork’s center of mass. Again, this theoretically could be compensated
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Fig. 4.14. Tuning fork gyro.

for onboard via a sophisticated model of the gyro dynamic behavior, but
that would defeat one of gyro’s prime advantages. Fortunately, these prob-
lems can be dealt with to some degree by using crystalline quartz instead of
metal, and in fact Draper Labs has developed a gyro of this type utilizing
micro-machined silicon. Its resolution for use onboard a spacecraft is far too
coarse at 20 deg/hr, but it is very rugged, having the ability to withstand a
shock of 120,000-g and still keep ticking.13 Presumably Draper sells more
of their tuning fork gyros to the Department of Defense (DOD) than to the
National Aeronautics and Space Administration (NASA).

At last we arrive at a vibrating gyro concept with practical application
potential onboard spacecraft, the hemispheric resonator gyro (HRG). In this
case, we replace the vibrating string with something that behaves like a
struck wine glass. The high-tech replacement for the wine glass is a vibrat-
ing hemispheric shell of fused-quartz supported by a stem along its diameter
(see Figure 4.15).

Since nothing is ever cast perfectly, the hemisphere is tuned by remov-
ing material from the rim so as to compensate for inhomogeneities in the
quartz and errors introduced in the original machining. The shell is excited
electrostatically so as to cause it to ring at its fundamental frequency, and
then is driven to resonance with a constant oscillation amplitude. To lessen
frictional losses, the entire enclosure is maintained at a vacuum. Now let’s
rotate the stem. This will cause the anti-node axis (i.e., the line connecting
the maximum and minimum of the vibration) to precess in the same sense

13Lawrence, Modern Inertial Technology, page 156
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Fig. 4.15. Hemispheric Resonating Gyro.

as the rotation of the stem, but by a different amount (see again Figure 4.15).
The difference in rotation is defined by the geometry of the HRG. For the
HRG pictured in Figure 4.15, the gain is 0.30, so a 90◦ stem rotation yields
a 27◦ anti-node axis precession. Recalling the original comment about com-
pensating for quartz inhomogeneities, one of the problems caused by non-
uniformity in the shell is that the nodes will tend to “cling” along an axis
of minimum energy. So the larger the non-uniformity in the shell, the more
effort it takes to move the nodes out of their potential “well”, and the less
sensitive the HRG will be to small stem rotations.

As compared to mechanical gyros, HRGs will be less failure-prone as they
have no moving parts. They tend to be very rugged as there is only a weak in-
tereaction between the shell vibration and gyro mounting. They also require
very little power.14 For example, one Delco HRG design only requires power
to be applied every 10 to 15 minutes. In the event of an unexpected power
hit, an HRG will tend to be very forgiving as the conservation of angular
momentum on which it is based and the low-friction environment in which
it lives will cause the wine glass vibration to be maintained, just as a me-
chanical gyro’s spinning top will tend to maintain its rotation rate if power
is anomalously interrupted for a brief time. On the downside, HRGs are ex-
pensive to manufacture because the quality of their performance is limited
by the precision with which the shell and housing are machined, and by the
quality of vacuum imposed and the success of the seals in maintaining that
vacuum. Unlike a mechanical gyro, correlating the gyro output (i.e., move-
ment of the anti-nodes axis) with the physical spacecraft behavior (i.e., the

14Lawrence, Modern Inertial Technology, page 160
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movement of the stem) is a pretty elaborate calculation, requiring its own
computer support.

All of the previous gyros we’ve discussed are fairly directly based on con-
servation of angular momentum. By contrast, the principal behind an opti-
cal gyro is the Sagnac effect, which is more related to the interference phe-
nomenon characteristic of a Michelson interferometer. Because of differences
in the paths traveled by the two light beams, you get interference fringes
when you rotate a source sending two light pulses out along a ring in oppo-
site directions (see Figure 4.16).

LASER 

Half- 
silvered 
mirror 

Mirror 

Screen to view  
interference fringes 

Fig. 4.16. Sagnac optical gyro.

If the path lengths are constructed to be identical when the table drive
wheel isn’t rotating, the measured intensity when you recombine the beams
will be a maximum, i.e., the light waves remain in phase. Once you start
rotating the interferometer (in Figure 4.16, about the axis perpendicular to
page), the light waves paths will differ (the wave in the rotation direction
will have a longer path to travel), and the light waves will get out of phase.

You could measure the departure from the maximum to determine how
fast the interferometer was rotating, but since the slope of the response curve
is zero at zero rate, you’d need to experience large changes from zero rate be-
fore you’d obtain a detectable output. Also, you’ll encounter a sign ambigu-
ity around maximum since you won’t be able to tell the difference between a
decrease in intensity due to a negative phase difference versus a decrease in
intensity due to a positive phase difference. On the other hand, if you oper-
ate the interferometer with the wheel spun-up to the rate at which the phase
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difference between the two beams is 180◦, the intensity will go to zero, an
easy to distinguish state.

Unfortunately, you’ll still have low sensitivity due to the behavior of the
response curve and you’ll still suffer a sign ambiguity around null since you
won’t be able to tell the difference between an increase in intensity due to a
phase decrease versus an increase in intensity due to a phase increase. The
best plan is to rotate the wheel drive so that zero external rotation of the in-
terferometer as a whole leaves the light beams 90 degrees out of phase. That
way, you avoid the sign ambiguity (a phase decrease generates an increase
in intensity, while a phase increase generates a decrease in intensity) and get
maximum sensitivity by operating in the near-linear region.

Sagnac interferometers tend to be very noisy over short time durations
(i.e., seconds), but improve by an order of magnitude over long durations
(i.e., hours).15 The primary noise source is the electrical noise (called photon
shot noise) caused when light falls on a detector. Another problem is that the
interferometer has low sensitivity if the light only travels around the path
once. This issue is easily dealt with by replacing the mirrors shown in Figure
4.16 with an optical fiber coil, by which you can exploit the principle of total
internal reflection to send the light beams around their paths many times. By
this means, optical gyros have the potential to deliver superior performance
to mechanical gyros in high-rate applications.

One class of optical gyro that has flown on GSFC missions is the Interfer-
ometric Fiber-optic Gyro (IFOG). Its stability is not as good as high quality
mechanical gyros, as its drift biases can get as large as 1 deg/hr. Compared
to another class of optical gyro, the RLG (which we’ll talk about next), the
IFOG is more rugged and has a longer expected lifetime. The limiting noise
source is photon shot noise, which is inversely proportional to the square
root of the sampling time. The maximum rate measurable by a given IFOG
is limited by the angular change (over an interrogation period) needed to
shift the IFOG reading from a 90◦ phase difference to a 180◦ phase (i.e., near
null). As an example, for one IFOG having a coil of area 100 cm2 with 1000
turns of fiber optic cable, the maximum rate that could be measured accu-
rately and without ambiguity was 150 deg/sec.16 Clearly this wouldn’t be an
issue for point-and-shoot spacecraft with slew speeds less than 10 deg/min,
but other vehicles operated by non-NASA agencies can experience rates as
high as 500 deg/sec.17 And while we’re talking about displacements from
the linear region at 90◦ of phase shift, the use of fiber-optic cable provides
a much cleaner way to shift the linear region to the interferometer rest state
than spinning up a drive wheel. Instead, you can wrap some of the fiber-
optic cable around a piezoelectric cylinder. Then by applying an alternating
current to the cylinder you can alternately stretch and relax the cable. By this

15Lawrence, Modern Inertial Technology, page 174
16Lawrence, Modern Inertial Technology, page 189
17Ibid
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means, you can selectively generate a path shift of a quarter of a wavelength
(of light), thereby shifting the phase difference at rest from 0◦ to 90◦ without
use of a drive wheel.

The second type of optical gyro, the RLG, uses a laser to generate a stand-
ing wave. The pure, coherent light emitted by a laser is produced via stimu-
lated emission. A somewhat oversimplified explanation of the process is that
you’re trying to generate a light beam consisting of a collection of photons
tightly concentrated in frequency, phase, and direction. The photons come
from atoms that have been raised to an excited energy state, then induced (by
stimulating it with a another photon) to emit a photon of well defined fre-
quency as it (the atom) transitions back to its original energy state. The phase
of the emitted photon will be the same as that of the stimulating photon, i.e.,
the emission will be coherent. So by appropriate choice of target atoms, we
can fix the frequency of the emitted photons, and, by appropriate selection
of the phase for stimulating radiation, we can fix the phase of the emitted
radiation. Then if we place an atomic gas in a resonator whose length is an
integral number of half-wavelengths of the photon wavelength we’re work-
ing with, we can establish a standing wave of that light frequency in the
resonator cavity, provided the resonator gain (a measure of photons retained
within the cavity versus photons lost) is sufficient to exceed losses from colli-
sions with the walls, collisions with unexcited atoms, etc. Gas lasers designed
as described (crudely) above emit very coherent light with small beam diver-
gence, but require high operating voltages (600 to 1000 volts) and are fairly
large (2 to 20 inches long).18 Further, in order to form the standing wave
successfully, a gas laser’s mirrors must be aligned to within a few arcseconds
and the gas must be extremely free of contamination. By contrast, semicon-
ductor lasers can be smaller, cheaper, and more easily controlled, but suffer
a relatively higher level of beam divergence, requiring astigmatic optics to
couple their output into fiber-optic cables or waveguides.

An RLG designed by Sperry uses three to five mirrors to bounce light
around the resonator, forming standing wave patterns. As “viewed” by the
light wave (has sort of an Einsteinian flavor about it), the standing wave is
stationary while the spacecraft moves around it. The RLG’s optical detec-
tor then senses the intensity of the light at a point in the standing wave, so
the RLG can interpret changes in the measured output intensity in terms
of the rotation of the RLG case relative to the standing wave. The resolu-
tion of the measurement can be on the order of an arcsecond. Whereas shot
noise was the dominant error source limiting IFOG performance, sponta-
neous emission is the primary error source for RLGs. Like shot noise, spon-
taneous emission is inversely proportional to the square root of the sampling,
which finds its corollary in gaussian noise being inversely proportional to the

18Lawrence, Modern Inertial Technology, page 210
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square root of the number of samples. Quantization noise also is a significant
error source for RLG measurements (not a problem for IFOGs).19

19Lawrence, Modern Inertial Technology, page 223





5

Attitude Actuators

One of the amusing qualities of human civilization is the hierarchical struc-
ture that is common to most problem solving activities in terms of the so-
phistication of assets applied at different points in the process. At a high
level, there are five major steps in solving a problem, namely

1. recognizing there is a problem
2. collecting data to characterize the problem
3. analyzing the data to identify the nature of the problem
4. developing a plan to solve the problem
5. implementing the solution

Here’s a good historical example of how this works in real-life. Soon after
Balboa discovered the Pacific coast of Panama, commercially-minded people
realized (Step 1) that a lot of time could be saved when sailing from the Pa-
cific Ocean to the Atlantic Ocean, or vice versa, if a shortcut in the form of
a canal was built across the isthmus of Panama. In 1835, President Andrew
Jackson commissioned a Colonel Biddle to report on the feasibility of such a
construction, and many other surveys followed (Step 2). After an unsuccess-
ful attempt by a French company to build a canal purely with commercial
profit in mind (abortive effort at Steps 3 to 5), the concept of a canal got a
new shot in the arm (no Yellow Fever pun intended) as a result of the Span-
ish American War. In 1901 President Theodore Roosevelt, who was much
impressed by the fact it took the Battleship Oregon 67 days to sail from San
Francisco to the Caribbean back in 1898, recognized that Americas ability
to project force to defend its interests would always be hamstrung until a
quicker means to shift ships from Atlantic to Pacific, or vice versa was devel-
oped (back to Step 1). From 1901 to 1905, serious work began preparing to
do the job (Steps 2 and 3), with important supporting milestones achieved
such as instigating (or at least implicitly supporting with a wink and a nod) a
revolution to separate Panama from Columbia (1903) and eradicating Yellow
Fever in what would be called the Canal Zone (1905). In 1906, the engineer-
ing team revived and revised a backup French plan to use locks to cross the
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Panamanian mountains and deal with the elevation difference between the
Pacific and Atlantic sides (Step 4). (The original French plan was to cut a sea-
level canal across the entire isthmus.) At that point, American construction
efforts began in earnest (Step 5) and were completed in 1914.

Now let’s talk about the hierarchical structure mentioned earlier. Ignor-
ing the unsuccessful first effort by the French company, from 1835 to 1901
some of the most senior and prestigious individuals in American society be-
came convinced of the need to attack the problem of slow sea travel between
the Atlantic and Pacific Oceans (Step 1). Much of that period (and a few years
more) was occupied by data collection and data analysis (Steps 2 and 3).
This work was overseen and performed by senior highly educated individu-
als, i.e., statesmen, diplomats, surveyors, engineers, doctors, etc. At the same
time, plans were developed to attack the problem (Step 4), including a diplo-
matic initiative (the revolution), a medical initiative (Yellow Fever eradica-
tion), and an engineering design (including the locks concept). These plans
also were developed by senior, highly educated, prestigious individuals. Fi-
nally, the engineering plan for building the canal was implemented (Step 5)
and carried out. How was Step 5 carried out and by whom? It was dug by
a virtual army of uneducated and non-prestigious folks carrying shovels. In
the case of the failed French effort, the army totaled 20,000 people (200 died
per month from Yellow Fever).

So what does all this have to do with a spacecraft’s ACS subsystem? Well,
the problem recognition part (Step 1) is pretty much implicit in the fact that
we have an ACS (of a specific design) to deal with pointing control in the first
place, which derives from extensive trades performed by system engineers
early in the mission lifetime. The information gathering component (Step 2)
is the set of ACS sensors we discussed in Chapter 4. Some of these sensors
are rather sophisticated. For example, a quaternion star tracker can not only
provide direction measurements of stars it has acquired and tracked, it also
can identify them and determine the transformation from inertial space to
sensor space utilizing its own built-in star catalog for reference information.
The analysis component may include powerful state estimation algorithms
(usually a Kalman filter, details of which will be discussed in Chapter 7) and
control laws that estimate the pointing error (Step 3) and figure out how
much error should be removed each cycle (Step 4), and by which attitude
actuators (Step 4), in order to maintain the current pointing or reorient the
spacecraft to a new one. Finally, it comes time to implement the solution
(Step 5). That’s where the actuators do their bit to give us the spacecraft
pointing we want, as opposed to the one we’ve got, or at least think we’ve
got.

And what do we have to do to make that happen? We can turn a wheel
faster (or slower), run some current through a coil of wire, or open up a valve
to squirt some propellant out. Doesn’t sound very impressive compared to
what happened in all the steps leading up to the implementation, does it?
In fact, there is a bit more to it than it seems. For example, we do want to



5.1 Reaction Wheels 103

be very careful about the way we spin the wheel up (or down) so we don’t
inadvertently impart jitter to the spacecraft as we carefully model all the
frictional effects inherent in a rotating object to make sure we get the motion
we intended out of the wheel. Also, we don’t want to spin the wheel up too
quickly (and overshoot the target) or too slowly (and take too long to reach
the target). And in order to get the thruster to do what we want, we may have
to start up a catalyst bed heater, factor in a time delay for things to warm
up, model the ramp-up in thruster performance, calibrate the centroid di-
rection, model thruster impingement effects, etc. So nothing really is easy in
this business. But probably the guys with the shovels in Panama saw things a
bit differently from folks looking back on their accomplishments nowadays.
So let’s return to the early twenty-first century from the early twentieth cen-
tury and talk about three types of attitude actuators, namely reaction wheels,
magnetic torquer bars, and thrusters.

5.1 Reaction Wheels

A reaction wheel can be viewed as a spinning wheel. The magnitude of its
angular momentum is simply expressed as the product of its moment of in-
ertia and its speed (i.e., L = Iwheelωwheel). The direction of the wheel angu-
lar momentum vector is the same as that of its angular velocity vector (i.e.,
right-hand rule applied to the way the wheel is spinning). Conservation of
angular momentum is the key to understanding why changes to the wheel’s
speed produce changes in the spacecraft’s motion. Suppose we have a simple
box-shaped spacecraft that contains a reaction wheel mounted such that its
spin axis is parallel to a spacecraft axis of symmetry and the wheel center of
mass is coincident with the spacecraft’s center of mass (see Figure 5.1).

Fig. 5.1. Exchange of angular momentum between wheel and body.

Suppose also that initially the spacecraft is fixed in inertial space and the
wheel is not rotating. Now set the wheel rotating at a rate labeled by ωwheel .
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Since the angular momentum of the entire spacecraft (the spacecraft struc-
ture plus the wheel) initially was zero, conservation of angular momentum
demands that even when the wheel starts rotating the angular momentum
of the entire spacecraft must remain zero. So the spacecraft body will have to
start rotating in the opposite direction to the wheel in order to “cancel out”
the wheel’s angular momentum. How fast will the spacecraft rotate? Well,
if the principal moment of inertia of the wheel about its spin axis is Iwheel
and the principal moment of inertia of the spacecraft about that axis is Ispace,
then to keep the total angular momentum equal to zero we must satisfy the
condition ωspace = (Iwheel /Ispace)ωwheel where ωspace is the rotation rate of the
spacecraft about the wheel’s rotation axis.

In fact, that’s exactly what we do if we want to slew the spacecraft from
one pointing to another one via reaction wheels. If our spacecraft has at least
3 reaction wheels, appropriate torque commands to the reaction wheel set
can cause the spacecraft to begin rotating about any eigenvector we choose.
To stop the spacecraft rotation when we get to where we want to be, just
return the wheel speeds to where they were before the change was com-
manded. Of course, we really need to do more than this. Errors in model-
ing wheel frictional effects will cause us not to get the exact response from
the wheels we wanted. Errors in wheel positions and alignments will cause
the spacecraft not to respond exactly as we expected. And on top of these
errors, the rest of the universe will stick an oar in the water via the pertur-
bative torques we discussed earlier (atmospheric, gravity gradient, and solar
radiation torques, etc.). That’s why for this simple slewing strategy to work
properly, we really need a feedback mechanism so that we can measure the
error in the spacecraft pointing and order wheel commands to cancel out the
errors.

Clearly, once we bring environmental torques into the picture, this feed-
back system will be needed just to maintain the spacecraft’s inertial point-
ing at a constant attitude, let alone control large angle slewing. For Earth-
pointing spacecraft, we’re not trying to maintain our current pointing or
even slew to a new pointing. Instead, we’re trying to maintain a nadir point-
ing (i.e., stay looking down at the Earth), even though the spacecraft’s orbital
motion keeps changing the relative orientation between the spacecraft and
Earth. For this case, we need to spin-up the wheel and keep it spun-up so that
the body of the spacecraft responds by rotating such that it keeps its imaging
instrument pointed at the Earth. This is called 1 RPO operation since rotat-
ing the spacecraft about the appropriate spacecraft axis (usually defined as
the pitch axis) at 1 revolution per orbit (1 RPO) will maintain its pointing
geometry relative to the Earth throughout each of its orbits.

The actual structure of a reaction wheel is quite a bit more complicated
than Figure 5-1’s simple picture. In addition to a flywheel and its housing,
a reaction wheel must have a torque motor and electronics for driving the
wheel, as well as a tachometer to measure and output the wheel’s speed.
Wheel speeds are measured via a magnet mounted on the rotating wheel
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and a pickoff coil mounted on the fixed housing. Maximum wheel perfor-
mance is often expressed in terms of maximum wheel angular momentum
capacity instead of maximum wheel speed (recall the linear relationship be-
tween the two). Typically, wheel capacities range from 0.4 to 40 N-m-sec.1

Usually these angular momenta are delivered by small, high-speed wheels as
opposed to large, slow speed ones because of the advantages gained during
spacecraft weight trades. The last piece of the wheel structure is the bearing
assembly, which enables the wheel to rotate without seizing up. The bearings
can be lubricated via low vapor pressure oils, Teflon, or magnetic suspension.

Wheel friction originates from three different sources, namely stiction,
Coulomb friction, and viscous friction. Stiction is also called static friction.
It is the friction that arises when you try to move (either translationally or
rotationally) an object at rest. Coulomb friction (also called kinetic friction) is
a constant friction that inhibits the movement of a moving object. Stiction
and Coulomb friction can be a particular problem for a spacecraft that needs
to be held extremely steady to do its science because even when the control
system is very carefully designed (e.g., through use of a momentum bias, as
opposed to a zero momentum system, or via a set of selection laws) there
still may be cases where a wheel speed passes through zero. Since friction
opposes the direction of motion, you get a sudden shift in direction of the
frictional torque when the wheel speed changes sign, which can deliver a
significant jolt to the spacecraft, upsetting its fine pointing. And a jolt isn’t
such a great thing for wheel longevity either. Viscous friction, by contrast,
is linearly proportional to the wheel speed. So viscous friction is not an is-
sue during zero-crossings, but it increases in magnitude as the wheel speed
increases.

As hinted at earlier, to be able to maintain and reorient the spacecraft
attitude via wheels with full flexibility, the spacecraft needs to employ more
than one reaction wheel. Earth-pointers used to employ a two-wheel system,
placing one wheel on the pitch axis and the other wheel on either the roll or
yaw axis. This system took advantage of the fact that relative to inertial space
the spacecraft roll and yaw axes interchange every quarter orbit (see Figure
5.2). So, for example, a roll-mounted wheel could fully correct spacecraft roll
pointing errors (relative to inertial space) at one point in the orbit, while a
quarter an orbit later it could fully correct yaw-pointing errors (relative to in-
ertial errors). In actuality, throughout the orbit, corrections are made via the
roll wheel to a linear combination of roll and yaw errors that on average over
the duration of the orbit would address both errors equally. Meanwhile, the
pitch wheel exclusively dealt with pitch errors, i.e., rotational errors about
the orbit normal axis.

By contrast, celestial-pointers must carry at least three wheels to be able
to slew in any direction as well as correct attitude errors arising from all dis-
turbance torques. Usually celestial-pointers fly at least four wheels (see pyra-

1Larson & Wertz, Space Mission Analysis and Design, page 355, Table 11-11
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Fig. 5.2. Interchange of roll and yaw axes in 1-RPO motion.

midal distribution scheme in Figure 5.3), which both provide redundancy in
case of a wheel failure and enables momentum distribution through use of a
distribution law so as to inhibit wheel saturation.

w1 = [0, 0, 1] 

w2 =   [21/2, -61/2, -1] 1 
3 w3 =   [21/2, 61/2, -1] 1 

3 

w4 =   [-81/2, 0, -1] 1 
3 

x • 
y 

z 

Fig. 5.3. Four reaction wheel system.

Wheel saturation occurs when you’ve cranked a wheel up to its maxi-
mum speed, but still have attitude error that needs to be corrected. Without
recourse to some other actuator that can allow dumping of angular momen-
tum from the saturated wheel, the wheel will no longer respond to torque
commands and loss of control of the spacecraft can result. So whenever you
control the spacecraft attitude with reaction wheels, you always need an-
other attitude actuator, either magnetic torquer bars or thrusters, to protect
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the wheels from saturation. But before we move on to those other actuators,
let’s summarize the advantages and disadvantages associated with using re-
action wheels, starting with the advantages. Unlike thrusters, whose usable
lifetime is limited by their fuel supply, wheels utilize renewable electrical
energy, so their lifetime is limited only by mechanical failure. The fact that
it is a big moving part might suggest that failures could be frequent, but
in fact wheel failures have been infrequent on GSFC missions. Command-
ing wheels is pretty straightforward. It usually just involves a simple trans-
formation of control law-computed body-frame corrective torques to corre-
sponding torques in the wheel frame, with a distribution law thrown in for
grins to help inhibit wheel saturation. For missions that don’t change iner-
tial pointing for a long time, it may be desirable to use a more complex set
of logic to avoid wheel zero-crossings, or at least pass through them quickly.
A system momentum bias that keeps all the wheel speeds high enough that
they don’t get close to zero may achieve the same results. The biggest disad-
vantage of wheels is the saturation problem, which we’ll also touch on some
more in the sub-sections on magnetic torquer bars and thrusters. The other
major disadvantage is that compared to some types of thrusters, wheels can
be very slow, which can be an issue for science missions requiring quick re-
sponse.

5.2 Magnetic Torquer Bars (MTBs)

An MTB is the simplest of the three attitude actuators. By running an elec-
trical current through a coil you generate a magnetic dipole moment:

m =NIAn (5.1)

where

m = magnetic dipole moment (ampere-meter2)
N = number of wire coil loops (integer)
I = current in coil (amperes)
A = coil cross-sectional area (meters2)
n = unit vector normal to the plane of the coil

The magnetic dipole can be thought of heuristically as a little bar mag-
netic (see Figure 5.4) whose axis is aligned with the coil’s symmetry axis (or
for a single loop, parallel to the normal to the loop with the polarity of the
bar defined by right-hand rule applied to the sense of the current flow).

If you immerse the bar magnetic in an external magnetic field, the bar
will “feel” a torque that tries to align the bar with the field direction. By the
same token, when you run a current through a coil mounted on the space-
craft (actually the coil is wound around a ferrous bar mounted on the space-
craft), you generate a dipole moment that “wants” to align itself with the
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Fig. 5.4. Magnetic field generated by a current coil.

geomagnetic field, the external field in which the spacecraft is immersed.
Since the MTB can’t move without taking the spacecraft with it, the net ef-
fect of commanding the current in the coil is to apply a control torque to the
spacecraft (see Equation 5.2).

N = m×B (5.2)

where

N = torque (Newton-meters)
B = Earth’s magnetic field vector (gauss)

On some small, low cost spacecraft with undemanding attitude control
requirements, MTBs have been used as the sole attitude control device, al-
though their performance flexibility is limited by the fact that they interact
with the existing geomagnetic field at that time, which constrains the direc-
tion in which torques can be applied. Specifically, the direction of the applied
torque must always be perpendicular to the direction of the Earth’s magnetic
field at that time. This is not much of a limitation when using MTBs for an-
gular momentum dumping since we’re not too concerned in that application
about how much angular momentum we’re dumping at a given instant in
time. Instead, what’s important is how much angular momentum is dumped
over an extended time duration, such as the orbital period of a LEO space-
craft.

If you want to dump angular momentum in the most energy efficient
fashion, a possible strategy would be just to counter the external torque sec-
ular terms with MTBs and allow the wheel speeds to oscillate sinusoidally in
response to external torque periodic terms. (For LEO spacecraft above 500-
km altitude, the dominant environmental torque is gravity gradient, which
has both secular and periodic terms.) This strategy for angular momentum
management, called minimum energy momentum management, was actually
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proposed for and implemented in HST’s FSW, but was found to be unneces-
sary even pre-launch when the power subsystem was upgraded with better
batteries having superior power margins. In practice for most missions, since
electrical energy is usually plentiful, the simplest thing to do from an over-
all costs standpoint (factoring in the expense of FSW) is to generate an MTB
dipole command based on current satellite conditions (attitude and reaction
wheel momentum load) and the currently measured geomagnetic field, e.g.,

mC = kG(Bv ×Nd) (5.3)

where

mC = magnetic dipole to be commanded
kG = control gain factor
Bv = local, TAM-measured geomagnetic field (in body frame)
Nd = desired torque to reduce reaction wheel momentum load

A third application of MTBs is rate damping using the B-dot control law
(“dot” being short-had notation for time derivative). B-dot was first used to
place the SMM spacecraft into a controlled rotation after a wheel failure put
the spacecraft into a tumble. The B-dot algorithm simply read TAM measure-
ments and generated commands to the MTBs to null the observed change
in magnetic field. Of course, the geomagnetic field actually does change (as
measured from the spacecraft) as the spacecraft travels through its orbital
path, so application of B-dot cannot inertially fix the spacecraft attitude. But
it will (very gradually because of the relative weakness of magnetics) convert
an extremely complex attitude motion into a controlled, slow, periodic one,
roughly having a frequency of twice the orbital one.

Since MTBs have no moving parts, failures are rare. There are no artificial
limitations on lifetime either since MTBs are run on electrical power, a re-
newable resource that usually is readily available. Because they’re lightweight,
MTBs don’t impact weight trades significantly, and at LEO orbits the signifi-
cant size of the geomagnetic field (about a quarter of a gauss) make MTBs the
ideal desaturation partner for reaction wheels. On the downside, MTBs are
typically the weakest of the attitude actuators, or at least they are most lim-
ited in terms of the maximum torque they are capable of generating. Even
at LEO altitudes, the action of MTBs will be extremely slow, and once you
get above synchronous altitude, the Earth’s field is so weak that MTBs are
pretty much useless. Finally, the magnetic field generated by the MTBs can
corrupt or interfere with other spacecraft activities, such as the performance
of science-oriented magnetometer measurements.

Before closing out this section on MTBs, we find it appropriate to throw in
a caveat regarding magnetic conventions. One possible source of confusion
in dealing with magnetic quantities is that they follow two different conven-
tions, which give rise to two different definitions of magnetic pole strength
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and dipole moment, expressed in two different sets of units. In order to keep
the units straight, it’s important to know which convention you’re using. One
convention is based on the magnetic induction vector B (which has units of
teslas in SI units). Under this convention, the force F on a (hypothetical)
magnetic pole q∗ in a magnetic field B is given by

F = q∗B (5.4)

Here q∗ is called the pole strength, with units of ampere-meters (Am) in this
convention. A magnetic dipole can be imagined as two magnetic poles of
equal pole strength (but opposite polarity) separated by a fixed distance.
The magnetic dipole moment m is defined as the product of one of the pole
strengths multiplied by the distance between the poles; under the B-field
convention, this is

m = q∗L (5.5)

and the units of magnetic dipole moment are Am2. Here L is the separation
vector between the two magnetic poles, and points in the direction from the
south pole to the north pole.

Under the other convention, these quantities base their definitions on the
magnetic intensity vector H instead of the magnetic induction field B. In
vacuum, the H field is related to the B field by B = µ0H, where µ0 is the
permeability of free space, and is equal to 4π × 10−7N/A2. The H field has
units of A/m. Under the H-field convention, the force F on a magnetic pole
Q∗ in a magnetic field H is given by

F =Q∗H (5.6)

where Q∗ is the pole strength, which under this convention has units of we-
bers (Wb). Another common unit for pole strength under the H-field con-
vention is the unit pole. It is used with cgs (centimeter-gram-second) units,
and is defined to be 1 dyne per oersted, where the oersted is the cgs unit for
H. One unit pole is equal to 4π×10−8 webers. Under the H-field convention,
the magnetic dipole moment d of two magnetic poles separated by a distance
L is given by

d =Q∗L (5.7)

where the dipole moment d has SI units of weber-meters (Wb m) under this
convention. Another common unit for magnetic dipole moment under the
H-field convention is pole-cm, and is used with cgs units. One pole-cm is
equal to 4π × 10−10 Wb m. To convert magnetic pole strength between the
B-field and H-field conventions, one may use

Q∗ = µ0q
∗ (5.8)

The conversion between conventions for the magnetic dipole moment is

d = µ0m (5.9)
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This is all a somewhat lengthy way of saying that different folks have dif-
ferent strokes (conventions), so be careful that you know what’s being used
by the teams for any given spacecraft on which you’re working.

5.3 Thrusters

At last, we get to talk about something that sounds like rocket science:
thrusters. There are three distinct classes of thrusters that we’ll talk about
here: hot gas, cold gas, and ion. They all have at least one thing in com-
mon. They produce thrust through the collective acceleration of propellant
molecules. This may occur via a chemical reaction, thermodynamic expan-
sion, or electrostatic fields, hence the three thruster classes.

With hot gas thrusters, the energy for propulsion is derived from a chem-
ical reaction. Relative to the other two classes, hot gas thrusters produce
a higher level of thrust and a greater impulse (the time integral of force).
For GSFC spacecraft, the force generated can be greater than 5 newtons,2

although smaller thrusters are often employed for higher precision in ap-
plied force or torque. The fuel for hot gas thrusters is either bipropellant or
monopropellant. Monopropellant fuels, such as hydrazine or hydrogen per-
oxide, use a catalyst or high temperature to cause decomposition of the fuel.
The most common fuel for hot gas thrusters flown on GSFC spacecraft is
hydrazine with catalytic decomposition.

Let’s examine those components in an operational order, starting off with
the fuel tanks where the hydrazine and pressurant are stored, with a di-
aphragm separating the two. The pressurant is nitrogen gas, which helps
push the hydrazine out of the tanks. As fuel is depleted from the tank, the
gas pressure steadily diminishes, so that the performance of the thruster near
end-of-life will be much less than its performance at launch. On leaving the
fuel tank, the hydrazine passes through filters and latch valves as it heads to-
wards the thrusters, with a pressure measurement from pressure transducers
along the way. Heaters in the fuel lines are used to keep the hydrazine from
freezing. Next, the hydrazine is filtered again and its flow through the lines
is controlled via solenoid valves. Once the fuel hits the thruster, the propul-
sion process finally can occur, with thruster heaters used to maintain proper
operating temperatures, as measured by thermocouples. And of course, the
execution of the entire process is monitored, controlled, and reported on by
propulsion system electronics.

There’s a ramp-up time before a hydrazine system is operating at nom-
inal performance. Initial performance can be low until the catalyst is fully
heated by operation of the thruster. Hydrazine thrusters are fast and pow-
erful, and their use can be orchestrated via relatively simple control laws,
although modeling the thrust profile can be quite complex. Of course, as for

2Wertz, page 206
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all thrusters, thruster lifetime is limited by the fuel supply, in this case the
supply of hydrazine onboard. Unlike small wheels and MTBs, hydrazine sys-
tems are heavy, so the size of the tank and the amount of fuel to be carried
are big considerations in weight trade studies. Where you place gas thrusters
and how you align them is a big deal also. For example, the plume from
the thruster may impinge on spacecraft structure, such as a mast, leading to
unexpected and undesired torques on the spacecraft. Even worse for many
science spacecraft, the ammonia in hydrazine is very corrosive and can dam-
age sensitive optics. Also, since hydrazine freezes below zero degrees Celsius,
you should include a lot of heaters everywhere the hydrazine travels through
the propulsion system. Otherwise you can end up with a permanent block-
age that could disable the thruster resources.

Although this seems like a lot of stuff to worry about when designing a
spacecraft, hydrazine thrusters remain extremely popular and are capable of
performing just about every translational or rotational function imaginable.
They can control attitude and spin rate. They can damp out nutation and
keep reaction wheels from saturating. And they can perform delicate sta-
tionkeeping, or insert your spacecraft into an entirely new orbit. For attitude
purposes, hydrazine thrusters operate in pulsed-mode, where the thruster is
periodically cycled on and off. For orbit maneuvers, the thrusters are oper-
ated in continuous mode, with the thrusters starting firing at the beginning
of the maneuver and kept in non-stop operation until the end of the maneu-
ver.

The alternative to monopropellant fueled thrusters, like hydrazine thrust-
ers, within the hot gas thruster class is bipropellant fueled ones. Since the
fuel and oxidizer are stored separately, clearly bipropellant systems will be
more complex than monopropellant systems. Bipropellants (such as mono-
methyl-hydrazine and nitrogen tetroxide) are hypergolic, a 10-dollar word
that means that when the fuel and oxidizer are mixed they combust sponta-
neously. This enables the bipropellants to deliver much higher thrust levels
than monopropellants, up to 500 Newtons of force.3

One of the few things hot gas thrusters are not designed for is fine atti-
tude pointing, because the precision and consistency obtainable from hot gas
thrusters is not comparable to what you can achieve with reaction wheels.
That’s where the other thruster classes shine.

In the class of high-precision thrusters, cold gas thrusters have been
around about as long as hot gas thrusters. They derive their energy from
the latent heat released during a phase change or from simple compression
if no phase change occurs. Cold gas thrusters operate more consistently than
hot gas thrusters, especially in pulsed-mode, because there are no steady
state issues to deal with. And they’re simpler to operate since no pressurant
is needed. On the downside, the forces delivered will be considerably less,

3J. Wertz, Spacecraft Attitude Determination and Control, page 206
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typically below 1 newton.4 Still, they have been used successfully to support
attitude control on missions such as the International Sun-Earth Explorer-1
(ISEE-1), where the pointing requirement was only on the order of a degree.

But to achieve truly fine pointing precision, you have to move on to a
somewhat Buck Rogers sounding technology called ion thrusters. In addi-
tion to high-precision for attitude control, ion thrusters have relatively high
thrust exhaust velocity, which proportionately reduces the mass of onboard
propellant required to achieve the same total momentum change (linear or
angular). Ion jets produce thrust through the acceleration of individual ion-
ized atoms by electrodynamics, whose energy in turn comes from solar cells
or self-contained electric generators. The thruster components include an
emitter, accelerator, beam neutralizer, and of course a propellant. The emit-
ter ionizes the propellant, examples of which are mercury and xenon, and
separates the now positively charged atoms from the stray electrons knocked
off the previously neutral matter. See Figures 5.5a and b for an illustration
of the xenon thruster used in JPL’s Dawn (a.k.a. Deep Space 1) mission.

Fig. 5.5a. Deep Space 1 (Dawn mission) ion thruster test (Image from http://dawn.

jpl.nasa.gov/mission/ion_prop.asp). Credit: NASA/JPL.

The accelerator then electrostatically accelerates (big surprise) the posi-
tive ions to the desired velocities. Naturally, you want to form the propellant
beam from the positive ions since that’s where almost all the propellant mass
is located. Finally, the beam neutralizer recombines ions and electrons prior
to the propellant leaving the thruster so that the net charge of the propellant

4J. Wertz, Spacecraft Attitude Determination and Control, page 206
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Fig. 5.5b. Deep Space 1 ion thruster schematic (image from http://dawn.jpl.nasa.

gov/mission/ion_prop.asp). Credit: NASA/JPL.

returns to its neutral state. Otherwise, as you ran the thruster you’d steadily
build up charge on the spacecraft.

Recently, ion thrusters have taken on particular importance for a new
series of missions dedicated to experimental verification of predictions aris-
ing from General Relativity Theory, especially those involving the detection
and study of gravity waves. For extremely sensitive science of this type, any
moving component onboard the spacecraft is a potential noise contributor.
So not only aren’t any reaction wheels permitted for control purposes, even
mechanical gyros are forbidden as well. Future missions such as the Laser In-
terferometer Space Antenna (LISA) must instead rely on a newly developing
micro-newton thruster technology to provide the nanometer level control
that will be required for successful detection and study of gravity waves.

One approach for this low-thrust, high-precision ion thruster technol-
ogy is Field Emission Electric Propulsion (FEEP), under development by the
Austrian Research Center Seibersdorf. The FEEPs are part of a larger class
of thrusters called “electrospray” thrusters, which operate somewhat like
inkjet printers. The propellant in this case is liquid metal indium liquefied
by a heater in the thruster (other design concepts utilize liquid cesium). The
thruster works as follows. When you apply an electrostatic field between the
surface of the liquid indium and an accelerator electrode, the indium re-
sponds by forming the cone on the tip of a needle. If the field is made strong
enough (a few volts per angstrom), the indium atoms at the tip of the needle
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are vaporized, ionized, and accelerated to the accelerating electrode. As ions
are drawn away, the supply of atoms at the needle tip is replenished contin-
uously by the action of the electrostatic field. The result is a steady stream
of ions from the apex of the cone. Unlike the case of the earlier described
ion thruster type, the FEEP beam is not made charge neutral prior to exiting
the thruster. Instead, a neutralizer may be provided to render the spacecraft
charge neutral. Even that may be unnecessary for the LISA mission as it may
be the case that other charging effects (photoelectric, solar wind, etc.) may
be strong enough to keep the spacecraft neutralized. This hypothesis will
likely be tested on LISA Pathfinder.5 By varying the applied voltage associ-
ated with the electrostatic field, you can control the power of the thrust, with
minimum levels down as low as fractions of a micronewton. Incidentally, for
this class of thruster (as opposed to hot gas or cold gas thrusters), fuel supply
is not a limiter on mission lifetime, given that the required FEEP propellant
mass is on the order of grams rather than kilograms.

5This information on LISA’s FEEPs was supplied by Stephen Merkowitz of the
LISA Project
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Reference Models

Tip O’Neill, a former Speaker of the House, once remarked that “All poli-
tics is local”. One perhaps could generalize his comment to be “Everything
is local”. In any event, we all certainly have the tendency to view everything
that happens around us from our own personal context. And even when we
function as physicists, astronomers, or engineers, any measurements we col-
lect are made in the local reference frame associated with the physical space
occupied by our measuring device. There are many advantages to viewing
and measuring things from a local perspective. If you choose the size of a
local region small enough (without getting too tiny and being afflicted by
Heisenberg’s Uncertainty Principle), things going on in that small region
look fairly simple. For example, the surface you’re standing on will look
pretty flat no matter how complicated the contours of the surface are, so
long as you restrict the size of the sampled surface to a small enough area.
If you watch how things are changing in the region, the changes will al-
ways look linear as long as you sample things fast enough (again, with a nod
to Heisenberg, as long as you’re not too fast) and don’t look at more than
a few samples together. Even the laws of physics get simpler (i.e., can ac-
curately be approximated by simpler equations) if the laboratory in which
you’re conducting your experiment gets small enough. And, of course, the
“gedanken experiments” (translation: “thought experiments”) that Einstein
conceptualized in these tiny laboratories were quite a bit cheaper than the
ones most physicists perform in full-sized labs. So given the comfort value
of local surroundings, why would you ever leave them? The problem is that
eventually, unless you’re a hermit living on top the Himalayas, you’ll want to
communicate your findings to someone or something outside your locality.
Or alternatively, you’ll want to compare your findings with those obtained
by someone or something outside your magic circle. There are some excep-
tions to this rule of thumb, but if you think about it for a while you’ll see
there are a lot fewer exceptions than might seem at first glance.

For example, suppose you’re sitting in your living room’s reclining chair
on a cold winter day watching your favorite basketball team get killed. After
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reaching the resignation state that follows slamming the TV remote control
into the floor, your body temperature will begin returning to normal and the
room will start feeling cooler, especially a while after you’ve drowned your
sorrows in an ice cold Sam Adams beer. Stated in a more technical sense,
you’ll have made a temperature measurement in your immediate vicinity
and have determined that warmer surroundings would be a pleasant change.
But unless you’re that stoic hermit on top of the mountain, if you’re going
to take any practical action to improve your lot in life, you’re going to have
to communicate the desired change to your house’s furnace in terms that
the furnace will understand. That means you’re going to have to raise the
furnace’s control dial a couple of degrees higher to get the heat to come on.
At a detailed level, that actually means you’ve sampled data from a personal
temperature sensor, processed the data to determine an average current tem-
perature, run a comfort model to determine what the desired temperature
is, calculated a delta between the two to determine a desired temperature
change in your vicinity, transformed the desired change in your frame to a
commanded change in the furnace thermostat frame (utilizing a thermostat
model), delivered that command to the thermostat, and moved the thermo-
stat dial or lever to actuate the heating mechanism. And even with this much
complexity, we’ve left out the entire process that takes you from the thermo-
stat to the furnace heating coil, from the heating coil through the fan to the
hot air vents, and the closed-loop control loop through which you continu-
ously monitor the results of your action to determine if the thermostat needs
to be raised again, if the furnace should be cut off, or if you should kick in
the picture tube and put an end to your misery. Maybe this scenario explains
why so many people nowadays seem to have living room fireplaces.

In light of this tangential discussion (maybe Tip’s adage should have been
“No Politics is Simple”) you’ll probably find that any measurement worth
making for any purpose other than self-absorbed enlightenment (and even
those exceptions can probably be dealt with by decomposing the person into
his/her constituent parts) has little value taken in local isolation. In order to
relate that measurement to something else requires a model of the something
else to which it is to be related, or a model relating your measurement to
someone or something else’s measurement. So by a rather roundabout route
we arrive at the subject of this chapter, reference models.

In spacecraft attitude work, we’re always comparing measurements of
where something is to where that something ought to be. For example, a Sun
sensor says the Sun direction vector is (x,y,z). The next thing we want to
know is what the “correct” direction is. “Correct” in this context can mean
two things. First, it can mean the direction we really wanted the Sun vec-
tor to have relative to the spacecraft frame, for example normal to a fixed
solar array. Ignoring relative alignment issues between the Sun sensor and
spacecraft, this comparison does not require a very sophisticated model, and
determining the error between measured and desired Sun vector is as simple
as a cross-product computation. But if “correct” means what is the actual
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Sun direction in inertial space, that’s a much more complicated question,
requiring referral to an analytical model of Sun position, or (for very ac-
curate information) even referral to an almanac. Typically you’ll find that
the first comparison, measured vs. desired, is the concern of control laws
used for error reduction, while the second comparison, measured vs. actual,
is the concern of attitude determination algorithms used to define the ori-
entation of the spacecraft relative to an agreed upon reference. The models
used to support calculation of those “actual” vectors are the subject of the
rest of this chapter. Specifically, we’ll examine the models for describing the
Earth’s gravitational field, spacecraft ephemerides, solar, lunar, and plan-
etary ephemerides, the Earth’s magnetic field, and catalogs specifying star
directions, magnitudes, and other exotic information.

6.1 Modeling the Earth’s Gravitational Field

Let’s start off with how you model the Earth’s gravitational field. Equation 2.1
showed Newton’s equation of force between two point masses. A conserva-
tive force field, which gravity is, can be expressed as the gradient of a scalar
function called the potential, i.e., F = −∇U . Given the Earth’s spheroidal
shape, it is natural to describe its gravitational potential (and thereby im-
plicitly its mass distribution) as terms in a spherical harmonic expansion. In
this formalism, latitude dependence is characterized by the zonal harmonic
coefficients of the expansion and longitude dependence is characterized by
the tesseral and sectorial coefficients (see Equation 6.1).

U = −
µe
r

+B(r,θ,φ) (6.1)

where

U = Earth’s gravitational potential (m2/sec2)
µe = geocentric gravitational constant = GMe = 3.986005×1014m3/sec2

G = gravitational constant = 6.67428× 10−11m3/(kg-sec2)
Me = Earth mass (kg)
r = distance from the center of the Earth (m)
θ = co-latitude angle (rad)
φ = longitude angle (rad)

and

B(r,θ,φ) =
µe
r

 ∞∑
n=2

[(Re
r

)n
JnPn0(cosθ)

+
n∑

m=1

(Re
r

)n
(Cnm cosmφ+ Snm sinmφ)Pnm(cosθ)




where
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Re =Earth equatorial radius = 6378.140 km
n,m = indices representing integers
Jn = zonal harmonic coefficients (for example, J2 = 0.0010826359)
Pnm = Legendre polynomials
{Cnm,Snm} = non-zonal spherical harmonic coefficients (“tesseral” for
n ,m; “sectoral” for n =m)

The low-order zonal terms model the Earth’s oblateness and generally
are larger than the corresponding tesseral and sectoral terms at comparable
orders in the expansion. As a result, the low-order zonal terms are major
perturbing sources for near-Earth orbiting spacecraft. Especially at LEO al-
titudes, the low-order zonals are primary factors influencing orbital period,
right ascension of ascending node, and argument of perigee. By contrast,
tesseral and sectorial terms can be more important at geosynchronous alti-
tude since those spacecraft “hang” over the same longitude points, so the
longitudinal variations do not average to zero over time. Actually, at geosyn-
chronous altitude, solar and lunar gravitational influences are more impor-
tant than the higher order terms in the (zonal, tesseral, sectorial) expansion,
so arguments over relative importance of zonals vs. tesserals and sectorials at
geosynchronous take on a bit of a philosophical flavor as far as the spacecraft
is concerned. Typically, for attitude-related use (e.g., gravity gradient torque
computations), you don’t need to expand beyond the J2 term, i.e., the first
zonal term, which is a second-order term (see Equation 6.1). However, for
high accuracy orbit specification, many additional higher order terms need
to be kept in the expansion.

6.2 Modeling the Spacecraft’s Ephemeris

One good reason for accurately modeling the Earth’s gravitational poten-
tial, of course, is to enable more accurate modeling of the spacecraft’s or-
bital position, also referred to as the spacecraft’s ephemeris. The primary tool
for computing spacecraft ephemerides, both definitive and predictive, here
at GSFC is the Goddard Trajectory Determination System (GTDS). GTDS
utilizes spacecraft range and rate data to determine definitive spacecraft
ephemerides. Using the definitive orbit determined from measurements as
a baseline, GTDS then uses a collection of models, including the spherical
harmonic expansion of the geopotential we just talked about, to generate
predicted spacecraft ephemerides. The other models include those of per-
turbative effects, such as atmospheric drag (with its associated atmospheric
density model), solar radiation pressure, and N-body gravitational contri-
butions. For both definitive and predictive orbit runs, the primary output
of GTDS is a file specifying spacecraft position and velocity vector pairs in
inertial space at a constant, user-specified time interval. An interpolator is
used to determine spacecraft position and velocity for times that fall between
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points in the file. The GTDS output also provides a header that includes in-
formation such as the Keplerian osculating elements corresponding to the
first vector pair in the file, a set of Brouwer mean elements averaged over the
entire file, a parameter characterizing the solar activity at the time the file
was generated, and other parameters describing how the file was generated.

Onboard a spacecraft, predictive orbit generators are often used to avoid
the space demands presented by a predictive ephemeris file. Instead, a
(sometimes) simple mathematical model is used to calculate spacecraft po-
sition and velocity vectors from a (sometimes) small number of input pa-
rameters uplinked regularly by the ground system. The “freshness” of the
orbital predictions is maintained by frequently uplinking updated input pa-
rameters. Many different types of orbit generators have been implemented
onboard spacecraft over the decades. Not surprisingly, as the speed and com-
puting power of the onboard computers have increased during this time
period, the complexity and sophistication of the orbit propagators have in-
creased correspondingly.

The least complicated orbit propagator you can make is a two-body one
treating the Earth as a point mass (i.e., a model having the six Keplerian oscu-
lating elements as input), but the inaccuracy of a simple two-body model at
LEO altitudes is so high that we aren’t aware of any that have been flown on
GSFC missions. The next step up is to include Earth oblateness effects (adds
in time derivative terms for right ascension of ascending node, argument of
perigee, and mean anomaly), but that will still suffer from significant error
when atmospheric drag cannot be neglected. The HST onboard orbit prop-
agator dealt with the atmospheric drag problem by adding in a correction
term to the mean anomaly that was proportional to the square of the time
since epoch, i.e., an acceleration term compensating for frictional effects. It
also included an independent input of circular velocity for grins. But to get
really accurate onboard orbit prediction, you need something more elaborate
mathematically than an elements-based model. For example, the Landsat
model utilized Fourier coefficients (good for modeling periodic structures)
from which Hermite polynomial coefficients were constructed for interpo-
lation purposes. An extra level of accuracy could be added in the form of a
“fudge factor” grid for empirical correction of small, non-periodic-like ef-
fects. And in an approach more similar to the GTDS generation of predicted
ephemeris vectors, the Solar Anomalous and Magnetospheric Particle Ex-
plorer (SAMPEX), and many more recent spacecraft, utilized its own host of
physical models (including the Jacchia-Roberts atmospheric density model)
to integrate the equations of motion from input of an extended precision po-
sition and velocity vector pair. We’ll have more on this topic in Chapter 9, as
well as a description of the latest approach to onboard orbit determination,
measuring your orbit position directly in realtime.
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6.3 Modeling Solar, Lunar, and Planetary Ephemerides

Shifting from manmade orbiting objects to natural ones, the orbits of the
planets (including the Earth) and our Moon are nearly circular and in the
plane of the ecliptic. For example, Mercury has the largest eccentricity at
0.2, while Mars has the largest inclination (from the ecliptic) at 7◦. The most
detailed specification of planetary and lunar positions is provided in tabular
form in The Astronomical Almanac.1 A computer-readable version (at least
by large ground system computers and storage facilities) with interpolation
capability is provided by GSFC’s Solar-Lunar-Planetary (SLP) file, whose in-
formation is derived from a Jet Propulsion Laboratory (JPL) product. Neither
of these, of course, is appropriate for onboard use, but the Explanatory Sup-
plement to the Almanac mentioned previously has formatted this informa-
tion as expansions of orbital elements, which can be utilized in closed-form
algebraic expressions in analytic propagators.

6.4 Modeling the Geomagnetic Field

The Earth’s magnetic field, B, like its gravitational field, can be represented
as the gradient of scalar function, with the latter modeled via a spherical
harmonic expansion (see Equation 6.2).

B = −∇V (gauss) (6.2)

where

V (r,θ,φ) = a
∞∑
n=1

n∑
m=0

(a
r

)n+1
[gmn cosmφ+ hmn sinmφ]Pmn (θ)

where

r = separation distance (m)
θ = co-latitude angle (rad)
φ = longitude angle (rad)
a = “conventional” Earth radius = 6371.2 km
n,m = indexes representing integers
gmn = Gaussian coefficients
hmn = Gaussian coefficients
Pmn = Legendre polynomials

Note that although a Legendre polynomial expansion is utilized in both
Equations 6.1 (the geopotential) and 6.2 (the geomagnetic field), the forms
of the equations are not the same. This is really just a matter of convention,

1See http://asa.usno.navy.mil/ for a description of The Astronomical Almanac,
and contact information for ordering a printed version.
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manifest as a difference in normalization conditions applied to the two poly-
nomial sets. Specifically, the Legendre polynomials Pmn used in Equation 6.2
use the Schmidt normalization convention while the Legendre polynomials
Pmn in Equation 6.1 use the Neumann normalization convention.

Looking at Equation 6.2 more qualitatively, the first-order term, which
models the Earth like a bar magnet, is dominant. The strength of this term,
the dipole, drops off as the cube of the distance separation. Except for its ti-
tle role in a 1950s low-budget science fiction movie (starring Richard Carlson
and King Donovan, for the benefit of those who might also have spent their
summers watching the Late, Late, Late Show on small black and white TVs),
there currently is no experimental evidence of magnetic monopoles, which
if they existed would exhibit the inverse square law behavior made famous
by Newton’s Law of Gravitation. The Earth’s dipole term is not constant with
time, and appears to be decreasing roughly monotonically at about 0.05%
per year.2 This behavior suggests that the polarity of the geomagnetic field
may reverse in several thousand years, and in fact there is evidence that
several polarity switches may have already occurred, with time spacings of
about 70,000 to 100,000 years between reversals.3 In terms of the variation in
field strength as a function of position relative to the Earth, if you keep your
separation from the Earth’s center constant, the field strength doubles as you
move from the magnetic equator to one of the magnetic poles. This is easy to
see qualitatively in terms of the increasing density of field lines as you move
towards the poles, as displayed in “lines of force” diagrams first envisioned
by Faraday in 1831. Traveling radially from the magnetic equator, the field
strength decreases from about a quarter of a gauss at LEO altitudes to just
0.005 gauss by the time you’re 4 Earth radii from the Earth’s center, roughly
60% of geosynchronous altitude.4 The actual geomagnetic field is depicted
in Figure 6.1, where the field lines are somewhat distorted from this simple
description due to the influence of the solar wind. As a result, Equation 6.2
is only accurate near the Earth. At large distances from the Earth, the real
field will deviate substantially from the spherical harmonic expansion and,
because of the solar wind, is a function of time of day.

Figure 6.2 shows the contours of geomagnetic field strength near the
Earth’s surface, more-or-less the same as for LEO missions. Note that the
regions of greatest intensity (towards the extreme northern and southern
latitudes) do not coincide exactly with the Earth’s rotation poles; the mag-
netic and rotation poles are offset from each other by about 11.5◦. Note also
the large dip in field strength, down to below 25000 nano-Teslas, just off the
east coast of Brazil. This region is called the South Atlantic Anomaly (SAA),
sometimes the Brazilian Anomaly.

2J. Wertz, Spacecraft Attitude Determination and Control, page 113
3Ibid, pages 113-114
4Ibid, page 114, Figure 5-1
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Fig. 6.1. Geomagnetic field as distorted by the Solar wind (image from http://

helios.gsfc.nasa.gov). Credit: NASA/Cosmicopia.
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Fig. 6.2. Earth surface geomagnetic field strength, nanoTeslas, epoch 2015.
Image from: http://www.ngdc.noaa.gov/geomag/WMM/data/WMM2015/WMM2015_F_
MERC.pdf. Credits: NGDC/NOAA (field levels added by authors).
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Much of this anomalous structure (anomalous relative to a simple dipole
picture) can be fit to the second order term in the expansion, the quadrupole
term. Since a monopole term varies inversely with the square of the distance
separation, and a dipole term varies inversely with the cube of the distance,
it won’t come as much of a shock to hear that the quadrupole term varies
inversely with the fourth power of the distance. The SAA has two features
of interest for LEO missions. First, the weak magnetic field in the SAA im-
plies weak coupling of magnetic torquer bars (MTBs) to the Earth’s field,
and therefore a lowered efficiency for dumping excess angular momentum
from spacecraft reaction wheels. This is pretty much just an academic point
since MTB-based momentum management is really an orbit-averaged con-
cern; time spent in the SAA is a small fraction of the total orbit. Of more
concern is the fact that the weak SAA magnetic field allows the Van Allen
radiation belt to penetrate much closer to the Earth’s atmosphere there, re-
sulting in high energy (> 10 MeV) proton fluxes rising above typical by two
to three orders of magnitude. This in turn results in a substantially increased
probability for electronics interference, e.g., computer single event upsets.

For most practical applications involving geomagnetic field modeling
(for example, coarse attitude determination) accuracy requirements demand
that higher order terms in the spherical harmonic expansion be included.
The set of expansion coefficients, called Gaussian coefficients (the constants
gmn and hmn appearing in Equation 6.2), used here at the GSFC are the stan-
dard International Geomagnetic Reference Field (IGRF) ones, which go as
high as eleventh order. In addition to modeling the polar, azimuthal, and
radial variations via traditional spherical harmonic terms, the IGRF coeffi-
cients also take into account secular field variations (recall the comments on
pole reversals over time) through the inclusion of first order time derivatives
of the coefficients. As new geomagnetic field measurements are made, for
example by the Magsat and SAMPEX missions, updated values of the IGRF
coefficients incorporating these improvements are published, usually at least
as frequently as every 5 years with occasional interim updates between ma-
jor releases. The range of validity of the IGRF coefficients is roughly from the
Earth’s surface to altitudes of about four Earth radii (i.e., below 25,000 km)5,
mainly because the strength of the geomagnetic field above that altitude be-
comes very weak. Furthermore, once you get above geosynchronous altitude,
perturbations from the action of the solar wind and interplanetary magnetic
field can overwhelm the “naturally” arising geomagnetic field, making IGRF
“predictions” quite unreliable.

5J. Wertz, Spacecraft Attitude Determination and Control, page 119, Tables 5-2
and 5-3
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6.5 Star Catalogs

By contrast to the ephemeris and geomagnetic field modeling problems, the
mathematics associated with specifying star-related input to fine attitude de-
termination (or other applications utilizing star data) is pretty simple. In
the previous cases, what you’re trying to do is package measurements via a
mathematical model in such a way that they can be accessed in a more com-
pact form (e.g., elements, spherical harmonics coefficients, etc.) than pro-
vided by, for example, an almanac. For star data, what you’re trying to do
is organize measurements in a manner that makes retrieval straightforward,
either when dealing with a set of data for an individual star or when trying to
extract a subset of relevant data for a geometric grouping of stars. So what’s
needed is a catalog to hold the information, a logical grouping of stars in the
catalog to facilitate extraction of current data as well as facilitating the addi-
tion or updating of new information, a set of tools that give you the power to
carry out those functions, and a set of tools that allow you to manipulate the
data once it’s extracted. That all sounds pretty abstract and nebulous, so let’s
put some meat on the bones by specifying concretely what this mysterious
data is.

First, each star in the catalog must have a unique identification. Next,
since what you primarily want to do with star tracker measurements is com-
pare spots on the sky seen by the star tracker with known star candidates
in the catalog, the catalog needs to contain the star’s right ascension and
declination (i.e. the star’s direction in inertial space) at the specified cata-
log epoch time. The origin of the inertial frame is typically our Sun (i.e., the
frame and associated data are heliocentric). Another natural measurement
to include for each star is its magnitude, and if we’re going to relate that
to star intensity measurements made by the star tracker (for example, as a
secondary check in a star identification algorithm), we’re also going to need
to know something about the star’s color. That way, given knowledge of the
star tracker’s spectral response, we’ll know if a red star actually will look a
lot brighter to our star tracker than a comparable yellow star would. There
are many more data types in a star catalog than just these items (I haven’t
mentioned proper motion corrections, nearest neighbor distances, etc.), but
let’s concentrate just on star directions and magnitudes, and leave the bot-
tom of the iceberg for inquiring minds who want to know.

For those of you who still remember reading Chapter 1 dealing with atti-
tude conventions a long time ago in a swivel chair far, far away, specification
of the direction of an object in inertial space carries with it the responsibility
of defining which inertial space you’re talking about. So we need to specify
an epoch time and we need to say whether we’re taking into account only
the precession of the Earth’s spin axis when defining our inertial reference
frame (i.e., a mean of epoch specification), or whether we’re including both
precession and nutation (true of epoch). And if the star is moving signifi-
cantly relative to our Sun (i.e., the star has a high proper motion), we’ll need



6.6 Velocity Aberration 127

to adjust the right ascensions and declinations specified at the catalog epoch
time for the amount the star has appeared to move at our current time of
interest. In other words, we may need to compensate both the amount the
“inertial” reference frame has moved relative to the Sun and the amount the
individual star has moved relative to the Sun.

6.6 Velocity Aberration

In addition to the corrections mentioned in the previous section, you typi-
cally correct the reference data for a physical effect that actually is corrupting
the measurement, but it’s less computationally onerous to “corrupt” the ref-
erence data to make it consistent with all the measurements than to correct
the measurements to make them all consistent with the reference. The phys-
ical effect we’re talking around is called velocity aberration, which can make
the observed star direction look shifted from its catalog-specified direction
due to relative motion between the observer and the catalog frame. Velocity
aberration is one space-related phenomenon that you don’t need to be an as-
tronaut to experience. At least you can experience an earthbound effect very
much like it, as long as you’ve been unlucky enough to have been caught in
a torrential downpour with just an umbrella for protection, and have been
blessed with long enough legs that an umbrella is not a complete solution to
your dilemma. Under those circumstances, the logical tendency is to get out
of the rain before the lower half of your body is washed out to sea. However,
if you start running for cover with the umbrella held straight above your
head, you’ll find yourself getting wetter and wetter the faster you run, as-
suming the wind doesn’t blow the umbrella inside out. The problem is that,
even if the rain is falling straight down (relative to local vertical), your run-
ning has created a lateral relative velocity between you and the raindrops. So
when you run through the storm, the rain seems to be driving into you at a
slant rather than falling straight down. To deal with the new problem caused
by the implementation of your first solution, you have to tilt your umbrella
into the apparently slanted falling raindrops (see Figure 6.3), which also con-
veniently protects your umbrella from destruction. Of course, a better solu-
tion is just to invest in a raincoat as well as an umbrella, but that’s not the
way engineers typically solve problems.

In any event, out in space you can (in this context) treat light radiated
from a star like raindrops falling from a cloud. So if the observer is moving
laterally relative to the star, the observer will “see” the incoming light slanted
relative to the catalog prediction, and the star direction will consequently
also appear shifted (see Figure 6.4).

Because the velocity of light is so high, the observed shift will always be
fairly small (to first order, the ratio of the platform lateral velocity to the
speed of light, with units of radians). For a star tracker (or other stellar ob-
ject measuring device) mounted on a spacecraft in Earth orbit, there are two
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Fig. 6.3. Velocity aberration methaphor – raindrops; A: Rain falling vertically relative
to stationary man, B: Rain apparently slanted due to forwared velocity (VM ) of man,
with angle relative to vertical given by tan(Θ) = VM /VR.
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Fig. 6.4. Velocity aberration caused by lateral component of (Earth) velocity relative
to incoming star light.

contributions to velocity aberration. First there’s the motion of the spacecraft
about the Earth, which for LEO spacecraft can generate a shift as large as 5
arcseconds. The 5 arcsecond shift can occur when the spacecraft’s orbital ve-
locity vector is perpendicular to the star direction vector (i.e., all spacecraft
orbital motion is lateral relative to the star). By contrast, when the space-
craft’s orbital velocity is carrying it directly towards or away from the star,
the shift due to velocity aberration is zero. So over the course of the space-
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craft’s orbital period (about 97 minutes for LEO spacecraft), to first order the
size of the correction will vary sinusoidally.

The second contribution is due to the motion of the Earth around the
Sun, which can produce an effect as large as 20 arcseconds when the Earth’s
orbital velocity vector about the Sun is perpendicular to the star direction
vector. And similarly to the spacecraft orbital motion term, when the Earth’s
orbital velocity vector about the Sun is parallel to the star direction vector,
the velocity aberration shift from that source drops to zero. Again, we get a
sinusoidal pattern over the course of an orbit, but in this case the period of
the orbit is 1 year instead of 97 minutes. So to keep a science target “fixed” in
instrument space, the platform on which the instrument is mounted (i.e., the
spacecraft) often must be commanded to follow an elliptical pattern (relative
to the “fixed stars” of inertial space) to compensate for the target’s apparent
motion arising from the platform’s relative velocity.

For spacecraft with very high pointing accuracy requirements, like HST,
even this level of sophistication in pointing control is not adequate. The ex-
tra fly in the ointment for HST is that the star measuring devices used for
pointing control do not point exactly in the same direction as the boresight
of the science instrument (SI) staring at the science target. So if you adjust
the spacecraft attitude to keep guide stars fixed in HST’s FGSs, a residual,
uncorrected velocity aberration term influencing the apparent direction of
the science target will cause the science target to appear to execute a small
ellipse relative to the SI. The size of the ellipse is driven by the angular sepa-
ration between the star sensor and SI boresights. For HST, the maximum size
of the effect is 40 milliarcseconds, a negligible effect for nearly every other
20th century mission except HST. The way HST deals with this problem is
to “tell” its attitude control function that the guide stars are “supposed”
to move in tiny ellipses relative to their FGS FOVs, with the same size but
opposite sense as the ellipse that the target star would have appeared to ex-
ecute. Adding that feed-forward term to the attitude control will cause the
target star to appear fixed in the SI FOV, which in turn prevents unnecessary
smearing of the target image over long integration periods.

6.7 Parallax

There’s still one more correction we may need to make to our star reference
data, namely the parallax correction. Parallax is caused by the lateral offset of
the observer from the line connecting the object being observed and the ori-
gin of the coordinate system in which the object’s true direction is specified,
typically the Heliocentric Inertial (HCI) reference frame (see Figure 6.5).

Like velocity aberration, parallax can be experienced without leaving
terra firma, and better yet without getting drenched. You can “see” the ef-
fects of parallax directly by lining up an object with your thumb using your
right eye only, and then closing your right eye and sighting only with your
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Fig. 6.5. Stellar Parallax

left eye. The object will appear to shift position in your field of vision. With
velocity aberration, the shift was due to the observer’s relative lateral ve-
locity. With parallax, the shift is due to the observer’s lateral position shift.
The larger the lateral position shift, the larger the apparent shift in target
direction. And if you play the game with one target nearby and one far away,
you’ll find that the apparent direction shift for the faraway target is much
smaller than that for the nearby one.

Over a spacecraft orbit, you usually only can observe this effect if the
target is a Solar System object. For example, at LEO altitudes, the apparent
direction of the Moon can shift by up to 2◦ (i.e., from −1◦ to +1◦ over an
orbital period). The Sun’s direction can appear shifted by up to 19 arcseconds
(from -9.7 to +9.7 arcseconds). However, if we work with a much larger time
scale than 97 minutes, say 1 year, we’ll now be subjected to the change in
position of the Earth as it orbits the Sun, trading in a baseline of, say, 7,500
km for one of nearly 300,000,000 km. Now, over the course of a year, you
can measure the parallax shifts of nearby stars and, knowing the diameter
of the Earth’s orbit, deduce the distances to those stars. The largest stellar
parallax observable from an Earth-based observatory is that for our nearest
star, Alpha Centauri. Alpha Centauri is about 4 light years away, yielding a
parallax shift of about 0.76 arcseconds, half-angle.6

6.8 Stellar Magnitude

At this point, we’ve talked so much about what you have to do to model
star directions accurately that you’ve probably forgotten that we still need to
talk about star magnitude. Most star trackers are capable of “seeing” down to
magnitude 7. Probably magnitude 9 can be considered beyond the extreme
limits of anything visible to a conventional star tracker. That’s just as well
because at magnitude 9 you’re dealing with a pretty crowded sky. Half of

6J. Wertz, Spacecraft Attitude Determination and Control, page 31
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the stars brighter than 9th magnitude have another star of equal or greater
brightness within 0.2◦.7 Further, about 90% of the 9th magnitude stars have
a near-neighbor within 0.35◦.8 And probably you’ve forgotten that we al-
ready discussed back in Chapter 4 the quantitative relationship between star
magnitude and the intensity a star tracker measures, so let’s go back over that
ground again. Star magnitude is a logarithmic function of a star’s intensity
(see Equation 6.3).

m =m0 − 2.5log i (6.3)

where

m = object’s magnitude
m0 = scale constant
i = intensity

Note that a difference of 5 in magnitude is equivalent to a factor of 100
in intensity. First magnitude roughly corresponds to the brightest stars (ex-
cept for the Sun, which clocks in at magnitude -26.7).9 Sixth magnitude
corresponds to the dimmest stars visible to an average unaided eye. And
the star trackers we’ve spent so much time talking about typically utilize
stars between 2nd and 7th magnitude, but are capable of detecting stars as
dim as 8th magnitude. So the larger the star magnitude, the dimmer is the
star, while really bright objects have negative magnitude. Since magnitude
was originally defined based on the response of a particular detector class
(i.e., human eyes), the definition depends on the spectral responsivity of that
class. Visual (V ) magnitude is defined using a frequency band centered at
∼ 550 nm. Various different magnitudes have also been defined, e.g., blue
(B) magnitude with a band centered at ∼ 420 nm.

Magnitude actually is a lot more complicated a creature than indicated
by Equation 6.3. That’s because the intensity measured by a star tracker is
dependent on the color of the star being observed. Not all star trackers have
the same spectral response. Typically, a star tracker will “see” a red star as
brighter than a corresponding blue star, but HST’s FHSTs were more neutral
in that regard, having spectral characteristics more like that of the human
eye. In any event, what all this regarding color means is that it’s not enough
for your star catalog to list a star’s visual magnitude, it must also say some-
thing about the star’s color. The SKYMAP star catalog, for example (see sec-
tion 6.9), lists visual magnitude along with the B−V (blue minus visual) dif-
ference term. Since star tracker responses do not coincide with either B or V ,
a combination of the two usually is required to correlate an observation with
its associated catalog star. An added complication is that the visual magni-
tude of some stars fluctuates over time. So the catalog must also specify the

7Ibid, page 146
8Ibid, page 146
9Ibid, page 79
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variability of the star’s magnitude. Fortunately, only about a half a percent of
stars brighter than 9th magnitude vary by more than 0.1 of a magnitude,10

so this is not a practical concern for ground or onboard star identification
and attitude determination.

6.9 Star Catalog Examples

Before we finish, let’s briefly talk about some of the more popular star cata-
logs. Back in 1978, two standard astronomical catalogs were the Catalog of
Bright Stars and the Smithsonian Astronomical Observatory (SAO) Catalog.
The Bright Stars catalog contained 9,100 stars down to magnitude 7.0, with a
complete listing down to magnitude 6.0. The SAO is much larger, containing
(in 2001) 258,996 stars, and is complete (as of 2001) down to 9th magni-
tude, but with 4,503 stars fainter than magnitude 10. Back in the 1970s and
1980s, the most used catalog at GSFC for attitude determination purposes
was SKYMAP, which (then) contained 255,000 stars down to 10th magni-
tude, but was being significantly upgraded in the 1990s using data from the
Tycho catalog. The Tycho Catalog is populated with data collected by the Eu-
ropean Space Agency’s (ESA’s) Hipparcos satellite, and (as of 2001) contained
2,539,913 objects. For people who can’t get enough of a good thing, there’s
the U.S. Naval Observatory Astrometric Reference Catalog, which contained
(as of 2001) 54,787,624 sources providing a grid of reference objects for as-
trometers over the entire sky. Not so finally (as need for better accuracy
and fainter reference stars continues to evolve), ESA’s GAIA mission team
is scheduled to release in June-2016 its first version of a star catalog with
with upwards of 100 million stars, in most sky regions complete down to
magnitude 20.11

One of the particularly nice qualities of the SKYMAP catalog was that it
came equipped with a set of utility subroutines that provided a whole set of
functions useful when extracting data from the catalog and manipulating the
data once you’ve extracted what you want. For example, tools allowed you to
convert the data stored as mean-of-epoch 2000 to mean-of-epoch Whatever-
You-Want after first converting from (right ascension, declination) to unit
vector format. It also could transform the star vectors from mean-of-date to
true-of-date, and convert from unit vector format back to (right ascension,
declination). In addition to getting all the information in the catalog regard-
ing a specific star, its tools also supported extraction of selected data regard-
ing all stars “contained” in a circular cap on the celestial sphere, or even all
the stars that would be seen within a star tracker’s square FOV. Other tools
told you which nearby neighbors a star had within a given angular separa-
tion and magnitude range. Some of the other catalogs mentioned may also

10J. Wertz, Spacecraft Attitude Determination and Control, page 145
11http://www.cosmos.esa.int/web/gaia/science-objectives
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provide similar software tools, but SKYMAP was a catalog designed specifi-
cally to support attitude determination, so its utility functions were tailored
to that purpose. This completes a gratis political advertisement for the old
SKYMAP catalog, bringing us back full-circle to Tip O’Neill.
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Onboard Attitude Determination

In the movie Magic Town, Jimmy Stewart plays a public opinion consultant
who’s obsessed with finding a cheap, fast way to report how the Ameri-
can public feels about current events, issues, marketable products, election
candidates (is that redundant?), etc. Not satisfied with traditional polling
methods that canvass large numbers of people scattered across the United
States, Stewart instead searches for a small town whose population is a per-
fect cross-section of the country. That way, all he needs to do is visit the
barbershop and other natural gathering places in the town and subtly ex-
tract from the residents their views on whatever topic the pollsters are in-
terested in that week. Hardly amazingly (this is Hollywood, after all) the
scheme works pretty well until the residents find out what’s going on. At that
point, being aware that their views have importance, or at least that some-
one cares what they think, they stop reporting what they honestly believe
and start telling the pollsters what they think the pollsters want to hear. As
a consequence, the polling results are hopelessly skewed from the norm, the
town’s views become commercially useless, and everybody’s mad at Stewart
for making them look like fools. At that point, Stewart (of course) drops all
the subterfuges and returns to being the naturally honest, all-American guy
he originally was. So there’s a happy ending of some sort as life in the town
is restored to normal. In many ways, onboard attitude determination is a lot
like Magic Town, without the star power provided by Jimmy Stewart. In our
case, though, we need cheap, fast results less from the standpoint of reducing
costs and more from the need to respond to the frequent demands of a hun-
gry realtime control function. If we can’t determine quickly and accurately
what our pointing and associated error is, we can’t maintain the spacecraft
stability required to perform science, and may not even have the capacity
to keep the spacecraft from tumbling out of control. Fortunately though,
the things we poll (the star trackers, Sun sensors, Earth sensors, gyros, and
magnetometers) lack self-awareness, so there’s no danger of silly responses,
unless an inflight anomaly occurs.
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Unfortunately, the mathematics needed to make sense of the information
provided by the sensors is much more complex than Stewart’s data process-
ing methods in Magic Town. Also unfortunately, the math in this section is
somewhat more demanding than in most others. Although things should be
pretty straight-forward at first, the mathematics will get progressively more
challenging as we approach the section on Kalman filtering, at which point
some of you may find the quote from Dante’s Inferno “Abandon all hope ye
who enter here” prophetically fitting. For those of you that don’t lose hope in
the face of equations, we encourage you to view them from two perspectives -
both at the detailed level within each equation, and more importantly in the
repetition of patterns through the chapter. A number of patterns will recur,
both in verbal explanations and associated equations. Try to pay attention to
those even if the details are a bit glaze-inducing. For all of you, but particu-
larly those that are a bit math shy, we provide a human-readable synopsis of
the basic ideas of the Kalman filter in Section 7.13, which is a no-equations
version of the Kalman filter’s processing steps, along with a figure illustrat-
ing that processing. Just as the Kalman filter used for attitude determination
is (in principle) an iterative algorithm, best results in understanding this ma-
terial probably lie in reading through the material multiple times, possibly
reading Section 7.13 ahead of Section 7.9 and then returning to Section 7.13
as you come staggering out of Section 7.12.

7.1 Attitude Propagation with Gyroscope Data

Many classic works of literature begin in medea res (“in the middle of things”).
We first encounter Aeneas ship-wrecked on the shores of Carthage, and Vic-
tor Frankenstein nearly delirious on a merchant ship in the North Sea. A
somewhat more recent example is the release order of the Stars Wars movies,
beginning with Episode 4. Imitating art, we’ll begin our discussion similarly,
with the action already started. Imagine that somehow you’ve been able to
establish an estimate of your spacecraft’s attitude at some particular moment
in time (we’ll return to how that’s done in later sections). In this section we
discuss how you can use gyroscope data to propagate that estimate to differ-
ent moments in time.

The quickest way to measure change in attitude (not absolute attitude
or attitude error) is with gyroscopes. Typically, one processes the attitude
change measured by a set of gyros over the sampling interval to obtain an
estimate of the spacecraft body rate. A gyroscope provides a measurement of
the projection of the spacecraft’s rotation rate onto the axis to which the gyro
is sensitive. If there are at least three gyroscopes mounted on the spacecraft,
oriented so as to sample the full, three-dimensional rotation vector of the
spacecraft, you’ll be able to reconstruct that full rotation. Knowing the rota-
tion, i.e., the way attitude is changing over time, you’ll be able to propagate
a given estimate of attitude either forward or backward in time to construct
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a history of the spacecraft attitude vs. time over the time span for which you
have gyro data.

Conceptually, that’s all there is to it. Now let’s put those words into equa-
tions. Given a set of measurements fromN gyroscopes (N ≥ 3), you can solve
for the spacecraft rate using the following equation:

ω = Tv/gS(P−B) (7.1)

where

ω = spacecraft body rate in the vehicle reference frame (rad/sec), di-
mension = 3
Tv/g = gyro-to-vehicle frame transformation matrix (unitless), di-
mension = 3×N
S = an N ×N diagonal matrix containing the scale factors (one for
each gyro), from raw gyro counts to engineering units ((rad/sec)/count)
P = raw gyro measurement vector (counts), dimension =N × 1
B = vector of gyro drift biases (counts), one for each gyroscope

The matrix Tv/g is a function of the alignments of the gyros relative to
the body. In the simplest case (not uncommon for spacecraft design), engi-
neers will have mounted three gyroscopes, one each along the spacecraft X,
Y , and Z axes. For that case, Tv/g is just I3, the 3 × 3 identity matrix. For
arbitrary orientations of 3 gyroscopes, Tv/g will be the inverse of the matrix
constructed from the set of unit vectors that defines their alignments relative
to the body (let’s call that Tg/v). If more than three gyros are being used, the
math for constructing Tv/g from the N × 3 matrix Tg/v becomes a bit more
complicated. It can be shown that in order to treat all gyroscopes as equally
sensitive, the optimal solution for constructing Tv/g from Tg/v in the general
case is given by

Tv/g =
[
T Tg/vTg/v

]−1
T Tg/v (7.2)

Tv/g as constructed from equation 7.2 is called the left pseudo-inverse of Tg/v .
Note that Tv/gTg/v = I3, i.e., Tv/g acts like an inverse when multiplied on the
left side of Tg/v .

OK - now that you have an estimate for the spacecraft rate, you can deter-
mine the change in attitude over time. You can do this in quaternion format
(i.e., the quaternion that represents the small rotation over short time period
∆t) in a very straightforward fashion:

δq =
[
e1 sin

ω1∆t
2

, e2 sin
ω2∆t

2
, e3 sin

ω3∆t
2

, cos
|ω|∆t

2

]
(7.3)

This delta-quaternion can in turn be used to propagate the previous at-
titude to an updated attitude. If the previous attitude is specified by the
quaternion qn, the updated quaternion qn+1 is given as:

qn+1 = qnδq = g(δq,qn) (7.4)
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where the function g casts δq into the 4 × 4 quaternion matrix multiplier
form used in Chapter 1, Section 1.6.

Of course, there’s nothing magic about using the quaternion representa-
tion for attitude and attitude change. You can use the matrix representation
of attitudes and rotations, with a small rotation given by

δR ≈

 1 ω3∆t −ω2∆t
−ω3δt 1 ω1∆t
ω2∆t −ω1∆t 1

 (7.5)

and equation 7.4 recast as
An+1 = δRAn (7.6)

In equation 7.6, An+1 and An are the 3 × 3 attitude matrices that cor-
respond to the quaternions qn+1 and qn. There is an important distinction
between the differential quaternion representation in equation 7.3 and the
differential matrix representation in equation 7.5. For non-infinitesimal ∆t,
δR as expressed in equation 7.5 isn’t normalized and therefore no longer
properly represents a rotation. This is in contrast to the form of δq in equa-
tion 7.3, which by construction is always a proper quaternion and therefore
always represents some rotation. This may not be magic, but it is a very
convenient property, and one of the reasons that quaternions are often the
preferred representation for attitude work. If ω is changing with time, a
full rotation (represented in either quaternion or matrix notation) can only
properly be found by “integrating” the selected differential form over time.
We use quote marks around “integrating” because in this case the integral is
formed not as an infinite sum, but rather an infinite product of small rota-
tions.

Note, by the way, that the rotation information represented as ω∆t (or
δq, or δR) allows you to propagate not just the current attitude estimate for-
ward in time from tn to tn+1 as the the spacecraft rotates, but also any inertial
quantities represented in the spacecraft reference frame at time tn. Thus, if
you had made a measurement with a spacecraft-mounted sensor to charac-
terize (in the spacecraft frame at time tn) some vector that is intrinsically
fixed in inertial space, you could use the gyroscope data accumulated be-
tween time tn and tn+1 to determine what you would have measured at time
tn if the spacecraft’s attitude then were what it was at tn+1. As a particular
example, if you make a measurement of the Sun direction using a Sun sensor
at time tn, you can use the gyro data to propagate that Sun direction estimate
to the body frame that corresponds to time tn+1. This propagation does not
take into consideration effects of spacecraft motion other than rotation. Do
not misunderstand us to be saying that the rotation yields what would be
measured had you made the measurement at time tn+1. For the Sun vector
example, the rotation procedure does not include, for example, the effect of
parallax due to the spacecraft’s motion in space. Similarly, had we chosen
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to use as our example a measurement of the Earth’s magnetic field with an
onboard magnetometer, propagation with gyro data would not include the
effects of the motion of the spacecraft to a location where the magnetic field
was different.

7.2 Reference Attitude

The discussion in section 7.1 explained how you can use gyro data to prop-
agate some known attitude estimate to a future time as the spacecraft ro-
tates. The only complication with this is the source of the previous attitude
estimate. Where did that come from? For stellar pointing missions back in
the days before quaternion star trackers, the initial onboard attitude came
from the ground system, which processed downlinked star tracker data to
get the (then) current spacecraft attitude, which could be uplinked back to
the spacecraft to provide the spacecraft with its first attitude reference. That
reference quaternion then would be propagated onboard solely with gyro
data until the conditions were favorable to let the spacecraft compute its
own star tracker attitude updates. Prior to that event, there usually would be
additional ground attitude reference updates.

These later ground updates had to deal with an extra complication,
namely time synchronization with the propagated onboard quaternion. Here’s
the way that worked. When the ground computed, say, its second attitude
reference update, it processed, for example, 15 minutes of star tracker and
gyro data downlinked from the spacecraft between 14:00 and 14:15 UTC. So
the midpoint in time of the ground’s computed solution would be 14:07:30
UTC. Suppose the time required to process the data and uplink the solution
took another 15 minutes. Then at 14:30 UTC an attitude reference update
arrived onboard. But if what was uplinked was a new estimated quaternion,
we’d be replacing a propagated quaternion current to 14:30 UTC with one
that was valid back at 14:07:30. Twenty-two and a half minutes of gyro prop-
agation that accurately reflected the actual motion of the vehicle between
14:07:30 and 14:30 UTC would therefore have been lost. A better approach
was to uplink a delta quaternion representing the difference between the
downlinked onboard estimated quaternion at 14:07:30 UTC and the ground
computed attitude valid for that time. That way, the FSW was able to multi-
ply the uplinked delta quaternion with the current onboard estimate (14:30
UTC), thereby correcting the onboard estimate with the ground’s improved
solution while still retaining the value of the additional gyro information
known only to the flight system.

So that’s how you used to exploit the ground system’s attitude determi-
nation capabilities to obtain a starting point, or updated starting point, for
onboard attitude propagation. But to function autonomously, the spacecraft
really needs to be capable of performing its own attitude determination inde-
pendently. Nowadays that’s as easy as commanding a quaternion star tracker
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to “Lost-in-Space” mode and letting the star tracker compute an inertial
space to star tracker frame quaternion for you. All the flight software needs
to do after that is to combine the quaternion with the star tracker-to-body
frame alignment matrix, and make appropriate velocity aberration correc-
tions (if the star tracker itself doesn’t do that) to get the corresponding esti-
mated attitude quaternion (a transformation from inertial space to the body
frame). But prior to the development of quaternion star trackers, the attitude
control flight software was responsible for processing absolute attitude mea-
surements from selected attitude sensors (star trackers, Earth sensors, Sun
sensors, or magnetometers), mixing in the appropriate reference data, and
calculating the estimated attitude or attitude error itself.

A number of approaches to performing this function have been used on
GSFC missions. We will consider a few variations on the theme in the follow-
ing sections, beginning with one of the simplest, known as Triad.

7.3 Minimum Data Attitude Determination

Attitude estimation is typically done by comparing measurements made us-
ing onboard sensors of a number of directions in space (e.g., towards a num-
ber of stars, the Sun, or the local geomagnetic field direction) with corre-
sponding reference direction information for the same objects (e.g., star di-
rection data from a catalog, Sun direction based on ephemerides of the Earth
about the Sun and spacecraft about the Earth, or a geomagnetic field model
using the spacecraft position as input).

The smallest number of such measurements that one would need for such
an estimate is two: one to pick out a particular direction in space (say, to-
wards the Sun), and the second to determine the orientation of the space-
craft about the selected direction. Indeed, although two measurements are
needed, they in fact over-specify the problem. Given that any measurement
will (almost) inevitably have errors at some level associated with it, it is
equally (almost) inevitable that no attitude rotation will be able to make the
two measurements exactly lie on top of the corresponding reference direc-
tion vectors. The inability to find an exact fit will be manifest as a difference
between the angular separation of measured directions and the correspond-
ing angular separation of the reference directions. This difference is actually
a good thing; it provides you with an estimate of how trustworthy the solu-
tion is.

The mathematical procedure for converting the qualitative description
provided in the preceding paragraph into a quantitative result is called Triad,
or sometimes the algebraic method.1 It works with pairs of measurements to
compute an attitude that is valid for the time the measurements were taken.

1H. Black, A Passive System for Determining the Attitude of a Satellite, AIAA
Journal 2(7), pp 1350-1351, 1964.
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A popular example uses a measurement of the Sun direction vector and a
measurement of the geomagnetic field vector (both rotated from sensor space
to the body frame) along with their corresponding reference vectors (both in
the GCI frame) to compute the attitude matrix.

Triad’s first step is to designate one of the two measurements (say, the
Sun direction) as “primary.” Triad then will force its attitude solution to ro-
tate this primary measurement vector onto the primary reference direction,
thereby using up two of the three degrees of freedom of the attitude solution.
The third degree of freedom is used by rotating the secondary vector (in our
example, the measured magnetic field direction) about the primary vector
until the secondary vector comes as close as possible to the secondary refer-
ence vector, subject to the constraint that the measured angular separation
from the primary is maintained. The mathematical procedure that realizes
this algorithm and provides the attitude matrix A is to use the vector cross
product to construct a “triad” of orthogonal unit vectors, as shown in equa-
tion 7.7:

A =MBM
−1
R (7.7)

where

A = attitude matrix
MB = [uB vB wB]
uB = SB, where SB is the sun unit vector in the body frame
vB = SB ×BB/ |SB ×BB|, where BB is the geomagnetic field unit vector
in the body frame
wB = uB × vB

and where the reference matrix, MR, and its associated vectors are defined
similarly.

Note that the vectors uB, vB, wB are “column” vectors, and MB is a 3× 3
matrix whose columns are these three vectors. Notice also the asymmetry in
the procedure between the use of SB and BB. The vector uB (and therefore
MB) contains the full information content of SB, whereas vB is only sensitive
to the component of BB perpendicular to SB. Computationally, it’s best to
select as the “primary” vector (uB in equation 7.7) the more accurate mea-
surement, which for this example would be the Sun vector. Examination of
equation 7.7 shows that the attitude matrix constructed in this fashion will
transform the reference vector uR into exactly the measured vector uB. The
information from the secondary measurement (BB in our example) is there-
fore only used to supply the phase angle about uB. Since SB and BB are each
defined by two angles (i.e., they each contain two independent pieces of in-
formation), and since the attitude matrix is parameterized by just three in-
dependent pieces of information, one piece of measurement information is
simply discarded by Triad. The discarded information is the measured com-
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ponent of BB parallel to SB. Of course, if BB happens to be parallel, or anti-
parallel, to SB, there is no phase angle information and A cannot be fully
determined; the Triad algorithm will not work in this case.

For those of you unhappy with the notion of being forced to give prefer-
ence to one vector over the other, there is a solution that is almost as simple
as plain-vanilla Triad, with just a little preliminary work. Select as the pri-
mary vector a normalized vector that points midway between the two, i.e.,
select as primary a vector PB = (SB + BB)/ |SB + BB|, and similarly for its asso-
ciated reference PR. For the secondary, pick either SB or BB (it doesn’t matter
which), and then proceed with Triad as before. The result will be an attitude
matrix that treats the two measurements equally, with each rotated reference
vector equally far from its measurement. The equation for P can also be gen-
eralized using weighting factors wS and wB for S and B that depend on the
uncertainty of their respective measurements: P = (wSS +wBB)/ |wSS +wBB|.
Appropriate values for wS and wB can be determined using a standard as-
sumption of Gaussian distributed noise for the measurements. This leads to
wS = σ−2

S /(σ−2
S + σ−2

B ) and wB = σ−2
B /(σ−2

S + σ−2
B ), where σS and σB are the un-

certainties in the Sun and magnetic field direction measurements.
Because of its simplicity (particularly if one ignores the complication of

constructing a weighted primary vector), Triad has been a popular onboard
algorithm for coarse attitude determination. Applications for Triad have in-
cluded attitude initialization following separation from the launch vehicle,
attitude re-initialization following safemode entry, antenna steering, bright
object checking, and fine attitude sanity checking. In general, Triad was a
great tool for getting an attitude quickly and robustly. Not a whole lot can go
wrong in the computations, as long as you don’t use vectors that are nearly
parallel to each other, and as long as you actually have two measurements.
(When a spacecraft is in shadow, there is no Sun vector to use). The only
downside is its limited accuracy due to the minimal amount of data used.
Any noise gets carried over directly as attitude error since no averaging is
performed. Or if there is a “glitch” of some kind in a measurement, there is
no way to identify it and edit it out, other than by comparing Triad solutions
to each other. For most missions, Triad simply isn’t accurate enough to use
as the prime attitude determination method, but it can be extremely useful
in a subordinate capacity where high accuracy is not the prime concern. And
nowadays the presence of quaternion star trackers on most missions means
that a high accuracy star tracker attitude is readily available for many of the
applications (for example, antenna steering) that might have gotten by with
the lower accuracy Triad solution.

7.4 Batch Attitude Determination with Vector Observations

In Section 7.3, we discussed attitude estimation using only two measure-
ments. Although both simple and often useful, the Triad algorithm is sta-
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tistically non-optimal in that (a) it doesn’t permit the use of more measure-
ments even if they are available, and (b) it doesn’t support the best weighting
between the two measurements, at least in its plain vanilla form. In this sec-
tion we consider a treatment that results in an optimal solution, i.e., one that
gives proper weighting to as many vector measurements as you may have
available.

No doubt some of you have already jumped from the words “statistical”
and “optimal solution” to the expectation that we’ll likely be discussing a
least-squares method here. Derivations for such methods often begin with
the statement of a loss function that must be minimized as the formal goal for
finding the desired solution. For our attitude problem, i.e., the determination
of spacecraft attitude based on the measured direction of a set of N known
objects (Sun, stars, local geomagnetic field), an appropriate loss function is
given in equation 7.8 (first proposed by Grace Wahba2):

L(A) =
N∑
i=1

wi |vBi −AuEi |2 (7.8)

where

wi = the ith weight, i = 1,2, . . .N , derived from estimated measure-
ment and reference uncertainties
A = the attitude matrix
vBi = the ith measurement unit vector, expressed in the body (‘B’)
frame
uEi = the ith reference unit vector, expressed in the ECI (‘E’) frame

The idea with equation 7.8 is that the attitude matrix that minimizes the
loss function L(A) will be, in a statistical sense, the optimal solution for the
spacecraft attitude.

If all of the measurements are taken with sensors of equal accuracy, the
weight factors will be the same for all of the measurements. In that case,
you can simply ignore the constant weight term as being just a renormaliza-
tion of L(A), one that won’t change the solution. For the moment, let’s con-
sider that simplified problem. For ease in visualization, let’s further imagine
that all of the measurements are clustered together in a limited region. The
optimal solution, Aopt (the one that results in the smallest value for L(A))
will rotate the cluster of reference vectors onto the cluster of observations
such that (a) the mean position of the cluster of reference vectors will lie
on top of the mean of the cluster of measurements, (b) the scatter of the
residuals (i.e., the differences between measurements and associated rotated
references) will appear to be random, and (c) the size of the residuals will

2Wahba, G., A least-squares estimate of satellite attitude, SIAM Rev. 7(3), 409
(1965)
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be characteristic of the accuracy of the sensor being used and the reference
data against which the measurements are being compared. (Sometimes the
measurements can be more accurate than the reference data against which
they are being compared, an example being measurements made with HST’s
fine guidance sensors.) Figure 7.1 shows an imagined overlay of a set of ob-
servations and associated reference vectors from a catalog after correction
for an optimal attitude solution - say, in the field of view of a star tracker.
The separation between each measurement and reference is indicative of the
combined error of star tracker measurements and whatever measuring de-
vice was used to generate the catalog.

Fig. 7.1. An imagined overlay of a set of observations (blue stars) and associated ref-
erence vectors from a catalog (red circles) after correction for an optimal attitude
solution.

If A is chosen in equation 7.8 to be the true attitude rotation, the quan-
tity rBi ≡ vBi −AuEi (the ith “residual”) is a “small” vector representing the
difference between the ith measurement and the associated ith reference. (In
Figure 7.1, each residual would correspond to a vector from a red circle to its
associated blue star.) Although still formally a three-vector, rBi is essentially
perpendicular to vBi and as such really only has two degrees of freedom. The
typical size of rBi is governed by the measuring uncertainty for the sensor
(e.g., for the star tracker being used) and the measuring and modeling un-
certainty used in the construction of the reference vector. If σi represents
the typical scatter (the standard deviation) of |rBi |, σ

2
i (the variance of |rBi |)

represents the typical scatter of |rBi |
2) for an imagined random sampling of

measurements from the same sensor. The implication is that the squared er-
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ror for a relatively poor sensor should be correspondingly de-weighted by
that factor relative to a good sensor, i.e., wi ∝ σ−2

i .
What kind of accuracy should be expected for any algorithm that mini-

mizes L(A)? If the measurements are fairly tightly clustered, and if all of the
measurements have the same uncertainty (σi = σ, the same for all measure-
ments), the knowledge captured in Aopt representing the direction of the
center of the cluster will be good to ∼ σ/

√
N , where N is the number of mea-

surements. If α is the typical angular distance of a measurement from the
center of the cluster, the uncertainty in the knowledge of the rotation about
the cluster center will be ∼ (σ/α)/

√
N , i.e., the tighter the clustering of mea-

surements, the less well known will be the roll angle about the cluster center.
In contrast, if you have a great many measurements distributed rather uni-
formly about the sky, the attitude knowledge will be more or less uniform
in all directions, good to ∼ σ/

√
N . Note that these comments assume that

systematic errors have been removed by calibration, so that the remaining
errors are truly random. A constant bias present in all sample points cannot
be removed by averaging.

OK - so now you know what to expect once you’ve found the optimal
solution for the matrix A, but how do you go about finding it? Well, you
can always (at least in principle) take a brute force approach of constructing
a sufficiently dense grid of values for L(A) as a function of any convenient
three-variable set that definesA, and then pick the location in the grid where
L(A) is a minimum. Admittedly, this would be a rather laborious task, par-
ticularly if you need A to be known quite precisely - but conceptually the
approach is straightforward. Knowing that such an approach is in principle
possible, you may also take it as adequate for your understanding of the con-
cepts of this section. You can skip ahead to the next section without losing
the basic thread of our discussion. For those of you inclined to stick with us
a bit, we’ll take a brief detour to explore some of the mathematical methods
typically used for solving this and similar problems.

Finding the minima of loss functions by differential calculus

A minimum of a function of one or more variables corresponds to a loca-
tion where the function is flat in all directions, or equivalently where all
of its partial derivatives are zero. Calculating the derivatives of a loss func-
tion like that in equation 7.8, and using them to find a solution that mini-
mizes said loss function, turns out to be fairly straightforward if the resid-
uals can be expressed as a linear function of the independent variables for
which you are solving (e.g., a set of three Euler angles θ1,θ2,θ3 that define
A). If each rBi is a linear function of the variables θ1, θ2, and θ3, L will be a
quadratic function of those variables. If L is quadratic, its partial derivatives
∂L/∂θ1,∂L/∂θ2,∂L/∂θ3 are all linear functions of the variables θ1,θ2,θ3. (If
F = a0 + a1x + a2x

2, then dF/dx = a1 + 2a2x. The basic pattern is similar for
functions of multiple variables and their partial derivatives.) Setting the par-
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tial derivatives ∂L/∂θ1,∂L/∂θ2,∂L/∂θ3 all to 0 produces three linear equa-
tions in the unknowns θ1, θ2, θ3, which can be solved using standard alge-
braic equations.

The approach outlined in the preceding paragraph is all well and good,
except for the fact thatA is not in general a linear function of its independent
variables, but rather a fairly complicated trigonometric function. However,
if you have a fairly good initial estimate for A, let’s call that A0, you can
recast the problem as solving for a “small” attitude correction matrix, R,
that minimizes the following modified loss function:

L(R) =
N∑
i=1

wi |vBi −RA0uEi |
2 (7.9)

where

R ≈

 1 θ3 −θ2
−θ3 1 θ1
θ2 −θ1 1


and θ1,θ2,θ3 are small correction Euler angles relative to A0.

Using uBoi ≡A0uEi , equation 7.9 can be recast as

L(θ) =
N∑
i=1

wi |(vBi −uBoi) +UBoiθ|2 (7.10)

where

UBoi =

 0 u3 −u2
−u3 0 u1
u2 −u1 0


Boi

and

θ ≡

θ1
θ2
θ3


which makes explicit the fact that our approximate loss function L is a
quadratic function of θ.

The approximation for the small rotation matrix, R, uses the fact that
rotations commute for small angles, at least to first order in the angles.
R is an approximate solution in two senses: (a) the various elements of R
will have errors of order θ2, and (b) R as a whole will typically be shifted
slightly outside of the three dimensional space of rotations and as such is
not strictly a well-defined rotation. You can take care of the latter problem
by reconstructing R as a set of Euler rotations in any arbitrary order, say
R ≈R1(θ1)R2(θ2)R3(θ3). This will guarantee that R is a well defined rota-
tion, albeit still having errors of ∼ θ2. Thus rather than a final solution, you
“merely” have a revised estimate for the attitude: A ≈ RA0. With that im-
proved estimate, though, you can repeat the algorithm iteratively until the
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correction angles (θ1,θ2,θ3) are reduced to sufficiently small values. Thus
we see that if you have a way to get a reasonably good initial estimate of the
attitude (good to a few degrees), the algorithm outlined above will allow you
to refine it into an optimal estimate. Getting that initial estimate can itself
be a tricky problem. One approach would be to use coarse sensors (e.g., a
sun sensor and magnetometer) and apply the Triad algorithm discussed in
section 7.3.

The algorithm just discussed is fairly straightforward, but can be a bit
lengthy in the number of computer computations required to converge. This
is really not much of an issue these days, as both ground and flight comput-
ers have grown considerably in power. However, in the 1970s, when com-
puters were considerably slower, having highly efficient algorithms was of
much greater significance. An alternative approach was developed with this
issue of computer efficiency in mind. The derivation is considerably more
sophisticated and subtle than the approach outlined above. The approach
began as “the Q-Method,” developed by Paul Davenport3 of GSFC, and was
subsequently refined into Quest (Quaternion Estimator) by Malcolm Shus-
ter4, then of Computer Sciences Corporation (CSC). As the name implies,
the approach uses the quaternion format for attitude. Along the way, it de-
fines a loss function L(q), with the four components of q as the independent
variables of the problem. There is a clever trick applied along the way; L(q)
is minimized relative to changes in the components of q subject to the con-
straint that q be normalized, i.e., that

∑
i q

2
i = 1.5 After quite a few twists and

turns, the net result is a very fast and robust algorithm - one that any good
attitude analyst should be aware of, and perhaps even have in his or her bag
of tricks. The Q-Method and Quest are not the only variations for a fast solu-
tion to Wahba’s equation. See Markley and Crassidis, Chapter 5, for further
variations on the theme.

For all of a multi-star algorithm’s (e.g., Quest’s) advantages over Triad,
you can’t get more out of any algorithm than the information content of the
input data with which you begin. If Quest is applied with input of just two

3Documented by J. Keat, Analysis of Least-Squares Attitude Determination Rou-
tine, DOAOP, Computer Sciences Corporation Technical Memorandum CSC/TM-
77/6034, Feb. 1977; see also F. Markley and J. Crassidis, Fundamentals of Spacecraft
Attitude Determination and Control, Section 5.3.1, 2014.

4M. Shuster and S. Oh, Three-Axis Attitude Determination from Vector Obser-
vations, Journal of Guidance and Control (Volume 4, Number 1), January/February
1981, see also F. Markley and J. Crassidis, Sections 5.3.2 - 5.3.4.

5The constraint is applied using “the method of Lagrange multipliers,” developed
by the French mathematician Joseph Louis Lagrange (1736 - 1813). Good descriptions
of the method are available in many text books. You will likely encounter reference to
the method again during the course of your professional career. Tie it in your mind to
the notion of minimizing or maximizing a function subject to some constraint. As a
simpler example, consider finding the highest point in the Rocky Mountains subject
to the constraint that you stay on a particular cross country highway.
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measurement vectors and their associated reference vectors, and if one of
the measurements is much more accurate that the other (and used as the
primary measurement), Quest effectively reduces to plain-vanilla Triad. The
only advantage of Quest over plain-vanilla Triad for a situation with only
two measurements is that Quest provides a statistical weighting of the two
measurements relative to each other. Even this advantage is eliminated if
you use Triad with a properly weighted intermediate primary vector P, as
discussed in the penultimate paragraph of section 7.3.

As a final note, there is an assumption built into equation 7.8 that we kind
of glossed over. Specifically, the form of L(A) assumes that each device that
provides a measurement of the direction to some object does so in a way that
is equally accurate in both independent components of the measurement.
As an example, suppose you’re dealing with a star tracker that provides co-
ordinates (x,y) for a star in its field of view (imagining the z-axis to be the
boresight direction of the camera). Equation 7.8 assumes that the uncertainty
in x and y are the same (σx = σy). This is not necessarily the case. Consider a
cat’s eye during the day, when the pupil contracts to a long, thin, vertical slit
(in contrast to a human pupil, which remains circular). In principle, the cat’s
eye gives better resolution in the vertical direction than in the horizontal
direction, angular resolution along any given axis of an optical device being
inversely proportional to the diameter of the aperture along that direction. A
star camera built with a pupil like a cat’s eye would produce star images that
are smeared out in the y-direction (vertical) to a lesser extent than they are in
the x-direction. That lesser smearing allows a more accurate determination
of the center of the image in the y-direction, which implies that σy < σx. To
take this effect into account, you can rewrite equation 7.8 as

L(A) =
N∑
i=1

2∑
k=1

σ−2
ik [AIBi (vBi −AuEi )]

2
k (7.11)

whereAIBi is an alignment rotation matrix that transforms vectors from the
body frame to a pseudo-instrument reference frame defined such that the
pseudo-boresight is exactly aligned with vBi (assumed hereafter to be the z-
axis of this pseudo-instrument), and the x- and y-axes are defined based on
the instrument accuracy asymmetry. The summation over k is for the two
components (x and y) of the vector as measured in the pseudo-instrument
frame, the notation []k means to extract the kth component for the enclosed
vector, and the weighting factors have been replaced on a component-by-
component basis with σ−2

ik , where (σi1,σi2) = (σix,σiy). We choose to suppress
the third component here because direction vectors are 2-D objects, not ac-
tually defined beyond the unit sphere. (Suppressing the out-of-sphere com-
ponent isn’t really necessary for the algorithm to work; the fact that both
the observation and reference vector are normalized would suffice to render
their out-of-sphere difference negligibly small and therefore without effect.
However, by explicitly suppressing that component, we formally acknowl-



7.5 Attitude Uncertainty: The Covariance Matrix 149

edge that there is no out-of-sphere measurement and no associated out-of-
sphere uncertainty σi3.) Algorithm adjustments implied by the use of this
generalized loss function are straightforward for the method outlined fol-
lowing equation 7.10. Equation 7.10 would become

L(θ) =
N∑
i=1

2∑
k=1

σ−2
ik [−uIoi +UIoiθ]2

k (7.12)

where

UIoi =

 0 u3 −u2
−u3 0 u1
u2 −u1 0


Ioi

and
uIoi ≡AIBiA0uEi

We have dropped any contribution from (AIBivBi ) because its x and y
components are 0 by definition (the measurement information now having
been absorbed into uIoi and UIoi ). We can recast the notation of equation
7.12 (which will prove useful in subsequent sections) by definingHIoi as the
upper 2× 3 part of UIoi , ϕIoi as the upper two components of uIoi , and PIi as
the diagonal 2×2 matrix formed from (σ2

ix,σ
2
iy). Doing so allows us to rewrite

equation 7.12 as

L(θ) =
N∑
i=1

[
−ϕIoi +HIoiθ

]T
P −1
Ii

[
−ϕIoi +HIoiθ

]
(7.13)

For those of you wondering why we bothered to include this “final note”
- well, that will become clearer when we use equation 7.13 as a starting point
in some later discussions.

7.5 Attitude Uncertainty: The Covariance Matrix

At the beginning of the previous section, we provided a qualitative, heuristic
description of the uncertainty that would result for the three components of
an attitude estimate based on minimization of the loss function L(A) in equa-
tion 7.8. The uncertainty can be expressed more formally via the so-called
covariance matrix, P , a 3× 3 matrix in the case of our attitude problem. (The
letter P is the usual symbol for a covariance matrix; don’t confuse it with
the “primary vector” used for the modified Triad algorithm in section 7.3)
There are two reasons why you’ll care about this expression of uncertainty.
The first is simply that it is always appropriate when claiming that you know
the value for some quantity to also specify how well you know it. The second
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reason, as will be demonstrated in subsequent sections, is that when com-
bining a number of estimates together to get a more refined estimate, you’ll
need the uncertainty information to develop appropriate weighting factors
- such as was done with the weighting factors for the extended Triad algo-
rithm in section 7.3 and the batch attitude loss function of equation 7.8 in
section 7.4.

The functional form for a covariance matrix for an attitude estimate, or
for any kind of measurement-based estimate for that matter, can be derived
given statistical information regarding the precision of the measurements
used for the estimate. The procedure for doing so is typically based on some
formal assumption about the nature (statistical distribution) of measure-
ment errors, usually that such errors are “normally distributed.” Recall the
heuristic discussion about attitude accuracy from section 7.4 regarding any
algorithm that minimizes the loss function of equation 7.8. It bears repeat-
ing here: if the measurements are fairly tightly clustered, and if all of the
measurements have the same uncertainty (σi = σ , the same for all measure-
ments), the knowledge captured in Aopt representing the direction of the
center of the cluster will be good to ∼ σ/

√
N , where N is the number of mea-

surements. If α is the typical angular distance of a measurement from the
center of the cluster, the uncertainty in the knowledge of the rotation about
the cluster center will be ∼ (σ/α)/

√
N , i.e., the tighter the clustering of mea-

surements, the less well known will be the roll angle about the cluster center.
In contrast, if you have a great many measurements distributed rather uni-
formly about the sky, the attitude knowledge will be more or less uniform in
all directions, good to ∼ σ/

√
N .

The heuristic description given above for the tight clustering case would
be expressed mathematically as a covariance matrix for uncertainty relative
to a frame defined by the distribution of observations (essentially the instru-
ment reference frame, if you’re dealing with a star tracker with a tight field
of view, assuming a fairly uniform distribution of observations in that field
of view) as

PO ≈
σ2

N

1 0 0
0 1 0
0 0 α−2

 (7.14)

The off-diagonal elements being zero has specific meaning - namely that
there is no correlation between the errors for the various components of the
attitude estimate; the uncertainty in roll about the observation cluster center
(assumed to be the z-axis in equation 7.14) is uncorrelated with uncertainty
in “pitch” or “yaw” pointing errors relative to the cluster center, and “pitch”
and “yaw” errors are uncorrelated with each other (with “pitch” and “yaw”
here being motion relative to the camera reference frame). A rigorous deriva-
tion for PO would provide a formula for the angle α, as opposed to our fuzzy
definition of it as “the typical angular distance of a measurement from the
center of the cluster.” In fact, since α is related to roll uncertainty, its value
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will be weighted towards observations at greater distance from the center of
the cluster of observations because a greater lever arm provides greater roll
knowledge. Of course, PO as expressed in equation 7.14 is appropriate in the
case of the loss function of equation 7.8 with uniform errors. A more com-
plicated (albeit still diagonal) covariance matrix would correspond to the
generalized loss function of equation 7.11, e.g., for observations made with
a “cat’s eye” camera.

An attitude covariance matrix, though expressed in numbers relative to a
specific reference frame, is a unified geometric object that has meaning even
without reference frames being defined. In this way, it is like a vector, which
has intrinsic meaning even without any particular reference frame being de-
fined; i.e., it is a tensor analogous to the moment of inertia tensor discussed
in Chapter 3. Like any tensor (including vectors), after you have expressed an
attitude covariance matrix relative to one reference frame (say, the ‘O’ frame
defined by the set of observations), you can transform it to another frame
(generically the ‘F’ frame, perhaps in particular the body frame designated
by ‘B’). The form of the transformation is

PF =AF<OPOA
T
F<O (7.15)

where AF<O is the “O-to-F” transformation matrix (i.e., vectors transform
between frames as VF =AF<OVO).

After transformation, PF will not in general be a diagonal matrix. While
the diagonal elements of PF represent the variance (the square of the un-
certainty) for each of three small Euler error angles (θ1,θ2,θ3) quantifying
the difference between the true attitude and your estimate thereof relative to
the ‘F’ frame, the off-diagonal elements of PF quantify the expected size of
the products θ1θ2, θ2θ3, and θ1θ3. Each off-diagonal element can be posi-
tive, negative, or zero, depending on whether the error angles are correlated,
anti-correlated, or uncorrelated with each other. For the example of PO in
equation 7.14, the transformation of the attitude solution to another refer-
ence frame will cause the relatively large uncertainty in roll as perceived in
the ‘O’ frame (essentially the sensor frame) to be distributed across all axes
in the new frame. Because the various products θjθk commute, the matrix
PF is necessarily symmetric (i.e., PFjk = PFkj ).

As a final note in this section (actually, an augmentation of the final note
of the previous section), the 2×2 matrix PIi defined for and used in equation
7.13 is a covariance matrix defined in (and only meaningful in) the 2-D plane
tangent to the measured vector vi . It characterizes the uncertainty in that
measurement, just as the 3 × 3 attitude covariance matrix characterizes the
uncertainty of an attitude estimate. Just as the attitude covariance matrix
can be rotated to other 3-D reference frames, PIi can also be rotated, but
only within the 2-D space within which it is defined.

For more information on covariance matrices, see e.g. section 3.6 of Ap-
plied Optimal Estimation by Gelb et al.
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7.6 Combining Multiple Attitude Solutions

Section 7.4 discussed procedures for estimating spacecraft attitude given a
set of direction vector measurements (e.g., towards stars, the Sun, the local
geomagnetic field direction, whatever). Suppose we have two or more such
attitude solutions, each produced with a distinct set of measurements - say,
as could be the case with star trackers pointing in substantially different di-
rections. Can you combine the results to produce a single, unified attitude
estimate without beginning from the underlying set of individual direction
measurements? The answer is yes and we will discuss the approach in this
section. Be warned - most of this section (everything but this introductory
paragraph) will require dealing with some mathematical detail. For those of
you who are content with the answer that it is possible to combine multiple
attitudes given appropriate information about their relative accuracies, feel
free to skip ahead to section 7.7; for the rest . . .

The mathematics of combining attitudes from different sensors

Let’s suppose we have a set of N star trackers, each of which has provided
an attitude estimate based on its internal processing. Actually, it will have
produced an estimate for the attitude of the star tracker, which is then trans-
formed into an estimate of the spacecraft body attitude using the instrument-
to-body alignment matrix ABI . Pick any convenient attitude (say, the one
based on the first tracker) as a reference attitude. Relative to that reference
attitude, let (θ1,θ2,θ3)i represent the Euler angles defining an adjustment to
get from the reference solution to the solution based on data from the i-th
tracker, and let Pi represent the covariance for the set (θ1,θ2,θ3)i . For com-
pactness, we can express (θ1,θ2,θ3)i in vector notation as θi . Indeed, θi is a
vector in 3-space. It is in the direction of a rotation eigenvector that could be
used for the construction of a quaternion representing the correction quater-
nion from a convenient initial estimate to the estimated true attitude.

As a vector, θi can be transformed between frames. To keep that fact clear
in our minds, let’s write θi as θBi when its components are expressed in the
body frame, and as θIi when its components are expressed relative to the
instrument (tracker) frame. As discussed in the preceding section, θIi is the
attitude of the instrument. Its covariance matrix, PIi , is diagonal, or at least
very nearly so.

A loss function for estimating the combined attitude solution is

L(θB) =
N∑
i=1

∑
k

σ−2
Iik [θIik − (AIiBθB)k]

2 (7.16)

where AIiB is the body-to-instrument alignment matrix for the i-th instru-
ment, and θB is the attitude correction for which we are solving. This loss
function is specifically cast to look formally similar to the loss function de-
fined in equation 7.11. The term (θIik − (AIiBθB)k) is the residual for the
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k-th component of the attitude solution vector for the i-th instrument, ex-
pressed in the instrument frame (where there is (very nearly) no correlation
between the components of the attitude estimate). By multiplying the de-
sired solution vector θB byAAiB, we are transforming θB into a frame where
θIi has (very nearly) uncorrelated components. The subscript k on (AIiBθB)k
indicates that we are using the k-th element of that vector. The weight coef-
ficient, σ−2

Iik , in this frame is just the inverse of the variance of the quantity
(θIik−(AIiBθB)k). The significance of equation 7.16 is that it allows us to treat
the various measurement residuals as uncorrelated, with each component
θIik being here treated as an independent measurement. Clearly we’re ad-
justing our focus here as to what we call a measurement. To the tracker’s em-
bedded software, the raw direction vectors are measurements. To the flight
software outside the tracker that receives θIi (or something equivalent) as
output from the tracker, θIi is a measurement.

Equation 7.16 can be recast as

L(θB) =
∑
i

[θIi − (AIiBθB)]T P −1
Ii [θIi − (AIiBθB)] (7.17)

where

PIi =


σ2
Ii1 0 0
0 σ2

Ii2 0
0 0 σ2

Ii3

 (7.18)

Now, using PBi = ABIiPIiA
T
BIi (cf. equation 7.15), the fact that AT

BIi =
A−1
BIi = AIiB, and the generic matrix relationship that (M1M2)T = MT

2 M
T
1 ,

equation 7.17 can finally be written as

L(θB) =
∑
i

(θBi −θB)TP −1
Bi (θBi −θB) (7.19)

The least-squares solution that minimizes this loss function is

θB =

∑
i

P −1
Bi


−1 ∑

i

P −1
Bi θBi

 (7.20)

PB =

∑
i

P −1
Bi


−1

(7.21)

Equation 7.20 is a kind of weighted averaging of the set of individual
attitude solutions {θBi} that takes into account the correlation between the
elements of the individual solutions. For simplicity, imagine a case in which
we only cared about a single spin angle for a spacecraft, in which case each
vector θBi would reduce to a scalar θBi , the associated covariance PBi would
reduce to a scalar variance σ2

Bi , and the solution would reduce to a simple
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weighted average: θB = Σiσ
−2
Bi θBi /(Σiσ

−2
Bi ). If we simplify this example even

further, letting all of the individual measurement variances be equal to a
single common value σ2

Bc, the solution becomes: θB = ΣiθBi /N , σ2
B = σ2

Bc/N ,
where N is the number of measurements.

The reason for this little detour is two-fold. First, these days it is fairly
standard to have quaternion star trackers, as opposed to vector star trackers,
as the fundamental data source for onboard attitude estimation. Quest, or
an analogous algorithm, is likely to exist as an embedded software algorithm
within each tracker, but would not be appropriate as the method for combin-
ing multiple solutions into a single solution. Second, combining two attitude
solutions will prove to be an important part of our discussion of recursive
attitude estimation in section 7.9.

7.7 Combining An Attitude Solution with a Vector
Measurement

So, we now know how to combine two attitude solutions. But what if what
we have is an attitude solution plus some number of direction vector obser-
vations? If there are multiple independent vector observations, you can just
combine them into a single attitude solution using the methods of section
7.4, at which point we’re back to equation 7.17, i.e., combining multiple atti-
tude solutions. But what if we have an attitude solution plus a single vector
observation? For example, suppose we have a solution from a single quater-
nion star tracker and a single observation from a high precision sun sensor
and we wish to combine the two pieces of information into a single solution.
How do we proceed with combining these two disjoint types?

The case of combining a 3-D attitude solution with a 2-D vector measure-
ment is a little bit subtle. If you’re willing to accept that it can be done, feel
free to jump now to section 7.8 - but with the knowledge that there are well
defined procedures that allow you to modify a full attitude solution with in-
formation that in itself provides insufficient data to define the attitude fully.
This is a specific example of a more general principle, one that we’ll visit in
more detail in later sections.

The mathematics of combining 3D with 2D attitude information

For those of you still with us, we’ll take you through the exercise of modify-
ing an attitude solution based on a single vector measurement. If you have a
bit of trouble following the first time through, the most important point to
keep in mind is that this exercise constitutes an existence proof. The fact that
it can be done is more important for our purposes than the details of how it
is done.

Recall the previous discussion regarding the “cat’s eye” camera at the
end of section 7.4. We’ll be using the generalized loss function for that case
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here, or at least a component thereof for a single vector measurement. The
loss function for combining a prior attitude estimate with a single vector
measurement is:

L(θB) =(θBa −θB)TP −1
Ba (θBa −θB)

+ (φIoi +HIoiθB)TP −1
Ii (φIoi +HIoiθB) (7.22)

The first term on the right hand side corresponds to the full, 3-D attitude
estimate. It is in form like any single attitude measurement contribution in
equation 7.19. The subscript “a” emphasizes that it is a full attitude solution.
Since we are assuming that θB is defined relative to our prior attitude esti-
mate (which can be done without loss of generality), θBa = 0. We included
it in equation 7.22 to match the form used in equation (7-19). The second
term on the right hand side is of the form of a single vector contribution as
expressed in equation 7.13, with the subscript i corresponding to the new
(i-th) vector measurement. Recall that

φIoi ≡ upper two components of a 3-vector uIoi
uIoi ≡AIBiA0uEI

AIBi ≡ body-to-pseudo-instrument alignment matrix constructed
from the measured vector vi

A0 = initial attitude estimate, in this case the estimate prior to incor-
porating the effect of vi

uEi ≡ ECI-frame reference vector

HIoi ≡ upper 2× 3 part of a 3× 3 matrix UIoi

UIoi =

 0 u3 −u2
−u3 0 u1
u2 −u1 0


Ioi

PIi ≡ 2×2 matrix covariance for the measurement vi defined relative
to pseudo-instrument frame

The corresponding least-squares solution θB that minimizes the loss
function of equation 7.22 (given that θBA = 0) is

θB = [P −1
Ba +HT

IoiP
−1
Ii HIoi]

−1[HT
IoiP

−1
Ii φIoi] (7.23)

PB = [P −1
Ba +HT

IoiP
−1
Ii HIoi]

−1 (7.24)

Note that the form for these two equations is very similar to that of equa-
tions 7.20 and 7.21, with (HT

IoiP
−1
Ik HIoi) used in place of what one might

have expected to be designated as P −1
Bi , and a contribution that one might
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have expected as (P −1
Ba θBa) in equation 7.17 eliminated because θBa = 0.

Note that if the reference vector, uEi , when transformed into the pseudo-
instrument reference frame exactly aligns with the measurement vector, then
φIoi = 0, with the implication that the attitude estimate will not change as a
consequence of the new vector measurement. This is as it should be.

This may have seemed like a lot of effort to incorporate the use of a single
extra vector measurement. We have an ulterior motive, which will become
clear in sections 7.9 through 7.11. As previously noted, the principal message
at this point is simply that there are well defined procedures for incorporat-
ing such data. More generally, it is always possible to combine measurements
of different types so long as you have a well-defined specification of the un-
certainty, i.e., covariance, for each. You can always use a new measurement
to improve your estimate of a quantity of interest, even if that new measure-
ment by itself only partially defines the full quantity of interest.

7.8 Measurement Propagation and De-Weighting

The algorithms presented in sections 7.4 and 7.6 assume that all of the obser-
vations are in, or can be transformed to, a single spacecraft reference frame
and that you are only interested in determining a single attitude solution. If
the spacecraft was rotating during the period of time in which the observa-
tions were collected, you must first rotate the various observations to a com-
mon reference frame using gyroscope data and the techniques discussed in
section 7.1. This is numerically straightforward, but there is a complication
involved that we did not consider in the earlier discussion. As for any sensor,
gyroscope measurements will have some associated noise. Indeed, there are
two kinds of noise typically associated with gyroscopes: (a) random noise in
the immediate measurement being made, and (b) a slow, random-walk drift
in a bias of the device. The latter can typically be kept small by regular cali-
bration, but the former is an intrinsic feature of each measurement.

The implication of there being noise in the gyro measurements is that you
really can’t fully trust data that have been propagated to some selected com-
mon epoch, with the reliability being more and more degraded the greater
the time period over which the propagation is done. Let’s suppose that we
have a set of vector measurements (star directions, Sun direction, magnetic
field direction, whatever), all made with the same sensor or sensor type, but
over some extended period of time during which the spacecraft is possibly
rotating. Even if each measurement has the same intrinsic accuracy at the
moment of its being made, the measurements will have different relative
accuracies after being rotated with noisy gyroscope data to some common
epoch. Not only will the measurements have different relative accuracies,
their ratios will change as a function of the selected common reference time
to which all data are to be transformed.
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If the raw measurements are direction vectors, as in the case of the al-
gorithms discussed in section 7.4, the variance σ2

i to be assigned to the ith
vector measurement after transformation to the common frame will be some-
thing like the following:

σ2
i = σ2

D + σ2
R + σ2

Gτ (7.25)

where

σ2
D = the intrinsic variance associated with the direction measuring

device
σ2
R = the variance associated with the reference measurements
σ2
G = the gyroscope measurement variance
ti = the time of the vector measurement
tc = the common reference time
τ = |tc − ti |

The form of equation 7.25 is approximate. It models the immediate random
noise of a gyro measurement, but ignores the error associated with the slow
drift that usually also effects gyroscopes. It is, however, good enough for the
purposes of our qualitative discussion. The use of the absolute value in the
definition of τ emphasizes the fact that gyro-based propagation can work
in either direction in time. Using the weighting scheme implied by equation
7.25 (i.e., with weightwi ∝ σ−2

i ), attitude solutions will depend most strongly
on data taken close to tc, the common reference time.

If your “measurements” are attitude solutions as provided by a quater-
nion tracker (as envisioned in section 7.6), the de-weighting of such a solu-
tion due to gyro-measured rotation of the spacecraft is conceptually essen-
tially the same as for the vectors. Just as σ2

i represents the variance of a vector
measurement, Pi represents the covariance of the attitude components of an
attitude solution at time ti . The corresponding transformation of Pi to the
common reference time based on gyro data is given by

Pci =RPiR
T + σ2

GτI3 (7.26)

where R is the rotation matrix constructed from the gyro data over the time
period between ti and tc. Note that the RPRT part of equation 7.26 is just
a reference frame transformation, i.e., the equivalent of equation 7.15. Af-
ter the rotation, each component of the currently estimated attitude has its
uncertainty augmented by gyro error in just the same manner as would a
propagated direction measurement.

To be fair, both equations 7.25 and 7.26 involve a kind of averaging out
of gyro noise in all directions. Things could be made to look more compli-
cated if the details of the actual mounting alignments of the gyroscopes were
preserved in detail, but doing so would add nothing essential to your under-
standing or to algorithm accuracy. The fact that the gyro noise factor (σ2

Gτ)
is multiplied by I3 in equation 7.26 is an indication of the simplifying as-
sumption that gyro noise is isotropic, i.e., uniform and uncorrelated in all
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directions. The actual mounting direction of the set of gyroscopes has been
washed away in this model.

There’s another simplification in equations 7.25 and 7.26 that we won’t
explore in detail. If multiple measurements are propagated to the common
reference time from the same side of that time (i.e., its future or its past),
those measurements will all have some level of noise correlation due to hav-
ing been propagated in part with the same noisy gyro data. Incorporation of
this correlation can be done, but would make the math messier. Fortunately,
that correlation is automatically incorporated in the method of recursive es-
timation to be discussed in the remaining sections.

So, what is the effect on our knowledge due to this gyro noise? Let’s as-
sume that our measurements (whether as direction vectors or Euler angle
triplets) were made somewhat uniformly over a given time window and that
the window is much longer than the time scale for gyro forgetfulness. We’ll
then have a situation in the deep interior of the window where there will
be a kind of equilibrium for any reference time such that the associated at-
titude estimate is made with some effective number of fully weighted mea-
surements, NE . It would be sort of as if you didn’t apply the (σ2

Gτ) term, but
rather applied a sliding window for inclusion of a set of NE fully weighted
measurements. As you approach either end of the full data window, there
are fewer effective measurements available. At the ends, the number of effec-
tive measurements drops by a factor of 2 relative to the deep interior, so the
accuracy of attitude estimates at the window ends will be degraded by about
a factor of about

√
2 relative to that of the deep interior.

This kind of time-symmetric treatment of attitude estimation may be ap-
propriate for ground-based engineers and scientists wanting to process a
whole set of previously acquired data that depend for optimal processing on
a best possible estimate at any given time. For flight software, which is pretty
much always only concerned with the here-and-now for its control purposes,
we are really only concerned with that asymmetric moment when we have
past and possibly current measurements, but nothing yet in the future. The
flight engineers for the SPARTAN program considered placing a wrapper
around the Quest algorithm for precisely this purpose. As outlined above,
gyro data would be used to propagate past measurements to the current
time, with appropriate de-weighting of past data in accordance with equa-
tion 7.25. Computer memory is not infinite, so sufficiently old (degraded)
measurements would eventually be discarded. This effectively functions as
a “poor man’s” recursive filter, an approach we’ll discuss in some detail in
sections 7.9 and 7.10.

For more information on propagation of uncertainty, see e.g. Section 3.7
of Applied Optimal Estimation by Gelb et al.
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7.9 Recursive Attitude Estimation

The basic ideas for recursive attitude estimation were outlined in the last
paragraph of the preceding section. Specifically, you must perform the fol-
lowing steps, or something equivalent to them:

1. Transform prior measurements to the current reference frame (e.g., ro-
tate the measured direction vectors using spacecraft rate information
based on gyroscope data);

2. De-weight the prior data so past solutions can be gradually forgotten;
and

3. Combine the old data with new data at the current time to get a new
estimate of the spacecraft attitude

There are two difficulties with the procedure as stated in the preceding
paragraph. First, it envisions keeping every past measurement over time, or
at least until the acquisition time for a given measurement passes out of a
somewhat arbitrarily selected time window. This, at least in principle, im-
plies allocating a potentially very large data store for the purpose of attitude
estimation. Second, the procedure requires continuous reprocessing of each
measurement, at least until it passes out of the time window. These diffi-
culties are avoided by recognizing that all of the information that you care
about from the prior measurements has been captured in the current esti-
mate and its associated covariance matrix. You don’t have to keep all of the
old measurements if the recursive estimation steps can be applied using the
immediately prior solution and covariance, rather than the set of “all” past
measurements, hence our use of the phrase “or something equivalent” before
listing the three steps of recursion.

With the use of the prior solution in mind, the steps of recursion become:

1. Transform the preceding attitude solution to the current reference frame.
2. Transform and de-weight the covariance matrix of the prior solution in a

way that captures the uncertainty in the transformation process.
3. Combine the transformed prior solution together with the new measure-

ment, with each assigned appropriate statistical weighting. The weight-
ing of the prior solution will be some function of the transformed, de-
weighted covariance matrix. The weighting of the new measurements
will be some function of the variance of the new measurement.

We actually already have covered all of these steps. Step 1, transforming
an attitude solution using gyro data, was discussed in section 7.1. Step 2,
transforming and de-weighting the prior covariance matrix, was discussed
in section 7.8 and uses equation 7.26. The only change is that rather than
transforming the prior solution to some common reference time, it is trans-
formed to the next time step (ti+1). Step 3, combining the transformed prior
solution with new measurements, is the same as the problem discussed in
sections 7.6 and 7.7, which covered the cases of new data being in the form



160 7 Onboard Attitude Determination

of an attitude measurement (e.g., from a quaternion star tracker) or a direc-
tion measurement (e.g., from a sun sensor).

For more information on recursive estimation, see e.g., section 4.1 of Ap-
plied Optimal Estimation by Gelb et al.

7.10 Recursive Attitude plus Gyro Bias Estimation

So far we have restricted ourselves to discussing procedures for estimating
spacecraft attitude by itself. In practice, it is usually the case these days that
onboard attitude estimation is combined with gyroscope drift bias estima-
tion. This is done because gyroscopes typically have a bias that is slightly
unstable, i.e., the bias changes slowly but unpredictably with time. As a con-
sequence, your ability to use gyro data to propagate attitude estimates for-
ward in time would slowly deteriorate if you didn’t have a method to keep
the bias calibrated. By solving for both attitude and gyro bias in a single al-
gorithm, you keep both well known and the (usually) faster rate gyro data
can be used with confidence until a new attitude estimate is available. The
algorithm typically used is a specific instance of a quite general procedure
for state estimation, where “state” can be defined as whatever the user needs
it to be (in this instance, attitude plus gyro bias), provided that the measure-
ments are actually sensitive to the state being estimated.

Within the algorithm definition, the unknown state is usually referred to
as a state vector. This state vector is analogous to the concept of a position
vector in 3D position space, although the space within which the state vector
resides is an abstract, higher dimensional space with a sufficient number of
dimensions to represent all of the state solution for which you are search-
ing. The physical units of the state space elements need not be the same for
all elements of the space. In the case of the state vector being the combina-
tion of the spacecraft attitude and the gyroscope system bias, the state space
will be six-dimensional, with three dimensions having units of radians to
characterize the attitude (i.e., Euler angles relative to a reference), and three
dimensions having units of radians per second to characterize the bias of the
gyroscope system.

There is often a bit of overloading of the concept of state vector. You can
use it to refer to

• the full state (e.g., the attitude and gyro bias: {A,ΩB})
• a correction to an initial estimate of the state (e.g., {R(θ),ωB}),

where {A0,ΩB0} is your initial estimate, and {A,ΩB} is equal to
{R(θ)A0,ωB +ΩB0}); or

• a linearized representation of the correction (e.g., {θ,ωB}).

The first and second meanings for “state vector” are isomorphic (i.e., in-
formationally equivalent). The third is isomorphic to the other two in a linear
approximation - sort of the way a tangent plane is equivalent to a surface to
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which it is tangent for small regions close to the tangent point. As was illus-
trated in the preceding sections, state estimation algorithms are often set up
as iterative linear approximations, so all three meanings of state vector be-
come isomorphic as the algorithm converges. For our problem, let’s use the
symbol X to represent the linearized state vector {θ,ωB} in the form of a 6×1
column matrix, and let’s use δX to represent small errors in the components
of X.

The basic ideas for recursive state estimation were outlined in section 7.9,
albeit limited there to the attitude problem. To generalize, you must perform
the following steps:

• Transform the preceding state solution to the current time frame.
• Transform and de-weight the covariance matrix of the prior solution in a

way that captures the uncertainty in the transformation process.
• Combine the transformed prior solution together with the new measure-

ment, with each assigned appropriate statistical weighting.

Of course, there is an implied step 0, creation of an initial estimate for
X. You could do this by producing two independent attitude estimates at
time points separated by ∆t, and then defining the gyro bias as whatever is
needed to make the gyro-propagated first attitude solution agree with the
second solution.

At this point, you’ve pretty much got the gist of how a recursive filter
would work for solving for attitude and gyro bias. For those that enjoy math,
stick with us; otherwise skip ahead to section 7.11.

Estimating attitude and gyro drift bias together

Let’s proceed to step 1. We’ve already discussed transforming an attitude
solution using gyro measurements to rotate the attitude using a rotation ma-
trix, or quaternion, constructed from the gyro-provided rate estimate. What
about the transformation of the gyro drift bias? The bias is most conveniently
defined in the spacecraft body frame, so rotation of the spacecraft does not
change the bias; no transformation for it is needed.

Step 2 is the generalized state equivalent of equation 7.26, in which the
attitude covariance is rotated to a new frame and then de-weighted based on
gyro noise. The parallel equation for the generalized state problem can be
written as

PX(ti) = ΦPX(ti−1)ΦT +QG (7.27)

where PX , a 6×6 matrix, is the covariance of X, Φ (the “state transition ma-
trix”) is a higher dimension counterpart to the rotation matrixR constructed
from gyro data, and QG is a higher dimensional counterpart to σ2

GτI3. Note
that since processing always moves forward in time for this recursive filter,
τ = ti − ti−1, i.e., there is no need for the absolute value symbol.
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Deriving the full details of Φ is beyond the scope of this presentation;
see the work by Lefferts, Markley, and Shuster6 for the original derivation.
However, we can provide a heuristic overview. Just as R rotates 3-vectors
from one frame to another, Φ does the equivalent for the error vector δX as a
consequence of the passage of time. Over a small time period τ (all changes
can be built up as a sequence of small changes over time), the spacecraft rate
as measured by the gyroscopes will be constant, so R will be a function of
the product ωτ . Φ becomes

Φ ≈
(
R(ωτ) τR(ωτ/2)
03 I3

)
(7.28)

with each term in the matrix on the right-hand side being a 3 × 3 matrix.
The appearance of R(ωτ) in the upper left means that the attitude error
component in δX rotates like a vector (not too surprising given that δθ is
a vector in 3-space). The appearance of I3 in the lower right indicates that
the bias error is not influenced by the rotation. This is because the bias is
fundamentally fixed to the frame in which the gyroscopes are mounted, i.e.,
the body frame. The appearance of τR(ωτ/2) in the upper right means that
a gyro bias error at time ti−1 introduces additional attitude error at ti . The
division by 2 in R(ωτ/2) indicates that the bias is averaged-in across the
rotation, with the effect being to use the bias at approximately the mean
point of the rotation. The “≈” in equation 7.28 actually pertains only to the
τR(ωτ/2) term. All the other block components are exact. The appearance
of 03 (a 3× 3 matrix of zeros) in the lower left indicates that the bias error is
independent of past attitude error.

Let’s now consider the “de-weighting” matrix QG. We mentioned that it
is a higher dimensional counterpart to σ2

GτI3. It’s actually a bit more com-
plicated. As mentioned in section 7.8, gyro noise is usually characterized for
analysis and modeling purposes by two parameters, not just the single σ2

G.
The two parameters are the gyroscope angle measurement variance (σ2

Gm),
and the gyroscope drift rate bias random walk variance (σ2

Gb). The former
characterizes the immediate gyro measurement noise, while the latter char-
acterizes how the gyro bias randomly drifts away from its last calibrated
value. With these two parameters, QG is typically given by7

QG =


(
σ2
Gmτ + 1

3σ
2
Gbτ

2
)
I3

(
1
2σ

2
Gbτ

2
)
I3(

1
2σ

2
Gbτ

2
)
I3

(
σ2
Gbτ

)
I3

 (7.29)

Note that in the above formula, σ2
Gm corresponds to what we previously

had simply referred to as σ2
G, defined heuristically as “the gyroscope mea-

surement variance”. Since we are here concerned with the gyro bias as part

6Lefferts, E.J., Markley, F.L., and Shuster, M.D., Kalman filtering for spacecraft
attitude estimation, Journal of Guidance and Control Dynamics, 5(5), 417-429 (1982)

7ibid
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of our state vector now, treating its drift noise carefully is more important,
hence the introduction of σ2

Gb. The exact form of equation 7.29 is actually not
terribly important for our discussion. What is important is that, like the term
σ2
GτI3 in equation 7.26,QG captures the de-weighting of prior knowledge as

a consequence of gyroscope hardware noise.
There is a caveat that pertains to equations 7.28 and 7.29. For this dis-

cussion, we have assumed a convention for gyro bias that it be added as a
correction to the gyro-based spacecraft rate estimate. Some folks prefer a
convention whereby the bias is subtracted, in which case a minus sign must
precede the τR(ωτ /2) in equation 7.28 and the [(1/2)σ2

Gbτ
2]I3 terms in equa-

tion 7.29. If sometime in the future you see a variation of equation 7.29 using
negative off-diagonal elements, don’t worry; it’s just that author’s preferred
convention.

We finally come to step 3, the combining of a propagated, de-weighted,
prior solution with new measurement data to generate a new, current-time
solution. This is basically a higher-dimensional counterpart to our discussion
from section 7.6. There we discussed combining an attitude solution with ei-
ther (a) another attitude solution, or (b) an independent vector measurement.
Variation (b) is in a sense most analogous to what we are considering for the
attitude-plus-bias problem in that we wish to improve on a higher dimen-
sional estimate by incorporating a new, lower-dimensional data type. That
type can be either an attitude solution (say, from a star tracker) or a vector.
The corresponding loss functions are:

L(X) =(X0 −X)TP −1
X0

(X0 −X)

+ (θBi −H′
θX)TP −1

θ (θBi −H′
θX) (7.30)

L(X) =(X0 −X)TP −1
X0

(X0 −X)

+ (φIoi −H′
IoiX)TP −1

Ii (φIoi −H′
IoiX) (7.31)

The first term on the right-hand side of each equation reflects the ten-
dency of the state vector X to remain fixed at the current estimate based on
past data, i.e., our estimate for X will tend to stay equal to X0 unless the new
data forces a change. X0 is included in the equations to make them appear
formally like prior loss function variations that we’ve presented. However,
since X is defined each cycle to be the change relative to our current es-
timate, X0 = 0. The second term in equation 7.30 is just the standard loss
function contribution of an attitude measurement, with the slightly obfus-
cating replacement of (H′

θX) for θB. This substitution is done to make X
appear formally as the variable in the loss function. The matrixH′

θ is a 3×6
matrix that strips θB out of X, i.e.

H′
θ = [I3 03] (7.32)
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We added the prime merely as a reminder that we’re dealing with the 6-
D state vector in these equations. Similarly, in equation 7.31, H′

Ioi is a 6-D
augmentation of HIoi for the vector case:

H′
Ioi = [HIoi 02×3] (7.33)

so (H′
IoiX) = (HIoiθB), and the second term in equation 7.31 is just the “stan-

dard” loss function contribution for a vector measurement.
The solutions corresponding to equations 7.30 and 7.31 are much the

same as for equation 7.19. Using a new attitude measurement, you have:

X =
[
P −1
X0

+H′T
θ P

−1
θ H′

θ

]−1 [
H′T
θ P

−1
θ θBi

]
(7.34)

PX =
[
P −1
X0

+H′T
θ P

−1
θ H′

θ

]−1
(7.35)

Using a new vector measurement, you have:

X =
[
P −1
X0

+H′T
IoiP

−1
Ii H

′
Ioi

]−1 [
H′T
IoiP

−1
li φIoi

]
(7.36)

PX =
[
P −1
X0

+H′T
IoiP

−1
Ii H

′
Ioi

]−1
(7.37)

Note how the pattern of loss functions and solution equations is a repeating
pattern, reoccurring just in a slightly different key.

To be fair, we should say that the preceding equation pairs provide a solu-
tion for minimizing their respective loss functions. Each follows by solving
the six simultaneous equations formed by setting the derivatives of L with
respect to the components of X to zero, and each involves taking the inverse
of a 6× 6 matrix. There is a computationally more efficient approach to use.
That will be the topic of the next section.

7.11 The Kalman Filter for Recursive Least Squares

There is nothing thematically new about a Kalman filter. It is just a particular
variation on a recursive algorithm for state estimation that happens to be
optimal with respect to efficiency. From a black box perspective (i.e., if we
didn’t let you take a peak under the hood), you would not be able to tell
the difference between a Kalman filter and any other recursive algorithm
designed to solve the same problem, except for the fact that the Kalman filter
would prove to be most efficient with respect to CPU usage - not so important
for today’s very efficient machines, but extremely important when Rudolf
Kalman8 developed his approach in the early 1960s.

8R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems,
Journal of Basic Engineering, March 1960, pp 35 - 46; or see also A. Gelb, et al, Ap-
plied Optimal Estimation, MIT Press, 1974.
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If you don’t care about alternative solution methods after you’ve got one
that works, there really is nothing more that you need to hear about the
Kalman filter, except perhaps that it has become the flight software algo-
rithm of choice for attitude-plus-gyro drift rate bias estimation on Goddard
missions. Like Xerox and Kleenex, the specific name has become synony-
mous with the generic type. Folks in the NASA/GSFC flight software branch
pretty much use “Kalman filter” to mean a recursive filter for attitude-plus-
gyro bias estimation - well, at least until recently. Developments in GPS
flight systems leverage Kalman filtering to refine onboard estimates for GPS-
provided position and velocity estimates, but that’s another story.

The Mathematics of the Kalman Filter

Both equations 7.30 and 7.31 are of the general form

L(X) = (X0 −X)TP −1
X0

(X0 −X) + (Z−HX)TP −1
Z (Z−HX) (7.38)

where X is any generic state vector, X0 a current estimate thereof, PX0
the co-

variance of X0, Z a new measurement, PZ the covariance of Z, and H trans-
forms X into measurement space. Kalman derived the following equations
that provide a computationally optimal solution for the problem:

X =
[
INX −KH

]
X0 +KZ (7.39)

PX =
[
INX −KH

]
PX0

(7.40)

K = PX0
HT

[
HPX0

HT +PZ
]−1

(7.41)

where INX is the identity matrix of size NX ×NX , NX being the dimension of
X. The matrixK is called the Kalman gain matrix. It has dimension NX ×NZ ,
where NZ is the dimension of Z, typically smaller than the dimension of
X. The matrix to be inverted in equation 7.41 is only of dimension NZ ×
NZ . This can significantly reduce the numerical complexity of the problem
being solved (i.e., the number of computer steps required). For the problem
discussed in section 7.10, the matrix to be inverted is reduced from 6 × 6 to
only 3 × 3 or 2 × 2, depending on whether the new measurement is in the
form of an attitude solution or a direction vector. This is significantly more
efficient, given that numerical procedures for inverting matrices typically
require ∼N3 operations.

It may seem like a mathematical slight-of-hand that the Kalman filter can
adjust for changes in all NX elements of X while only inverting an NZ ×NZ
matrix. This seems like solving for NX (e.g., 6) unknowns with only NZ (e.g.,
2 or 3) equations. The “magic” in Kalman’s method is that, within the full
NX-dimensional state space, it effectively finds theNZ-dimensional subspace
into which changes associated with measurement Z can be projected - i.e., it
effectively reduces the scope of the problem (equivalent to reducing the rank
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of the matrix to be inverted) by restricting the search to that subspace of state
space that is observable via the new measurement.

If we left the discussion of the Kalman filter at this point, some of you
at some future time would eventually discover that we told a bit of a fib re-
garding the derivation of the Kalman equations, one that fits nicely into the
story that we’ve been telling in this chapter. In point of fact, Kalman’s deriva-
tion does not start by minimizing the loss function defined in equation 7.38.
Rather, his approach minimizes the trace (sum of diagonal elements) of PX ,
the resultant covariance matrix. It is not immediately obvious that the two
approaches should yield the same solution. Indeed, it is not even obvious
that the trace of PX is a meaningful sum, given that the units of the compo-
nents of X, and therefore the units of PX , are not required to be the same.
(For our attitude-plus-bias problem, the units of components 1-3 of X are ra-
dians, while the units of components 4-6 are radians per second.) However,
it can be shown that an alternative derivation is possible (see Appendix B)
that starts from equation 7.38 and arrives at Kalman’s equations.

For those of you wondering about the term “filter,” which we haven’t
previously used in our discussion, it is often applied to any algorithm used
to remove (filter out) measurement noise, leaving the user with an optimal
estimate for the sought for truth. We could compare any such filters to the
lamp of Diogenes in his quest for truth in the form of an honest man - except
that, to the best of our knowledge, he never found his sought for truth.

One final note. You will sometimes hear the phrase “extended Kalman
filter.” The adjective “extended” indicates that the system for which a state
solution is being sought is non-linear, i.e., the filter is extended beyond a
simple linear filter. If you think about it, you’ll realize that this entire chapter
has been dealing with non-linear least squares filters (the attitude matrix
being a non-linear function of its independent variables), so there’s nothing
new or magic in the term “extended”. It’s just another way of saying non-
linear, with the implication that iterative processing may be necessary for
precise results, although in fact we never bother with iteration at each time
step in the FSW context.

7.12 Synopsis

This chapter has covered quite a bit of material on attitude estimation,
enough that it seems appropriate to give a brief synopsis. The topics and
main points of each section were as follows:

1. Section 7.1 described how gyroscope data can be used to create rotation
representations that allow you to transform attitude estimates and vector
measurements from one time to another.

2. Section 7.2 served as a motivating introduction for the subsequent sec-
tions that deal with various attitude estimation algorithms.
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3. Section 7.3 described the Triad algorithm, a simple method for combing
two direction measurements to determine attitude.

4. Section 7.4 extended the discussion to include cases with arbitrarily
many direction measurements. It presented a standard, simple (although
not the most computationally efficient) algorithm for solving for the op-
timal attitude solution.

5. Section 7.5 introduced the concept of the covariance matrix, the mathe-
matical object that formally describes the uncertainty in your estimate.

6. Section 7.6 described how you can optimally combine two independent
attitude solutions together, e.g., solutions from two quaternion star track-
ers. The significance of the discussion was the use of a different mea-
surement type for the input, i.e., 3-D Euler angle sets, as opposed to 2-D
direction vectors.

7. Section 7.7 extended the discussion of section 7.6 to the case of construct-
ing an attitude solution based on an attitude solution and a direction vec-
tor measurement, e.g., for combining data from a quaternion star tracker
with a high-precision Sun sensor. The significance of the discussion is
that the input data types do not have to be identical.

8. Section 7.8 discussed the effects of gyroscope noise as you propagate ei-
ther direction vector measurements or attitude solutions from one mo-
ment in time to another. Specifically, as you move away from the moment
when measurements were originally obtained, those data and any solu-
tions obtained from them become less reliable.

9. Section 7.9 introduced recursive attitude estimation, built up from the
elements discussed in the preceding sections. This included rotating a
prior attitude solution from a prior time, rotating the associated covari-
ance from the prior time, de-weighting the prior covariance, and com-
bining the old solution with new measurement data.

10. Section 7.10 extended the discussion of recursive attitude estimation to
include estimation of gyroscope bias. This extension is important be-
cause gyro bias is subject to a slow drift. It is customary on most space
missions to include continuous onboard adjustment for the changing
drift. The mathematical formulation is very analogous to that of section
7.7, where a measurement of dimension lower than that of the state of
interest is combined with an old (now degraded) state estimate to keep
the estimate optimally tuned.

11. Section 7.11 introduced the Kalman filter equations, which provide a
highly efficient algorithm for solving any recursive least-squares prob-
lem.
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7.13 Mathematics to English Translation of Kalman Filtering

Many battle memoirs were written after the war by World War II veterans,
but one such memoir9 contains a quote that seems particularly appropri-
ate at this point: “If you survive your first day, I’ll promote you.” The quote
comes from a conversation between the author (then a lieutenant) and his
battalion commander. The casualties in his unit, especially among officers,
had been so high that company commanders were dropping like flies. The
author was the latest lucky fellow to receive command of that company,
and to give the author something to shoot for (perhaps that could have been
worded better), his commanding officer was guaranteeing him a promotion
from lieutenant to captain (the usual rank for a company commander) if the
author’s luck proved better than that of his predecessors. If you’ve reached
this section, either you’ve survived all the hazards of the previous sections,
or you’ve decided to proceed directly to Section 7.13 without looking back.
Either way, your reward is the math-free description of the Kalman filter
algorithm that follows.

The Kalman filter is a recursive filter, which means that it is convenient to
start our description in the middle of things (rather like Star Wars but with-
out the excitement). Somehow, some way, you have an estimate (perhaps only
of moderate accuracy) for the attitude of the spacecraft (box A in Figure 7.2)
at the current time. (For details regarding constructing an attitude estimate
based on a set of direction vector data, see sections 7.3 and 7.4)

In addition to the attitude estimate itself, you need an estimate for the co-
variance of that estimate (box A’). The covariance is a mathematically precise
way to express the uncertainty of your knowledge. When an estimate consists
of just a single number (say, your height), the term variance is used, which is
equal to the square of the typical error or standard deviation. When the esti-
mate pertains to a conglomerate concept (such as an attitude, with its three
degrees of information), the term covariance is used, which captures both the
variance of the individual components and the various correlations between
the errors of the components. For further details regarding the meaning of
an attitude covariance, see section 7.5.

Time passes and the attitude changes as a consequence of torques im-
posed by the outside world or due to control torques imposed by the atti-
tude control system. The attitude determination system is a passive part of
the overall attitude control system. It doesn’t really care why the attitude is
changing; it merely observes that it does. The change in attitude is typically
monitored using gyroscopes. Using gyroscope data over some short period
of time (box B), the Kalman filter determines how the previous attitude es-
timate should be changed as a consequence of the rates measured by the gy-

9G. Wilson, “If You Survive: From Normandy to the Battle of the Bulge to the End
of World War II, One American Officer’s Riveting True Story”, Paperback Edition:
Ballantine Books, June 1997
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Fig. 7.2. Kalman Filter for Optimal Attitude Estimation.

roscopes, the result being a propagated attitude estimate (box C). For details
regarding attitude propagation using gyroscope data, see section 7.1.

The Kalman filter also needs to determine the covariance of the propa-
gated attitude estimate. There are two aspects to this. First, even if the gy-
roscope data were perfect, the attitude covariance would change as a con-
sequence of the attitude itself changing. The Kalman filter basically rotates
(propagates) the previous covariance into a new reference frame to follow
the changing attitude. Second, because the gyro data are in fact not perfect,
the Kalman filter adds a noise corruption term to the rotated attitude covari-
ance matrix to account for the gyro measurement noise. The gyro data used
for rotation and gyro noise used for corruption are indicated in box B’. The
final propagated and corrupted covariance is indicated in box C’. For details
regarding rotating and corrupting a covariance matrix using gyroscope data
and associated gyroscope noise parameters, see section 7.8.

If no other data were available, the Kalman filter would just continue this
process over time, with the gyro noise continuing to corrupt the attitude es-
timate. As time passed, the attitude estimate would continue to degrade (the
covariance would continue to increase). To avoid this, you must periodically
introduce new measurements of the spacecraft attitude (say, from a quater-
nion star tracker), as indicated in box D. This measurement actually doesn’t
have to be sufficient by itself to determine a complete attitude solution. A
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measurement that by itself only partially determines attitude (say, of the Sun
direction from a Sun sensor) can be used to improve the degraded estimate
partially. Along with the measurement, you will need an estimate of the co-
variance of that measurement, as indicated in box D’. The new measurement
is combined with the propagated prior attitude estimate to produce a new
attitude estimate (box E), with each input given a weighting factor based on
how well it is known. Greater knowledge is associated with smaller covari-
ance, so the weight assigned to each input component is basically inversely
proportional to that component’s covariance. The two covariances are com-
bined together to produce a covariance for the new attitude estimate (box
E’). For detail regarding optimally combining an attitude estimate with a
new measurement, either a complete attitude measurement or a partial atti-
tude measurement in the form of a direction vector, see sections 7.6 and 7.7.

Having constructed a new, improved attitude estimate (along with its co-
variance), you’re ready to begin the cycle again. More gyro data are used
to propagate and corrupt the new solution across another time step, and an-
other new attitude measurement is used to rein in the corruption. For typical
mission scenarios, this process eventually converges to an equilibrium state,
with the amount of gyro-related corruption introduced in each cycle can-
celled out by the incorporation of the new attitude data. For a discussion of
combining the pieces of a recursive attitude filter into a unified whole, see
section 7.9.

At this point, those of you who didn’t slog through the previous sections’
math are perhaps wondering what happened to the determination of the
gyro drift rate bias mentioned in the first paragraph of this section. Well, the
algorithm just presented remains the same from a high-level perspective.
All you have to do is mentally modify Figure 7.2 so that everywhere that
it refers to an attitude estimate or an attitude covariance (i.e., boxes A, A’,
C, C’, E, and E’), you read it as a state estimate or a state covariance, and
then define “state” to mean attitude and gyro drift rate bias together. The
mathematical details for solving for this extended state are more complex,
but the high-level concepts remain unchanged. Note that boxes B, B’, D, and
D’ remain unchanged; the input measurements remain as envisioned in the
previous discussion. For details regarding both the attitude and gyro bias in
the “state” to be solved for in a recursive filter, see section 7.10.

Regarding the distinction between a recursive filter and a Kalman filter,
the former is the more general term with the latter being a specific realization
thereof. From a black box perspective, there is no distinction. However, in
situations where the state for which one is solving is more complex than
the individual measurements being used as input, the Kalman filter is the
most efficient realization of a recursive algorithm. For this reason, use of a
Kalman filter for combined attitude and gyro bias estimation has become
standard for GSFC flight software. For the mathematical details that show
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how a Kalman filter is more efficient than a naively realized recursive filter,
see section 7.11.





8

Spacecraft State Estimation more Broadly

There’s an old physics joke that compares the underlying philosophies of
three major physics theories to attitudes (no pun intended) of three dis-
tinctly different baseball umpires. The first umpire is Albert Einstein who,
when asked his basis for calling balls and strikes, says “I call them the way I
see them”. This approach is consistent with the equivalence of inertial refer-
ence frames in special relativity, which holds all inertial reference frames are
equivalent and the measurements of time and distance in one inertial frame
are just as valid as those made in another inertial frame, even if the numbers
associated with the measurements are not the same in both frames. The sec-
ond umpire is Isaac Newton who says “I call them the way they are”, which
harkens back to the pre-relativity days when physicists believed there was
such a thing as absolute time and distance measurements, and a preferred
frame in which these measurements could be specified. The third umpire is
Neils Bohr who says “They ain’t nothing until I call them”, which is a some-
what eccentric way of describing the role played by superposition of states in
quantum mechanics and the collapse of the wave function to a specific state
when a measurement is made. With respect to the ACS calibration function,
Isaac Newton is the spacecraft manufacturer who can make direct measure-
ments of sensor calibration parameters in the preferred reference frame of
the manufacturer’s lab(s). Albert Einstein is the ground system ACS analyst
who relies on downlinked sensor data for his relative alignment calibrations.
Unlike the manufacturer, the ACS analyst cannot make a direct measure-
ment (and therefore cannot make an absolute alignment calibration relative
to a manufacturer specified absolute reference frame), but instead can only
compare data from different sensors (say, two star trackers relative to each
other or gyros relative to star trackers) and calibrate the alignment of one
sensor relative to another. For this purpose, any of the sensors can serve as
the fiducial sensor relative to which the alignments of the other sensors can
be specified. Neils Bohr in this context is the spacecraft itself, for whom none
of these calibration parameters have any relevance until its sensors measure
something.
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In this chapter, we all get to be Einstein as we struggle to interpret Bohr’s
measurements and peer through a glass darkly (or at least through a dis-
torted lens) to determine how influences like launch stresses have changed
Newton’s absolute calibrations. While chapter 7 focused on attitude estima-
tion, here we’ll broaden our perspective to include other examples of interest
to attitude control engineers, though for the most part not currently realized
in flight software. The examples presented below are not intended to be an
exhaustive list, but rather just enough to give a larger perspective on the
use of the least-squares techniques discussed in chapter 7 as related to other
aspects of spacecraft control.

8.1 Attitude-Related Least Squares Problems

Chapter 7 focused on various techniques for determining spacecraft attitude,
with gyro bias brought in as an auxiliary part of the state vector in section
7.10. Along the way we touched upon pretty much all of the important tech-
niques associated with the least-squares methodology. If you are employed
as a flight software attitude system developer (engineer, programmer, what-
ever), it is fairly likely that you’ll encounter other related problems dealing
with the calibration of attitude hardware. Currently, most of such calibra-
tions are done with software utilities hosted in the spacecraft ground sys-
tem, although this can change depending on mission needs, the time scale
for variation of the various calibration parameters, and the power of the on-
board computer(s). Since we have already covered the basic least-squares
techniques, our goal is just to provide a synopsis of other related calibra-
tion problems that we have encountered in our careers as attitude systems
engineers.

8.1.1 Star Tracker Relative Alignments

Determining the relative alignment of star trackers is pretty much the same
problem as determining the attitude of a spacecraft based on star tracker
data. If you can determine the attitude of two or more star trackers relative
to the ECI frame at a given moment of time, then you can construct their
alignment relative to each other at that moment. If you make the assumption
that the alignments are constant over some extended period of time, then a
series of temporally coincident attitude measurements can be used together
- either via batch or recursive processing - to determine the relative align-
ments with improved precision. Something that’s not so obvious, but should
be clear with a bit of thought, is that if you are using vector star trackers
(as opposed to quaternion trackers), simultaneous measurements of a single
star in each tracker provides useful information for determining the relative
alignments, although in isolation this is insufficient to provide a complete
solution for determining the relative alignments or the attitudes of the star
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trackers individually. If, however, you obtain another similar data set, i.e.,
one star measurement per tracker but with each measurement in a different
field-of-view location, you would have sufficient information to determine
the relative alignments of the trackers. This is true even if the spacecraft at-
titude has changed significantly between measurements, thereby precluding
you from determining the attitude of the spacecraft from individual tracker
measurements at either attitude. Of course, after you know the relative align-
ments of the tracker set, you can treat the tracker set as a unified sensor and
reprocess the data set to determine the attitude of the sensor set relative to
ECI at either attitude. By defining the reference frame of the spacecraft rela-
tive to that of one of the star trackers, you thereby also know the spacecraft
attitude.

8.1.2 Star Tracker Internal Calibrations

The “internal” calibrations of a star tracker are those for the tracker con-
sidered in isolation from any other sensors. Specifically, these pertain to
field-of-view scale, field-of-view distortion, sensitivity to star brightness, and
sensitivity to star spectral distribution. For scale and distortion calibration,
you need a series of measurement sets with each set consisting of at least
two essentially simultaneous star direction measurements for stars in well-
separated positions in the field of view. Of course, you also need a reference
catalog against which to compare the measurements. (Strictly speaking, the
statement that you need a reference star catalog isn’t true for distortion cali-
bration, although significantly more data under special observing conditions
is required. For the HST program, such a catalog-free approach was designed
for the distortion calibration of the observatory’s fine guidance sensors.) If all
you need is scale calibration, a single pair of star measurements is in princi-
ple adequate, with best results obtained using widely separated stars. For a
good estimate of distortion, you need good coverage across the whole field of
view. If the measured star positions are sensitive to local magnetic flux (they
can be), and if the spacecraft is moving in a region of significant magnetic
flux (as those in low Earth orbit typically are), you will need to include local
magnetic field measurements in the calibration model.

Although a star tracker’s sensitivity to stellar brightness and spectrum
can in principle be a function of star position in the field of view, in practice
one does not find such field dependence. To perform these calibrations, you
need measurements and associated star catalog reference data spanning the
ranges of interest for star brightness and spectrum.

8.1.3 Gyroscope Calibration

Gyroscopes are calibrated for the following parameters: alignment, scale,
distortion, and bias. Typically, a “measurement” for gyro calibration is the
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attitude change perceived by the spacecraft gyroscope system over a ma-
neuver, where the term “maneuver” in this context can include an extended
period of constant attitude. The reference information is the actual change
in attitude as determined by a set of calibrated star trackers. If distortion
is negligible for the gyroscopes of interest, full observability for gyroscope
alignment, scale factor, and bias can be determined using four indepen-
dent measurements–say one maneuver about each of the spacecraft principal
axes, plus a period of constant attitude to fix the gyroscope bias. Gyroscope
non-linearity (i.e., distortion) has been found to be an issue for some mis-
sions. Although significant, the effect is typically not large, so the inclusion
of a small quadratic correction (or something effectively equivalent) for the
conversion of gyroscope counts to rate about a gyro axis is sufficient. With
quadratic corrections added, you need to use a set of maneuvers that sam-
ple both positive and negative rotations about each gyro axis, so a minimum
measurement set will consist of seven rather than four independent mea-
surements, say one positive and one negative maneuver about each of the
spacecraft principal axes plus the period of constant attitude. This approach
was used for HST and achieved calibration accuracies in the scale factor and
alignment of ∼ 0.3 arcsecond per degree of slew when ignoring scale fac-
tor non-linearity, and ∼ 0.04 arcsecond per degree of slew when taking scale
non-linearity into account. The data also showed a significant scale factor
drift over periods of order half a year,1 which emphasizes the need to peri-
odically recalibrate the sensors over the course of the mission.

8.1.4 Sun Sensor Calibration

Sun sensors can be calibrated for alignment and distortion, where the latter
pertains to the apparent Sun direction in the sensor field of regard.2 The
reference information for such calibration is typically the actual spacecraft
attitude as measured from, say, a set of star trackers, and the true direction to
the Sun in ECI coordinates as obtained from models of the Earth’s orbit about
the Sun and the spacecraft’s orbit about the Earth. For a good calibration,
you must obtain measurements of the sun ranging across the whole field of
regard of the sensor.

8.1.5 Magnetometer Calibration

Magnetometers can be calibrated for alignment, distortion, bias, and sensi-
tivity to magnetic torquer bars (if present). The bias is often not so much a

1G. Welter, J. Boia, M. Gakenheimer, E. Kimmer, D. Channel, & L. Hallock, Varia-
tions on the Davenport Gyroscope Calibration Algorithm in the proceedings of the 1996
GSFC Flight Mechanics / Estimation Theory Symposium

2field of regard - from theFreeDictionary.com: “all of the points of the physical en-
vironment that can be perceived by a stable eye at a given moment” - so, just replace
“eye” with “sensor” in our current context.
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bias in the sensor, as a magnetic field of the spacecraft as a whole as per-
ceived by the sensor - but it amounts to essentially the same thing as far as
use of the sensor data are concerned. The reference information for such a
calibration is typically the actual spacecraft attitude as measured from a set
of star trackers, and the true direction of the Earth’s magnetic field at the
location of the spacecraft (if we’re dealing with a low Earth orbiter) at the
time of the measurement. For a good calibration, you must obtain measure-
ments of the Earth’s magnetic field across its full range as detectable by the
magnetometer, as well as measurements of the MTB field as perceived by the
magnetometer over the operating range of the bars.

8.1.6 Wavefront Calibration

For some missions (e.g., the Hubble Space Telescope and the James Webb
Space Telescope), spacecraft fine pointing is determined using a sensor or
group of sensors placed in the telescope’s main optical path. Calibrating the
sensor(s) then becomes intrinsically involved with calibration of the tele-
scope optics. This calibration may then not be just a matter of the determin-
ing the sensor’s operating characteristics, but rather may be used to provide
feedback to correct the alignment of the optical elements of the observatory.
(Imagine a visit to an optometrist who is flipping those lenses and asking
which image looks better.) For calibration of an observatory’s optical wave-
front, you can compare the observed image of a star (including the pattern
of diffreaction rings and axial spikes) with the image predicted based on the
design of the observatory, where the state vector is given by the displace-
ments of the various optical elements from their design positions. As the op-
tics engineer determines these various displacements, he’ll use them to send
commands to the optical element actuators to adjust their positions. After-
wards, new star image measurements will be made to verify that the image
has in fact improved (e.g., tighter focus, or smaller astigmatism or coma3).

8.2 General Issues

The rest of this chapter explores aspects of state estimation broadly. For
readers anticipating encountering other state estimation problems in their
careers (e.g., calibration of various sensors), you may want to stick with us
for this discussion. You won’t need it, though, for later chapters. If you feel
you’ve had enough of state vectors, covariances, transition matrices, and the
like, feel free to jump ahead to chapter 9; we’ll meet you on the far side. For

3Astigmatism and coma are aberrations in an optical system, the former result-
ing when the system has different foci for rays that propagate in two perpendicular
planes, and the latter manifest as a variation in magnification across the entrance
pupil.
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those of you game to continue, the rest of this chapter will be devoted to
some further considerations on estimation theory.

8.2.1 Observability

We first want to address the issue of state vector observability, i.e., whether
the data that you have accumulated has sufficient information content to
actually allow you to solve for the complete state vector. None of the algo-
rithms discussed in chapter 7 have built-in constraints enforcing the logical
requirement that you provide adequate information to support the solution
goals. You must make sure that the measurements you obtain contain suf-
ficient information to determine the full set of state vector elements. As a
simple example, if you continually use measurements of the same star di-
rection and nothing else, you will have no knowledge of spacecraft rotation
about that vector. The algorithm won’t be able to cobble it out of thin air.

The example just used is fairly obvious. Sometimes lack of information
is more subtle. Suppose, for example, that you have a pair of star cameras
and want to use observations of stars, together with a catalog of the star co-
ordinates, to determine both the relative alignment of the cameras and the
optical distortion to which they are subject. It is fairly typical to characterize
distortion as a two-dimensional polynomial across the field of view of the
camera. However, if the polynomial contains linear terms, changes in those
terms would be indistinguishable from alignment shifts. Trying to solve si-
multaneously for both types of parameters would result in an unsolvable set
of redundant equations, manifest as a singular matrix with no inverse. You
have to be careful to avoid defining a state vector in such a way that some of
its elements are linear combinations of other elements.

Perhaps more problematic is when some of the elements are almost, but
not quite, linear combinations of other elements, at least relative to the mea-
surement set being used. In such a case, rather than having a well-designed
matrix inversion routine catch the singularity (an attempt to divide by zero),
your software will provide a solution, albeit possibly one that looks radically
different from the initial estimate (possibly an estimate that you know to be
fairly good). In this case, the algorithm is, at least in part, just fitting noise -
i.e., it is finding the formally best solution vis-à-vis loss function minimiza-
tion from within a region of state space for which all of the solutions have
essentially correspondingly small loss function values. If you’re lucky, you’ll
catch such behavior during algorithm development. This may merely lead to
excessive consumption of alcoholic beverages or over-the-counter headache
nostrums as you try to code up a fix to stabilize your solution. An alternative,
stumbling into the problem during operations, may leave you erroneously
thinking that your hardware has significantly physically changed somehow,
a cause of possible serious confusion, angst, and yet more consumption of
alcohol.



8.2 General Issues 179

Of course, you may actually be interested in studying a problem for
which interesting and distinct state parameters cannot be readily resolved
with your available data set. Ultimately, the only real solution is to study
the problem carefully and design a complimentary experiment that, together
with the original data set, allows you to isolate variations in the state vector
terms.

8.2.2 State Vector Selection

As mentioned earlier, the state vector is the set of observables for which
you’re solving. For folks in our field, it typically consists of things like sensor-
related parameters (biases, misalignments, etc.), orbital parameters (e.g., the
in-track error), attitude propagation parameters, and the like. The nature of
the state vector elements will also vary depending on how you plan to use
them. For example, if you are using a kinematic model to represent attitude
change, the state vector elements do not include internal or external torque
parameters. With nothing in the state vector explicitly describing how the
angular momentum vector changes with time, you can compute the modeled
attitude directly from the state vector elements. By contrast, if you are us-
ing a dynamic model, some elements of the state vector will contain torque-
related parameters (e.g., the spacecraft magnetic dipole moment). Therefore,
for a dynamic model, you do have information in the state vector pertinent
to how the spacecraft angular momentum vector will change with time, and
in order to utilize this information you need to integrate the spacecraft equa-
tions of motion for your optimal attitude prediction.

From all this discussion, it’s clear that there’s a large candidate popula-
tion to choose from when constructing a state vector, so the obvious question
is how do you select the elements of your state vector? Well the first guide-
line is don’t get overly ambitious and try to solve for too much. As already
noted, elements that are not fully independent can be difficult to distinguish
from each other. That in turn can lead to convergence problems, or even
convergence to rather peculiar looking solutions when one set of state vector
elements “takes off” in one direction and another group starts moving oppo-
sitely such that the overall residuals are minimized but the solution is very
data dependent (the “noise fitting” problem previously discussed).

Of course, if the input data is of insufficient quantity to fix all the pa-
rameters in your state vector, or you lack the right kind of data to make one
of your state vector elements observable, the result is solution divergence
(i.e., the singular matrix problem). Divergence, and other bizarre problems,
can also result if the computer you’re using lacks sufficient precision to per-
form the required calculations accurately. This situation can arise, even for
large ground-based computers, if there’s an extremely large dynamic range
between state vector elements. So you want to be judicious in selecting state
vector elements, and not just load it up with everything but the kitchen sink.
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With these “don’ts” in mind, here are a few rules of thumb for includ-
ing something in the state vector. First, it (obviously) should represent a
real, physical quantity. Second, since the state is supposed to be observable,
changes in state should cause a change in at least some of the set of mea-
surements. Lastly, the value of a state component should be either constant
over a given time interval, or capable of being propagated based on data or
a model. If this is not possible, data taken at different times cannot be mixed
together successfully when solving for the state vector element.

From a practical standpoint, the importance of a candidate state vector
element can vary according to the accuracy requirements under which you’re
operating. For example, a parameter may have too small an effect to notice its
behavior vis-à-vis your accuracy domain. Or, the variations in the parameter
values may have little effect on your solution at a given accuracy domain, or
over a short enough time interval. The influence of the parameter, of course,
may become more important if higher accuracy is demanded or longer time
periods are examined. Even in this case, the parameter will not necessarily be
observable, i.e., capable of having its value estimated over that time interval.
To be observable, you must also be able to distinguish the influence of the
parameter from that of other elements of the state vector. If, however, several
elements are highly correlated, you will only be able to observe a subset of
them, or a constrained set of allowed combinations of those parameters.

8.2.3 Observation Model

In the discussion in chapter 7, we used to the term “measurement” to refer
to a measured quantity (e.g., a star direction output from a star tracker), as
opposed to the corresponding reference quantity (e.g., the direction vector
for the same star based on catalog coordinates). Some folks prefer to define
some more precise terminology, using “measurement” to refer to a raw read-
ing from a device, and “observation” to refer to said reading transformed into
a quantity suitable for insertion into the least squares algorithm. For exam-
ple, a measurement for a CCD star camera could consist of the photon counts
as a function of focal array position in the tracker, while the corresponding
observation could be either the x- and y-position of the flux weighted mean,
or perhaps the unit direction vector constructed from it in the camera refer-
ence frame. The transformation of the measurement into an observation will
typically require some model for the sensor. In the case of the star camera ex-
ample this could involve the bias of each CCD pixel, distortions in the cam-
era optics, local environmental conditions such as temperature or magnetic
field, etc. This transformation can be called a sensor model: S(z; {ps}), where
z represents the raw measurement, and {ps} represents whatever “fixed” pa-
rameters are included for defining the model. There will be uncertainties or
simplifications in the model, all of which contribute to the observation co-
variance. Of course, one person’s measurement is another person’s observa-
tion. For the star camera example, a person interested in calibrating a distor-
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tion function for the camera will typically be interested in defining observa-
tions as fairly close to the raw measurements, whereas a person interested in
attitude estimation could well consider application of a distortion correction
as part of the observation model.

An observation is derived or computed from a measurement, and what
constitutes an observation and how it is defined is at the discretion of an
analyst. Of course, if the processing is embedded directly in the sensor, the
sensor could also output the observation directly, as would be the case for a
quaternion star tracker. So both measurements and observations are closely
coupled to the actual output from a sensor. A sensor model transforms mea-
surements into observations using your understanding of the hardware, the
environment, and possibly your current estimate for the state.

8.2.4 Least Squares Filters

With the exception of plain-vanilla Triad, all of the algorithms discussed
in chapter 7 (as well as all that are used for the calibrations mentioned in
section 8.1) are variations of least squares filters. The “filter” aspect of the
algorithms is that they separate and remove high-frequency noise from the
low-frequency physical information.

Most of the least-squares problems that you encounter are non-linear,
and therefore solved iteratively. For iterative problems, knowing when to
turn off the process when performing an individual update is a key consid-
eration. The technical term for this is filter convergence, and the usual crite-
rion involves monitoring when the differences between state vector elements
from one iteration to the next drop below preset thresholds. A simpler cri-
terion is to watch changes in the loss function and stop the process when
its step-to-step changes become sufficiently small (this being a single num-
ber, rather than a number for each state vector element). To prevent endless
loops, you also usually specify a maximum number of iterations, after which
the calculation ceases. Another reason to stop the algorithm is if any of the
diagonal elements of the covariance matrix become negative. Since the di-
agonal elements are related to the squares of the uncertainties associated
with the state vector elements, a negative diagonal element is physically im-
possible and therefore indicative of a problem in the processing significant
enough that you should stop the algorithm and not take its output seriously.

In chapter 7 we discussed both batch and recursive methods for state es-
timation. Let’s now consider some practical distinctions between them. Since
batch filters usually are processing a large mass of input data, they tend not
to be sensitive to a few bad points. Furthermore, removing bad points en-
tirely is usually fairly straightforward because you have all of the residuals
together as a single statistical batch, making it easy to flag and delete any
obvious outliers. A standard rule of thumb for this purpose is that an outlier
is any data point having a residual that exceeds 3 times the weighted root
mean square residual (i.e., the standard deviation). This form of data editing
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has acquired the name “sigma editing” since the traditional symbol for the
standard deviation is the Greek letter sigma (σ ).

Clearly, since we use recursive filters rather than batch ones onboard, you
might expect batch filters to have some disadvantages as well, and they do.
First, depending on the size of the state vector, the number of observations,
the complexity of the sensor or observation models, and the number of iter-
ations needed to achieve convergence, batch filters can demand a lot of com-
puting power and processing time. These resource requirements arise from
the fact that batch filter algorithms have to invert an NX ×NX matrix, where
NX is the size of the state vector, or perhaps even an (NX + K) × (NX + K)
matrix if K constraints are being applied. The complexity of an NX × NX
matrix inversion is comparable to performing NX-cubed (N3

X ) mathematical
operations. If you have a large state vector to solve for, the onboard com-
puter may not be fast enough or powerful enough to support the application
in realtime. In contrast, as discussed in section 7.11, use of the Kalman ap-
proach for recursive processing reduces the size of the matrix to be inverted
to NZ ×NZ , where NZ is the size of the observation vector.

The second contrast between batch and recursive filters pertains to mem-
ory requirements. A batch filter takes in all of the data up front, processes
it all simultaneously (albeit possibly iteratively), and then is done. This re-
quires sufficient memory to hold the whole batch of input measured and
modeled observations. In contrast, a recursive filter works continuously and
indefinitely, settling into an equilibrium wherein degradation of past knowl-
edge is balanced by new knowledge from new observations, and retaining
only the information content of the state vector and its covariance. Because
the most important reason for running a filter onboard is to determine error
signals for input to a control law, it’s clear that a Kalman filter is ideal for
onboard use, which is hardly an accident since that’s the type of application
for which Kalman designed it.

As is probably clear from section 7.11 and the material leading up to
it, Kalman filters can be complicated computationally. The logical reaction
(other than “how can I push this work off on someone else?”) is to ask the
question “What can go wrong?”. First, you can have a divergence problem.
In nominal operations, a converged, steady-state situation will occur when
the state vector corrections become consistent from update to update, and
the error covariance matrix is stable. Divergence occurs when the state vec-
tor moves away from the true state. Possible causes of divergence include
linearization errors (i.e., there are significant non-linear phenomena that are
not amenable to being approximated as linear), modeling errors (not under-
standing fully what you’ve launched your spacecraft into), unknown noise
statistics (ditto), and cumulative round-off and truncation errors (the “but-
terfly effect”). All but the last item are routinely experienced on-orbit, so you
often spend a fair amount of time after launch trying to figure out what’s
going on and how to adjust things so that you get the desired level of perfor-
mance.
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On the other hand, a Kalman filter possesses many excellent quali-
ties needed for onboard ACS applications. First, you don’t need to re-cycle
through previously observed data. Next, you can estimate the current state
vector in realtime. Because of its weighting scheme, you can easily utilize
data from any or all sensors generating useful attitude data. And finally, its
signature quality, a Kalman filter is sensitive to state changes reflected in the
most recent data. These characteristics have led to the use of a Kalman filter
(cf. section 7.11) as the standard approach for onboard attitude and gyro bias
estimation for most modern spacecraft.





9

Onboard Orbit Computations

In addition to reviving the classic “buddy picture” genre, as well as making
Paul Newman and Robert Redford two of the top box office draws in Hol-
lywood, Butch Cassidy and the Sundance Kid is particularly memorable for
a long, drawn-out chase scene where ultimately nothing substantive hap-
pens. Butch and Sundance have just robbed another (their last) train, and as
they’re trying to pick up all the loose cash flying away as a result of the dy-
namite overkill applied to the train’s safe (a less than subtle commentary on
the dangers of exceeding one’s requirements), a second train ominously pulls
up behind their target and disgorges a whole posse of heavily armed bounty
hunters. After a couple of B-class actors are shot, the Hole-in-the-Wall Gang
takes off with the bounty hunters riding after them. Trying to evade their
pursuers, Newman tries one ploy after another without much success, in-
cluding leading the bounty hunters through some godforsaken wilderness in
the dark. When they stop for a rest, Sundance asks Butch whether he thinks
they’ve lost the posse, to which Butch replies, “I don’t know where we’ve
been, and I’ve just been there.”

That line of dialogue summed up very nicely the state of onboard or-
bit determination until the recent advent of the Global Positioning System
(GPS) and the Tracking Data and Relay Satellite System (TDRSS) Onboard
Navigation System (TONS), which enable a spacecraft to measure its own
position and velocity in real-time. In the past, only the ground could mea-
sure where the spacecraft was, and that information was not really current
because its orbit knowledge was the end product of the processing of track-
ing data (range and rate data) distributed over at least several hours worth
of past contact opportunities. In other words, by the time the ground orbit
determination software delivered its product, the results were at least many
hours old. For Low Earth Orbit (LEO) spacecraft, whose orbital periods are
around 95 to 100 minutes in duration, that’s like saying “here’s where you
were a few orbits ago.” So all the ground knew (directly from tracking data)
was where the spacecraft had been, not where it actually was at the current
time, and the spacecraft didn’t even know that much. However, by utilizing
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this past ephemeris history as input, as well as employing physical models
for the Earth’s gravitational field, the Earth’s atmospheric density, solar ra-
diation pressure, and the gravitational contributions from other celestial ob-
jects, ground software could integrate the spacecraft’s equations of motion
to predict where the spacecraft would be in the future. The accuracy of these
predictions clearly could not be as reliable as direct measurements, and they
certainly would be expected to degrade with time, but the orbit knowledge
requirements for most GSFC missions typically are not as severe as the at-
titude knowledge ones, which almost universally demand real-time attitude
solutions.

So ground-based ephemeris processing and propagation enables the
ground system to predict the spacecraft’s orbital position, an essential capa-
bility for look-ahead scheduling systems, but doesn’t address the spacecraft’s
need to know where it currently is in order to fulfill its real-time point-
ing responsibilities. One solution to that problem would be to migrate the
ground’s physical models and integration algorithms to the spacecraft and
let the flight processor do the same calculations onboard. This approach has
in fact been utilized on many recent missions, enabled by the improved per-
formance of modern flight computers. But in the past, real-time calculations
of this complexity could not be performed onboard due to processor limita-
tions, from the standpoint both of computing power and of onboard storage.
For these earlier missions, the spacecraft flew simple, efficient orbit models
driven by a small number of ground-computed input parameters that were
best fits to the ground’s predicted ephemeris. The uplink parameters were
valid, i.e., generated spacecraft position and velocity vectors that met accu-
racy requirements, for a mission-specific time duration that was dependent
on the model and orbit geometry. For example, for a LEO orbit, perturbations
from atmospheric drag would cause the errors in the propagated vectors to
grow quickly with time. However, since the uplink parameters can (in prin-
ciple) be updated as frequently as you want, an onboard model that is much
simpler than the ground-based models can (at least for a limited time) de-
liver pretty accurate orbit predictions. In fact, with frequent uplink parame-
ter refreshing, the dominant error source in the onboard predictions will be
the original error resident in the ground-based predictions from which the
uplink parameters were generated.

Onboard orbit modeling is not restricted just to predicting the space-
craft’s position and velocity, which is needed to support such diverse ap-
plications as velocity aberration compensation, geomagnetic field modeling,
communications, and nadir-pointing. In addition, for many spacecraft uti-
lizing TDRSS, the predicted positions of TDRS spacecraft must be computed
onboard in order to calculate the line-of-sight vector for spacecraft antenna
pointing. Onboard ephemerides for celestial objects such as the Sun and
Moon usually also are required. Analytic models for solar and lunar posi-
tions are used to support bright object constraint checking, while velocities
derived from solar position vectors are frequently used (less frequently in



9.1 CGRO Onboard Orbit Models 187

the case of the Moon) to support velocity aberration compensations. And for
spacecraft in orbits beyond Geosynchronous Earth Orbit (GEO), solar and
lunar propagators also supply the input needed to factor in N-body gravita-
tional perturbations when the equations of motion are integrated onboard to
yield spacecraft ephemerides.

With respect to onboard modeling of spacecraft ephemerides, there has
been a fairly rich population of onboard propagators utilized over the decades.
As a representative sampling, we’ve selected five models to examine in some
detail, namely those used on the Compton Gamma Ray Observatory (CGRO),
the Hubble Space Telescope (HST), Landsat, the Rossi X-ray Timing Exper-
iment (RXTE), and the Wilkinson Microwave Anisotropy Probe (WMAP).

9.1 CGRO Onboard Orbit Models

CGRO utilized TDRSS, so it had to model the positions of CGRO (accurate
to 6 km, 3σ ) as well as two TDRS spacecraft (accurate to 30 km, 3σ ). For
onboard velocity aberration compensations, CGRO also needed to compute
the Sun’s velocity (relative to the Earth), for which it used a standard analytic
model. CGRO’s orbit geometry was a fairly typical LEO (near-circular orbit
with 28.5◦ inclination), although its 400-km altitude was at the low end of
standard LEO range. TDRS orbits are geostationary, so their orbital altitudes
are synchronous (orbital radius of 42,164 km), and their orbit eccentricities
and inclinations are near zero (well, if you consider an inclination of up to
∼ 14 degrees to be “near zero”).

Because the orbit types were so different (LEO vs. GEO), the uplink pa-
rameters for the two applications were quite different. The primary input to
the CGRO orbit model was one day of ground-computed predicted position
and velocity vectors spaced 20 minutes apart. To compute a predicted vec-
tor pair for some general time within the one-day file duration, the onboard
algorithm interpolated between the file vectors using Hermite polynomials.
By contrast, reflecting the less volatile nature of geosynchronous orbits (as
compared to LEO orbits), the primary input to the TDRS orbit model was
sets of Fourier power series coefficients for each component of position and
velocity for each TDRS. For a given TDRS, there were five sets of Fourier co-
efficient triplets from which five position vectors were computed onboard,
the analogs of the CGRO position vectors spaced 20 minutes apart. Simi-
larly, for a given TDRS, there were three sets of Fourier coefficient triplets
from which three velocity vectors were computed, the analogs of the up-
linked CGRO velocity vectors. As with the uplinked CGRO vector pairs, the
TDRS vectors computed from the uplinked Fourier coefficients were trans-
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formed onboard to Hermite polynomial1 coefficients, which could then be
used to interpolate predicted TDRS vectors corresponding to an input time.
Note that there was no direct modeling of the atmospheric drag or Earth
oblateness perturbations influencing CGRO’s orbit, or of the solar radiation
pressure perturbations influencing the TDRS orbits. Instead, these physical
effects were implicitly packaged into the uplink parameters when the ground
software performed its least-squares fit relative to its predicted ephemerides,
which explicitly modeled the phenomena.

9.2 HST Onboard Orbit Models

Just as CGRO tried to reduce the size of its flight code by utilizing the same
interpolator for both the CGRO and TDRS orbit models, HST tried to mini-
mize the size of its flight code by utilizing the same onboard model for HST,
TDRS, solar, and lunar orbit models. Later in HST’s mission, following the
replacement of its original DF-224 onboard computer (OBC) with a 486 com-
puter, space issues became less important and better, more accurate models
replaced the original TDRS, solar, and lunar models. The original algorithm
was retained to model the HST orbit as it was tailored to LEO orbits like HST
(590 km nominal altitude, near-circular orbit with a 28.5◦ inclination).

The input to HST’s spacecraft orbit model is an extended set of Keple-
rian elements, 14 in number, along with the epoch time associated with the
parameters. In addition to the six parameters informationally equivalent to
the standard Keplerian elements, three of the inputs are first derivatives of
the elements, namely the rate of change of the right ascension of the as-
cending node, the first derivative of the argument of perigee, and the orbital
rate (i.e., the rate of change of the mean anomaly). These terms, when com-
puted as best-fit parameters by the ground system, effectively model pertur-
bations due to Earth oblateness. A fourth input, the second derivative of the
mean anomaly, provided a means to model (roughly) the influence of atmo-
spheric drag. To avoid the FSW having to perform unnecessary repetitive
calculations, the ground also uplinked the eccentricity in several functional
forms. By refreshing the onboard parameters every other day, the onboard
ephemeris accuracy could be maintained to within a couple of kilometers of
the “truth” vectors used in the ground-based fit, easily satisfying the mission
requirement of 10 km.

Of course, the performance of the model when applied to the Sun and
Moon, applications for which the model was not designed, was much poorer.
So when a new computer was installed in HST during one of the Servicing
Missions, the solar and lunar propagators were upgraded to standard analy-
tical models. The TDRS orbit model also was replaced since by the time of the

1For more on Hermite polynomials, see e.g., G. Arfkin, H. Weber and F. Harris,
Mathematical Methods for Physicists, Academic Press, Inc., seventh edition, section
18.1.
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Servicing Mission, Flight Dynamics was no longer providing to users actual
TDRS ephemeris files based on tracking data, but instead files characterizing
the center of the orbital “box” in which the TDRS spacecraft was maintained.
The Flight Dynamics change permitted a major simplification to the onboard
model because although the location of the center of the orbital box varies
with time when viewed in the GCI reference frame (i.e., it follows a geosta-
tionary orbital path), as viewed from the Earth the center of the box is fixed
azimuthally relative to the Earth. As a result, you can define the orbit with
fewer parameters relative to the Earth-rotating reference frame than are re-
quired relative to GCI. Furthermore, because the center of the box is an ideal
point towards which you’re commanding (as opposed to the actual physical
location of the TDRS spacecraft), the values of the parameter set to first order
are constants not requiring regular updating.

In fact, only five parameters are needed to specify the motion of the cen-
ter of the box in GCI (which we’ll call TDRS from now on for simplicity),
namely the TDRS inclination (ideally zero), the TDRS longitude (assigned
by the Network Control Center (NCC)), the distance from the Earth center
to TDRS (nominally 42,164 km), the TDRS rotation rate in the GCI frame
(nominally the Earth’s rotation rate), and the Greenwich Hour Angle at the
epoch time (i.e., the right ascension of the Greenwich Meridian at the epoch
time). The TDRS inclination actually does require calculation because the
TDRSS inclinations are allowed to drift up to 14 degrees to conserve fuel
and because of the time dependent nature of the GCI reference frame aris-
ing from the precession and wobble behavior of the Earth’s spin axis relative
to the “fixed stars”. Operationally, exploiting the Flight Dynamics Facility’s
(FDF’s) inclined-center-of-box (ICOB) modeling, the advantage of using this
so-called “TDRS-on-a-stick” model is that the number of uplink parameters
(including the epoch time) is reduced from 15 to 6 (the 5 specified above plus
the epoch time), and the frequency for parameter updates is reduced from
once a week to once a year, or less.

9.3 Landsat Orbit Model

Unlike the previous two spacecraft (CGRO and HST), which occupied 28.5◦

inclination LEO orbits, the Landsat series flew in near-polar Sun synchronous
orbits. For a typical Landsat mission, the orbit was near-circular, 900 to 950
km in altitude, and 99.0◦ inclination. The Landsat orbit model was similar
to CGRO’s TDRS orbit model, with enhancements. Actually, since the Land-
sat series pre-dated CGRO, it probably would be more accurate historically
to say that CGRO’s TDRS model was a simplified version of the Landsat or-
bit model. In any event, the uplink parameters for Landsat were six sets of
Fourier coefficients along with position and velocity residuals at a set of grid
points spaced 8.7 minutes apart. The Fourier coefficients “drew” the basic
shape of the orbit, with corrections for orbital perturbations supplied by the
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position and velocity residual “fudge” terms. When the spacecraft wanted to
know Landsat’s position and velocity vectors at a given time point, a Hermite
polynomial interpolator (sound familiar by now?) was used. Thanks to the
modeling capabilities of the ground system performing the fit to the Flight
Dynamics ephemerides, the uplink parameters implicitly modeled three-
body effects, Earth oblateness, and atmospheric drag, enabling the onboard
model to determine Landsat’s orbital position to an accuracy of better than
1 km.

9.4 RXTE Orbit Models

The previous onboard orbit models we’ve discussed have been “dumb” ones,
all the “smarts” being contained in the ground system models used to cal-
culate fit parameters for uplink to the onboard propagators. By contrast,
RXTE’s spacecraft models (for the RXTE and TDRSS spacecraft), which were
adapted from those used on the SAMPEX mission, utilized physical models
resident onboard to integrate the spacecrafts’ equations of motion to deter-
mine the position and velocity. RXTE’s orbit is similar to HST’s with a lower
inclination. It’s a near-circular orbit with a nominal altitude of 580 km and
an inclination of 23◦. Since it’s flying in a LEO orbit, RXTE explicitly mod-
els Earth oblateness and atmospheric drag. Specifically, to incorporate Earth
oblateness effects, RXTE carries in its flight database the values of the 2nd,
3rd, and 4th zonal harmonic coefficients, as well as the first sectoral har-
monic coefficient (see Equation 6.1 for full spherical harmonic expansion of
the geopotential).

To compensate for atmospheric drag, a Jacchia-Roberts atmospheric den-
sity model is used, which requires database input of an atmospheric den-
sity constant and a drag coefficient. Drag corrections are only performed
when calculating the RXTE ephemeris; drag was turned off for TDRS orbit
modeling as those effects are insignificant at geosynchronous altitude. Other
database input parameters are the Earth’s gravitational constant, the Earth’s
radius, and the Earth’s rotation rate. The parameters that “seed” the algo-
rithm, and need to be uplinked frequently (once a day for the RXTE orbit
model and once a week for the TDRS orbit model), are the initial position
and velocity pair, the Greenwich Hour Angle at the start time (to connect
the Earth rotating frame to the GCI frame when calculating the sectoral cor-
rections), and the associated start time. With these models, the ACS flight
software calculates the position, velocity, and acceleration vectors for both
RXTE and TDRS, with a position accuracy better than 30 km. Solar and lu-
nar positions are calculated via standard analytic propagators.
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9.5 WMAP Orbit Models

Although each of the models described so far have been significantly dif-
ferent from each other, the problem they were designed to solve was iden-
tical, namely how to predict LEO spacecraft positions and velocities within
(mission-dependent) required accuracies. The differences in the algorithms
employed reflected more the limitations of the associated onboard flight data
systems than the nature of the output product being calculated. In WMAP’s
case, the geometric characteristics of the mission itself led to the algorithmic
approach utilized on-orbit. Unlike the previous four LEO missions, WMAP
was maneuvered (over a three-month time duration after launch) into a halo
orbit about the Earth-Sun L2 Lagrange point.2

The halo orbit, as viewed within a reference frame with Earth fixed rela-
tive to the Sun, has a period of 6 months. Since L2 is located about 1.5 million
km from the Earth, the earlier dominant perturbative effects (Earth oblate-
ness and atmospheric drag) are irrelevant. At L2 the orbit’s dominant com-
plexity arises from the combination of gravitational influences contributed
by more than one celestial body, namely the Sun, Earth, and Moon. So the
WMAP ACS FSW uses solar and lunar analytic models to feed input to its
WMAP spacecraft orbit model. Additionally, the spacecraft orbit model is
regularly seeded with an extended precision WMAP position and velocity
vector pair, and an associated epoch time. The model then sums the gravi-
tational influence of the Earth, Sun, and Moon on the spacecraft to compute
the net acceleration acting on WMAP and propagates the ephemeris once
per minute.

9.6 Onboard Orbit Measurement with GPS

The GPS constellation is located at about half-geosynchronous altitude (12
hour orbital period) and consists of 21 spacecraft (of which 3 are spares)
distributed in 6 orbital planes (see Figure 9.1). GPS enables a spacecraft
equipped with a GPS receiver to measure its own orbital position in realtime
far more accurately than the ground can calculate it from tracking data. In
addition to its current position, a GPS-equipped spacecraft also gets a time
reference for use in maintaining onboard clock correlations. The input to
the GPS calculations is pure range data (as opposed to range and rate data),
determined from the time difference between the current GPS receiver time

2The five “Lagrange points” (L1 - L5) are named in honor of Joseph-Louis La-
grange, based on his 1772 publication “An Essay on the Three-Body Problem”. The
essay considered the so-called circular restricted three-body problem in which two
massive bodies (e.g., the Sun and a planet) orbit their mutual center of mass, and a
small third body moves in the mutual gravitational field of the two large bodies. The
Lagrange points are stable or semi-stable positions in the field. Some further infor-
mation is provided in Section 12.1.
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and the time attached to the GPS transmission, multiplied by the speed of
light. Knowing the time delays relative to three GPS spacecraft, as well as the
orbital positions of the GPS spacecraft, you can set up a set of simultaneous
equations that triangulate the position of the GPS receiver mounted on the
spacecraft. Add in a fourth GPS spacecraft, and the additional time delay
information can be used to correct errors in the spacecraft clock. The GSFC-
built GPS Navigator is successfully meeting mission requirements for both
low-flying and high-flying spacecraft: the Global Precipitation Measurement
Core Observatory (GPMCO) and the Magnetospheric Multiscale (MMS) con-
stellation, respectively. The GPMCO ACS FSW, with its 10-Hz cycle, includes
a module to propagate the 0.2-Hz Navigator-provided orbit solution between
updates, maintaining position accuracy to a few tens of meters. To support
the MMS constellation through extended periods without contact with the
GPS fleet, the MMS Navigator utilizes an in-built Kalmen filter with detailed
dynamics modeling to propagate and combine GPS data.

Fig. 9.1. GPS Constellation. Image from: http://www.gps.gov/systems/gps/

space/. Credit: NOAA / U.S. Government.
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9.7 Onboard Orbit Measurement with TONS

TONS enables onboard orbit estimation accurate to 150 meters/axis, 3σ ,
by processing one-way forward-link S-Band Doppler measurements. Dur-
ing scheduled TDRSS contacts with the spacecraft, a spacecraft transponder
extracts these measurements, which are then run through a nine-state ex-
tended Kalman filter (implemented in the spacecraft’s ACS FSW) to estimate
the spacecraft’s position and velocity vectors, an atmospheric drag scale fac-
tor, a master oscillator frequency bias, and a TDRS measurement bias. On
a given computation cycle, TONS outputs either the spacecraft’s orbital el-
ements or the frequency control word. So far, TONS has been used experi-
mentally on GSFC’s Extreme Ultraviolet Explorer (EUVE) spacecraft and has
been the prime orbit determination scheme for EOS Program spacecraft.





10

Control Laws: General Qualities

Your college years were probably your first exposure to the academic equiv-
alent of ethnic humor, i.e., the jokes the various departments tell about their
rival branches. For example, if you were a physics major, you heard the jokes
physicists tell depicting mathematicians as slaves to logical formalism at the
expense of common sense. One old chestnut went: how does a mathemati-
cian boil water? He takes a pot from the cupboard, fills it with water from
the sink, places the pot on one of the stove’s burners, turns the heat on the
burner to high, and waits for bubbles to appear. Now suppose you put an-
other water-filled pot on a burner and ask the mathematician what procedure
he’ll use to boil water given the new set of initial conditions. The stereo-
typical, purist mathematician would immediately remove the pot from the
burner, pour the water into the sink, replace the pot in the cupboard, and
inform you that the solution is trivial as it now reduces to the previous case.
Not surprisingly, mathematicians (or theoretical physicists) had their own
jokes depicting experimental physicists as unenlightened, tool-using tech-
nicians who didn’t fully appreciate the formal discipline of mathematical
proofs. As for their treatment of engineers . . . well, see Sheldon’s treatment
of Howard on The Big Bang Theory.

Once you get past the cheap shots, there is a grain of truth embedded
in the humor, namely that in addition to developing the appropriate toolkit
to deal with the kinds of problems you’re likely to encounter, your thinking
also takes on a mindset consistent with the kinds of goals you’re trying to
achieve. A mathematician is concerned with establishing quantifiable rela-
tionships between abstract objects of his own devising, so he needs a highly
disciplined and formal, logical process for proving or disproving those re-
lationships. A physicist is concerned with establishing quantifiable relation-
ships between physical objects found in nature, so he must first understand
conceptually the nature of those objects (which typically evolve over time,
unlike the mathematician’s eternal abstractions), and then must use mathe-
matics both to characterize the objects quantifiably and to define their inter-
relationships. Although many view engineers as applications-oriented guys
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who utilize mathematics, physics, chemistry, etc. as mere tools within the
context of building a physical object of his choosing (i.e., to a theoretical
mathematician, he’s even more of an ungrateful and unappreciative knuckle-
dragger than the physicist), in some respects, the engineer can be seen as
having a world-view that straddles the other two. Like the physicist, he’s
driven to gain a complete understanding of a physical object, but like the
mathematician, the object he’s trying to understand is one (at least to some
degree) of his own devising, not something (as in the physicist’s case) he’s
discovered in nature and must both understand and relate to other objects
serendipitously encountered that he already thinks he understands to some
degree.

So, what does all that mean in terms of our favorite flavor of engineer,
namely you, our up-and-coming ACS engineer? First, you have a clear and
concrete concept for the physical object (an ACS, including both hardware
and software) you’re trying to build, one component of which is the control
laws that define how pointing and rate errors should be reduced. Second,
once you’ve developed a plausible way to build the thing, you need to de-
velop a quantifiably complete understanding of how your physical object
is likely to behave in the Real World, or more accurately in our aerospace
context, off the Real World. So until your creation is satisfactorily created,
you’re constantly toggling between two roles. On the one hand, you’re the
omnipotent mathematician, creating an object of your choosing, designed to
perform in a manner that suits your whim. On the other hand, you’re the
curious physicist, suddenly presented with an object you don’t fully under-
stand, but must master if you’re to achieve your goal, and not get down-
sized in the process. Maybe this repetitive mental toggling explains why it’s
so natural for an engineer to move directly to iterative algorithms to solve
problems rather than search for the elegant, closed-form solutions cherished
by both physicists and mathematicians. Or maybe it’s just that an engineer’s
version of the Real World is a lot messier than the equivalent for the other
two fields.

In the previous chapters, we’ve conducted a survey of the more tangible
pieces of the control engineer’s ACS, namely the sensors and actuators. We’ve
also examined the various models for viewing the spacecraft environment,
the algorithms used to interpret the sensors’ impressions of that environ-
ment and the spacecraft’s place in that environment, and how you compare
the model output to the sensor output in order to quantify errors in space-
craft’s orientation and motion. What still needs to be done is to discuss how
the controls engineer must deal with those errors in order to maintain a de-
sired spacecraft attitude profile, and how to change the current profile to a
new one. The general engineering discipline that is concerned with that task
is control theory.

There are two basic types of control law processes, open-loop control and
closed-loop (feedback) control. Open-loop control uses an actuator for direct
control of a process, without sensor feedback. Closed-loop control feeds back
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processed sensor output into the calculation so as to characterize quanti-
tatively the results from the previous actuator commanding, and uses that
information to modify current actuator commanding in order both to ac-
complish the objective of the current iteration and to clean up errors left
over from the previous iteration. From breakfast experience, it appears that a
toaster is a good example of open-loop control, although a co-worker claimed
that his toast was intelligently manufactured by a device with an optical sen-
sor that evaluated the darkness of the bread to determine when it was done.
If so, how it successfully handles pumpernickel rye is a mystery. A good ex-
ample of closed-loop control is driving a car, where you use visual feedback
(and sometimes audio feedback, delivered at a lower frequency, but higher
amplitude by other motorists) to fine-tune actuator (i.e., steering wheel and
accelerator) control. More accurately, this was a good example of closed-loop
control if you were driving a car back in the 1950s. Sometime after 1990, it
seems that a large number of motorists abandoned closed-loop control in fa-
vor of open-loop control, at least when traveling in the Greater Washington
Metropolitan area.

One thing about control theory that confuses you the first time you dig
into it is that there’s a new set of technical terms you have to learn that
define quantitatively the characteristics of the systems being (or trying to
be) controlled. At a high level, they describe how stable the system is, how
the system responds if you “kick” it, how accurately and reliably the system
achieves the desired final state, etc. So before getting into how a control law
works, let alone how you construct one, it’s probably a good idea to spend a
little time defining some terms.

10.1 Definition of Control Law Terms

Let’s say that by some miraculous process, we already have the optimal con-
trol law that perfectly meets our needs. Now suppose that some significant
element of the system needing to be controlled, called the plant, changes.
If that happened, the first thing a lazy person (that is, anybody who works
for a living who has to meet deadlines) would try to do is tweak some of
the database parameters that drive the algorithm to see if the control law
still performed acceptably. If that worked, then a natural question to ask is
how much you had to change the parameters in order to compensate for the
change in the plant. Now, let’s invert the question. Suppose, instead, we ask:
if I tweak the database parameters a little, does the way the system behaves
change by a little, or change by a lot? Control laws whose behavior changes
by a lot if you change their database parameters by small amounts are said to
have high sensitivity. On the other hand, control laws whose behavior doesn’t
change much if you change their database parameters by large amounts are
said to have low sensitivity. However, unlike what appears to be true in many
human relationships, it is not the case that control laws display a high level
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of insensitivity if they fail to adjust themselves autonomously to your current
needs.

Next, let’s go back to our original situation where we started off with
an optimal control law, and then made a significant change in the plant.
Suppose we make no change in the database parameters and simply ask how
well does the original control law perform when used to control the modified
plant? Control laws that continue to perform well under those circumstances
are said to be robust, while those that don’t are said (big surprise) not to
be robust. Typically, a control law will be robust if it has low sensitivity, is
stable over a range of database parameter variations, and continues to satisfy
requirements over a range of change in the system parameters.

So sensitivity and robustness are measures of the “twitchyness” and flex-
ibility of a control law as it functions. Another thing that would be nice to
characterize is how well the control law gets you where you want to go, or
keeps you where you want to stay. Suppose you give your nice stable, func-
tioning control law a little kick. The technical term for the kick is a distur-
bance signal, which simply is any unwanted input signal (for example, a per-
turbative torque) that affects the system’s output signal (what the sensors
measure). If your control law is a good one, you’d like to see the influence of
that kick on the spacecraft (as measured by the sensors) damp out quickly.
Or, put in the arcane language of control theory, the control law’s ability to
reduce the disturbance signal’s effect on the output signal is a measure of the
control law’s disturbance rejection capability. As the control law deals with
the impact the kick has had on the system, it gradually loses interest in and
forgets about the original kick entirely. This control law behavior is mea-
sured by its transient response, which decays with time. For non-ideal control
laws, after the transient response has completely decayed, there may remain
some lingering trace of the original kick in the output signal that the control
law has been unable to remove. This residual error is called the control law’s
steady state error.

10.2 Closed-loop Control Laws

Having established a new mini-lexicon of control law terms, let’s use them to
expound on a pretty obvious fact, that if you have enough information and
money closed-loop control laws are nicer than open-loop ones, but say it in
a way that will leave your friends and associates nodding their heads sagely.
As compared to open-loop control, feedback control:

1. decreases the sensitivity of a system to variations in the parameters
defining the behavior of system components;

2. makes control of system transient response easier;
3. improves system noise and disturbance rejection; and
4. reduces system steady state error.
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That’s enough on buzzwords for now. Let’s start talking about how a
closed-loop control law works by listing the input we should provide it in
order to make it do what we want. Obviously, to get it to do what we want
we must first tell it what we want done, i.e., it must be provided with a set
of commanded values, e.g., a target attitude, a desired body rate, etc. If we
not only care about what commanded values we’re targeting, but also care
what path we take to get there, or are particular about satisfying some other
constraints in the process, we may need, for example, to supply a slew pro-
file, which might be best understood by the control law by translating the
profile into a set of feedforward torques. Feedforward information says what
we want the control law to do this control cycle to deal with things we an-
ticipate happening (or desire to happen) during the current control cycle. By
contrast, feedback uses information generated during this control cycle (say,
from attitude sensors) that describes what happened in the previous control
cycle and that we now want to compensate for in the current control cycle.
Feedforward also is a way to deal with disturbance signals in a premeditated
fashion. Without feedforward, when a disturbance kicks in, the control law
will try to deal with it in a generic fashion, i.e., the disturbance handling will
be dictated by issues such as the amplitude and frequency of the disturbance,
without any special insight into the phenomenon that’s engendering it. By
contrast, by utilizing feedforward, you can characterize anticipated distur-
bances (for example, gravity gradient, magnetic, and atmospheric torques)
with accurate models, anticipate and compensate for the disturbance’s ef-
fects via feedforward, and thereby improve the responsiveness of the control
law.

Now that you’ve given the control law all this input, what does it give you
in return? Generically, the output of a control law is an error signal that both
tells you how successfully you’ve achieved your commanded goals and what
you should do next in order to make things better. For specific applications,
there usually also will be processing that takes the basic error signal and
translates it into specific actions you should take with the actuators in order
to compensate for the residual error. For our ACS application, that means
the control law may output control torques that should be applied with re-
action wheels, MTBs, or attitude thrusters. So the control torques ordered by
the control law should take into account things like maximum wheel torque
capacity (don’t ask for more help than the actuator can supply in a given
control cycle) and maximum MTB effectiveness (limited by the geomagnetic
field direction and magnitude at the time the MTB commands are executed).
The control law’s “orders” also need to take into account important con-
straints on spacecraft operation, such as avoiding inducing excessive jitter
(handled via torque limiting), avoiding inducing vibrational modes (handled
internal to the control law via filters), and avoiding reaction wheel saturation
(handled via a distribution law).

Having discussed at a high level how a control law operates when things
are going right, let’s talk about the things that can cause things to go wrong,
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or at least cause the control law to work harder (i.e., have lower responsive-
ness) than it would otherwise. First, you may have omitted modeling effects
that could easily have been addressed, such as certain external disturbances,
spacecraft dynamics, or electronic time delays. Second, you may have tried
to provide feedforward compensation with models, but your models them-
selves introduced significant errors. A laundry list of such failings would
include:

1. unmodeled (high frequency) dynamics;
2. neglected non-linearities (typically, linear approximations are utilized

throughout control law computations);
3. intentional (and inappropriate) reduced-order modeling;
4. plant parameter value changes due to environmental or aging factors;
5. improperly treated noise;
6. quantization errors.

10.3 Laplace Transforms and Transfer Functions

Recalling from the laundry list that significant error can be induced by lin-
earizing the control law equations, one might ask the obvious question, why
do that? One answer is exactly the same as that which motivated our intro-
duction of the (iterative) linearized solution of the attitude determination
problem in Chapter 7, namely, linearizing reduces the complexity of the cal-
culations that must be performed, which is a big deal when you need to do
real-time onboard processing in a flight computer. In particular, when you’re
dealing with a linear system, or a linearized approximation to a non-linear
system, you are able to exploit the principle of superposition. In other words,
if your input signal can be expressed as the sum of a set of more elementary
signals, the response can be decomposed into the sum of the (presumably
simpler) individual responses associated with the elements of the input set.

In addition to this standard reason for linearizing any onboard process-
ing when possible, linearizing the control law problem enables you to use a
special technique called the Laplace transform when performing control law
analysis of a continuous system. What a Laplace transform does is to take
you from the time domain to a frequency-like domain, although in a some-
what different manner than application of a Fourier transform. The Laplace
transform F(s) of a function f (t) is given by equation 10.1:

F(s) =
∫ ∞

0
f (t)exp(−st)dt (10.1)

Note that s has units of inverse time. It is complex, with an imaginary
part representing the frequency of system oscillations, and a real part repre-
senting the time scale for growth or decay of disturbances. We’ll sometimes
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refer to s as simply a frequency variable, but remember the double encoding
it can contain. Readers familiar with the Fourier transform may note that it
is very similar in form to the Laplace transform. Indeed, if s is selected to
be pure imaginary (s = iω), and if f (t) is non-zero only for t ≥ 0, then the
Laplace transform of f (t) is in fact the same as the Fourier transform, and
therefore captures the same frequency decomposition information.

A particularly important property of the Laplace transform is that it
causes derivatives in the time domain to be replaced with multiplication by
s in the frequency domain. That last sentence may sound a bit intimidating,
so we’ll make it more so by writing it out as Equations 10.2 and 10.3; given

g(t) =
df (t)
dt

and F(s) = L{f (t)} (10.2)

then the Laplace transform of g(t) is

G(s) = L{g(t)} = sF(s)− f (0+) (10.3)

where

L{} indicates the Laplace transform operation, and
f (0+) is the limit of the function f (t) as t approaches 0 from the pos-
itive side

For those of you about to bolt in fear and loathing, equation 10.3 simply
represents how a time derivative (df /dt) gets converted into multiplication
in frequency space (sF(s)). That trailing bit, i.e., “−f (0+)”, turns out to be
useful when considering disturbances that don’t exist before a certain time,
e.g., the sudden activation of satellite thrusters, or perhaps giving the system
a thwack with a hammer. Similar to the Laplace transform of a derivative, we
have the following formula for the Laplace transform of an integral; given

h(t) =
∫ t

a
f (τ)dτ, and F(s) = L{f (t)} (10.4)

then the Laplace transfrom of h(t) is given by

H(s) = L{h(t)} = 1/s
(
L{f (t)} −

∫ a

0
f (τ)dτ

)
(10.5)

Note the inverse symmetry here; d/dt maps to multiplication by s in fre-
quency space, while

∫
dt maps to dividing by s in frequency space. Given

that integration is an inverse operation to taking a derivative, it is not ter-
ribly surprising that these operations map into inverse relationships in fre-
quency space, although that the transformed relationship would be simple
multiplication and division may not have been obvious.

The Laplace transform has been much studied by mathematicians and
engineers, with the result that tables have been generated containing (f (t),
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F(s)) pairs for a great many useful functions. A short table of Laplace trans-
forms is given in Table 10.1.1

f (t) F(s) = L{f (t)}

u(t) =
{

0 (t < 0)
1 (t ≥ 0)

1
s

t 1
s2

tn n!
sn+1

δ(t) 1
sinωt ω

s2+ω2

cosωt s
s2+ω2

eat 1
s−a

teat 1
(s−a)2

tneat n!
(s−a)n+1

f ′(t) sF(s)− f (0+)
f ′′(t) s2F(s)− sf (0+)− f ′(0+)
af (t) aF(s)

f (t) + g(t) F(s) +G(s)∫
f (t)dt (1/s)(F(s)−

∫
f (t)dt)

Table 10.1. Short Table of Laplace Transforms.

So, how does this help? Well, you can apply the Laplace transform not just
to a function, but to both sides of an equation. The implication is that you
can use the Laplace transform to convert a differential equation describing
the behavior of a spacecraft into a polynomial equation in frequency, often a
much easier object to work with mathematically than the original differen-
tial equation. Other functions and operations have simple Laplace transform
analogs. For example, trig and exponential functions get converted to ratios
of polynomials in the variable s (see Table 10.1). So working in the frequency
domain (as opposed to the time domain) via the Laplace transform allows
you to substitute relatively simple algebraic expressions for more compli-
cated differential equations.

So now we’ve got the Laplace transform available as a tool that can help
us figure out what’s going on. The not-as-stupid-as-you-might-think ques-
tion is, what do we want to know? If you’re a theoretical physicist, your an-
swer is that you want to define a simple equation (or set of equations), de-
rived from a few basic principles, that quantitatively describes the behavior
of a physical system. Einstein’s General Theory of Relativity (describing the

1For more extensive tables, see, e.g., C. Wylie, Advanced Engineering Mathemat-
ics, Chapter 7, ©1960 by McGraw-Hill, or just do an Internet search for “Laplace
transform”.
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motion of objects in gravitational fields) is a perfect example of that Grail-
like quest. Only after having spent many years deriving a self-consistent, and
aesthetically pleasing, set of tensor equations did Einstein ask the question,
what physical predictions can I make? By contrast, the practical engineer of-
ten takes an almost inverted point of view. Treating the physical phenomena
influencing his “world” like a black box, he asks the question, if I send in
an input signal that looks like this, what does my output signal look like?
In extreme terms, as long as he can predict (or even better, control) what’s
going to happen, who cares why it does what it does? The selection of a fair
number of the tools and methodologies utilized by a controls engineer has
that (somewhat caricatured) worldview at its roots.

If that’s your outlook on life, a reasonable object to analyze to death is
the ratio of the output signal and the input signal. Considering a few trivial
cases, if the ratio is always unity, your black box is (in generic terms) a per-
fect conductor; the signal passes through the box totally unaffected. If the
ratio is always zero, your black box is a perfect absorber; the signal is totally
blocked. If the ratio is infinite, stop reading immediately and call the patent
office; you’ve either found a cure for conservation of energy or invented per-
petual motion. Now let’s get a bit more mathematical and add the Laplace
transform to the mix, if for no other reason than to justify our earlier dis-
cussion. If the ratio of the output signal to the input signal seems of interest,
surely the ratio of the Laplace transform of the output signal and the Laplace
transform of the input signal (with all initial conditions assumed to be zero)
would be utterly fascinating, so much so that we’re hardly surprised that
controls engineers give it a special name: the transfer function of the control
law’s plant.

Since it utilizes the Laplace transform, the transfer function analysis ap-
proach is only applicable to linear, constant parameter systems. And since
it only examines the system’s input and output, it can provide no insight to
the system’s internal structure. Still, it provides a very useful mechanism for
getting a feel for the system by varying the input and studying the result-
ing output. Because of the principle of superposition, the input and output
signals usually (for our applications) can be decomposed into combinations
of fairly simple mathematical functions. As a result, the transfer function of-
ten will have the form of a polynomial in s (frequency) divided by another
polynomial in s. (If each of the individual input terms transforms into a ra-
tio of polynomials in s, similar to the right side of Table 10.1, then one can
construct from the sum of such ratios of polynomials a single ratio whose
denominator is the product of the denominators of the individual ratios.)
Values of s for which the numerator goes to zero are called (not surprisingly)
the transfer function zeroes. Values of s for which the denominator goes to
zero are called the transfer function poles, a term originating from complex
variables analysis (recall that the roots of a polynomial equation generally
will have real and imaginary parts, as shown in Figure 10.1’s illustration of
the complex plane), which is a major tool of electrical engineering.
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Fig. 10.1. The complex plane.

The equation resulting from setting the denominator equal to zero is also
called the characteristic equation because it defines the character of the sys-
tem’s time response, as we’ll discuss in the next two paragraphs. A plot of
the zeroes and poles of a simple transfer function is provided in Figure 10.2.
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Fig. 10.2. Zeroes and poles of a transfer function.

One of the nice things about working with a function that’s a ratio of
two polynomials is that you often can perform a partial fraction expansion
(by factoring the numerator and denominator), which will yield a sum of
relatively simple individual terms that can be inverse Laplace transformed
separately to yield the transfer function in the time domain. (This presumes
that you have one of those tables of (f (t),F(s)) pairs available, such as Table
10-1.) Suppose after doing a partial fraction expansion, all the individual
terms are of the form c1/(s + c2), where both c1 and c2 are complex numbers
having both real and imaginary parts. What does having the transfer func-
tion given in this form mean for the dynamic system under analysis? We turn
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now to the book of shadows - er, the book of (f (t),F(s)) pairs - to gain some
insight. The inverse Laplace transform of c1/(s+ c2) is c1 exp(−c2t). This goes
to zero as time goes to infinity if the real part of c2 is positive, which cor-
responds to suppression of disturbances in the dynamic system. If the real
part of c2 is negative, you’d have uncontrolled growth of disturbances. The
imaginary part of c2 corresponds to oscillatory behavior of the dynamic sys-
tem (recall that the exponential of a pure imaginary number times time can
be re-expressed as a combination of sine and cosine terms).

Glancing back at Figure 10.2, we see that if the real part of c2 is positive,
the pole (equal to −c2) will be plotted on the left side of the complex plane.
Using the principle of superposition to view the entire transfer function as
the sum of individual components, it’s clear that if all the transfer function
poles are located on the left side of the s-space complex plane, all oscillatory
terms will damp-out with time (as with noise-suppressing headphones), and
the associated control law will be stable. However, if any of the poles are on
the right side of the complex plane, the amplitude of at least one oscillatory
term will grow quickly with time (like audio feedback occurring when a mi-
crophone is too close to the output speakers), and the associated control law
will go nuts, as will the controls analyst who has designed it.

There’s a bit more general information regarding transfer functions worth
noting. Recall that d/dt (the derivative operator) maps to multiplication by
s in frequency space, while

∫
dt (the integration operator) maps to dividing

by s. If we take s = iω , where ω is the frequency of the input signal, the
magnitude of a transfer function component associated with d/dt will be
an increasing function of frequency, i.e., a derivative component in a con-
trol law will have a relatively greater effect at higher frequencies (it is a
“high-pass filter”). In contrast, because of the division by s associated with∫
dt, an integral component in a control law will have relatively greater ef-

fect at lower frequencies (it is a “low-pass filter”). The two operations also
have opposing phase effects on the output. Let’s suppose that the input is
a pure sine wave: sin(ωt), for which the derivative and anti-derivative are
cos(ωt) = sin(ωt + 90◦), and −cos(ωt) = sin(ωt − 90◦), respectively - i.e., the
two operations produce an output with a leading and lagging phase, respec-
tively. In frequency space this maps as

(d/dt,
∫
dt)→ (s,1/s) = (iω,1/(iω)) = (iω,−i/ω) (10.6)

Leading and lagging phase corresponds to positive and negative imaginary
component for the transfer function.

10.4 Control System Response and Behavior

One thing that both physicists and engineers agree on is that an ideal ap-
plication on which to try out your ideas is a perfect harmonic oscillator, of-
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ten pictured as a mass on a spring, as illustrated in Figure 10.3, wherein M
represents the value of the mass (kg), K the spring constant (kg/sec2), f a
coefficient of friction (kg/s), and r(t) is an external driving force imposed on
the oscillator.

Mass 
   M 

Force 
   r(t) 

Displacement 
        y(t) 

Spring Constant K 

Friction f 

Fig. 10.3. A harmonic oscillator.

With damping and a driving term included, you have all the basic ele-
ments needed to study a wide array of problems in classical dynamics, elec-
tromagnetism, etc. As a way to get a little hands-on familiarity with transfer
functions and how to interpret them, we’ve included a worked-out example
in section 10.5. For folks who are interested in some of the nitty-gritty math,
walking through the problem on your own will be a useful exercise. For those
suffering nervous afflictions when exposed to excessive equations, you won’t
lose much by skipping the example as most of what you might care about,
like good poles vs. bad poles, has already been discussed qualitatively in the
previous paragraphs.

There are some features that are worth understanding qualitatively, even
for those of you choosing to avoid the math. The oscillator has a “natural
frequency” for its motion, given by:

ω0 = (K/M)1/2 (10.7)

If pushed away from equilibrium, the system will tend to vibrate at this
frequency. This tendency will be modified by the effects of friction, which
damps out the natural oscillations. The dimensionless “damping ratio” is
defined as:

ξ = (f /2)/(KM)1/2 (10.8)

If ξ = 0 (i.e., no friction), the behavior is purely oscillatory. If 0 < ξ < 1,
the signal is underdamped and the transient response will oscillate around
the equilibrium point with decreasing amplitude over time, reaching equi-
librium as time goes to infinity. If ξ = 1, the signal is critically damped, doesn’t
oscillate, and asymptotically approaches the equilibrium point as quickly as
possible without overshooting. And finally, if ξ > 1, the signal is overdamped
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and decays without ever overshooting its equilibrium (i.e., no oscillations at
all), but rather asymptotically approaches its equilibrium position.

When evaluating a system’s response, there’s a lot more to consider than
just how quickly it damps out and what its final value is. That means we need
to define some more buzzwords to describe the nature of this other stuff we
want to talk about. If we’re dealing with oscillatory behavior, a useful thing
to know would be how long it takes for it to reach (and overshoot) its even-
tual equilibrium position, also called the steady-state solution. Rise time is
the technical term for this time duration (see Figure 10.4 for an illustrative
chart given a step function input); it is inversely proportional to the natural
frequency. This is to be expected since the natural frequency tells you how
fast the mass moves as it oscillates. The faster the oscillation speed, the less
time it should take to overshoot equilibrium, so the rise time decreases. Also,
as the damping ratio increases, the rise time will increase until you reach crit-
ical damping, at which point the rise time goes infinite. Again for oscillatory
situations, you’d want to know how long it takes for the system to hit its
maximum amplitude on overshoot. That’s called the peak time, and as was
the case for the rise time, it also is inversely proportional to the natural fre-
quency, and for the same reason. And similar to the rise time, as the damping
ratio increases, the peak time will increase until you reach critical damping,
at which point the time again goes infinite because you asymptotically ap-
proach steady state. While we’re talking about overshoot, you’d also like to
have a feel for how big the first overshoot will be. A good normalized way
to express this is percentage overshoot, which is simply the percentage of the
ratio (peak output - steady state)/(steady state). Naturally, lower damping
(when underdamped) means greater overshoot, and when critically damped
the overshoot goes to zero.
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Fig. 10.4. Control system response to step input starting at time = 0.
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The previous three terms (rise time, peak time, and percentage overshoot)
are useful in characterizing the behavior of the system during its first oscil-
latory cycle. Clearly, we also need to describe the system behavior after the
oscillations all die out. First, we want to know how long it takes until all sig-
nificant motion stops. That’s specified by the settling time, which is the time
required for the system oscillations to reduce in amplitude to a specified
band about the steady-state solution. As you might expect from our previ-
ous discussions, the size of the settling time is inversely proportional to both
the damping ratio and natural frequency. The steady-state solution need not,
and in real life won’t be, exactly the desired output. The steady-state error is
a measure of the discrepancy between the desired signal and what the sys-
tem actually is doing after all the transients have decayed. We haven’t talked
about control law gains yet (see next chapter), but increasing gain is one way
to reduce the steady-state error, to the potential performance detriment of
some of these other terms (for example, overshoot and settling time). In gen-
eral, one way to view these five system response characteristics we’ve talked
about is as a way to define quantitatively the system’s required performance.
And the damping ratio, natural frequency, and gains (on which the response
characteristics depend) therefore provide a mechanism to adjust the control
law’s behavior to meet these requirements.

So far, our insights into system response characteristics have been gained
by looking at how the system behaves when a step function is supplied as in-
put. Remembering that engineers often think with a “black box” mentality, it
seems reasonable to see if we can glean additional information by “tickling”
the system with another simple form of input, like a sine or cosine function.
One obvious thing to investigate is how the system’s response changes as we
change the frequency of the input sinusoid. Put in fancier terms, observing
the output produced from sinusoidal input allows us to determine a system’s
frequency response. For example, the magnitude of the transfer function is
a measure of the ratio of the output sinusoid amplitude to the input sinu-
soid amplitude, while the phase angle of the transfer function (remember,
it’s complex) measures phase differences between output and input. And for
more complicated functions than simple sine or cosine waves, the principle
of superposition allows us to Fourier decompose the input signal into a series
of sinusoids, whose individual behaviors can be examined separately.

In addition to asking very straightforward quantitative questions like
how much reduced from the input amplitude is the output amplitude, and
how large a phase difference has been introduced by the operation of the
control law, you also can ask a somewhat more qualitative question like, how
closely does the output resemble the sinusoidal shape of the input? Again,
there’s a special vocabulary to provide this initially fuzzy concept with quan-
titative specificity. For example, a system’s bandwidth defines the maximum
input frequency for which the output will continue to track the input sinu-
soid satisfactorily. The quantitative definition of “satisfactorily” usually sets
the bandwidth to the frequency at which the output is attenuated to 0.707
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times the input (also called being “down” 3 dB). So bandwidth is a measure
of the system’s speed of response in the frequency domain, just as rise time
and peak time are measures of the system’s speed of response in the time
domain.

In most of the previous discussions of control law behavior there’s actu-
ally been an implicit assumption that we were dealing with “good” control
laws, i.e., ones that were stable. Obviously, if this was always the case, or
easily achieved, there’d be a lot less need for controls engineers, and they’d
be a lot poorer paid. So let’s conclude this section with a paragraph regard-
ing what formally constitutes stability. A system is considered stable if the
output is bounded when the input is bounded. In mathematical terms, that
means a system will be stable if the poles of the transfer function all have
negative real components, yielding exponentially decaying behavior. If, by
contrast, the output increases indefinitely with time, the system is consid-
ered unstable. This will be the case if any of poles have positive real com-
ponents, yielding exponentially increasing behavior. (Of course, any such
exponential growth only pertains to the linearized model. Such growth in
any real system eventually saturates, possibly tearing the system apart, as
with the collapse of the Tacoma Narrows Bridge in 1940, for example.) And
there are a few in-between states of stability as well. For example, if the out-
put oscillates without ever reaching steady-state, but the amplitude of the
oscillations is bounded, the system is called marginally stable. This behavior
is characteristic of poles that are purely imaginary, yielding undamped os-
cillatory behavior. And if the output does converge, but converges to some
value other than the desired one, the system is said to possess limited stabil-
ity. Lastly, if the system is only stable for finite ranges of control parameter
values, it is called conditionally stable. Stability of the engineers who design
control laws is a separate discussion topic (see Freud).

10.5 The Harmonic Oscillator in Detail

In this section we present the harmonic oscillator example worked out in
detail. Consider the spring-mass-damper system of Figure 10.3. The mass
starts at rest with the spring extended due to gravity’s action on the mass.
We define the zero point for position to be where the spring force is zero, so
the offset equilibrium position due to the gravitation force is given by:

∆yK =Mg (10.9)

where

∆y = extension in spring at start time (units of meters)
K = spring constant (kg/sec2)
M = mass of object at end of spring (kg)
g = acceleration due to gravity (meters/sec2)
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The time domain equation of motion is:

My′′(t) + f y′(t) +Ky(t) = (K∆y)r(t) (10.10)

where

y(t) = output, i.e., object position as a function of time (meters)
y′(t) = first time derivative of y (m/sec)
y′′(t) = second time derivative of y (m/sec2)
f = friction constant (kg/sec)
r(t) = normalized input driving function (dimensionless)

The corresponding Laplace s-space domain equation (assuming zero initial
conditions) is:

Ms2Y (s) + f sY (s) +KY (s) = (K∆y)R(s) (10.11)

where

s = s-space free parameter (1/sec)
Y (s) = Laplace transform of y(t) (meter-sec)
R(s) = Laplace transform of r(t) (sec)

The transfer function is given by:

G(s) =
Output

Input

=
Y (s)
R(s)

=
K∆y

Ms2 + f s+K

=
∆yω2

0

s2 + 2ξω0s+ω2
0

(10.12)

where

ω0 ≡ (K/M)1/2, i.e., “natural frequency” (1/sec)
ξ ≡ (f /2)/(KM)1/2, i.e., “damping ratio” (dimensionless)

The response to an impulse function input (i.e., a quick thwack with a ham-
mer) is found by making the input r(t) proportional to a “delta” function, so
r(t) = αδ(t), where α is the proportionality constant. The Laplace transform
of r(t) will be R(s) = α, so we have:

Y (s) = G(s)R(s) =
α∆yω2

0

s2 + 2ξω0s+ω2
0

(10.13)

The poles of the output Y (s) are:

s1 = −ξω0 +ω0(ξ2 − 1)1/2 (10.14a)
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s2 = −ξω0 −ω0(ξ2 − 1)1/2 (10.14b)

Doing a partial fraction expansion of equation 10.13, the output in the s-
domain is:

Y (s) =
k1

s − s1
+

k2

s − s2
(10.15)

where k1 and k2 are complex constants. The corresponding output in the
time domain is:

y(t) = k1 exp(s1t) + k2 exp(s2t) (10.16)

Note that at t = 0, y(0) = k1 +k2. If ξ < 1, s1 and s2 are complex conjugates
of each other, as are k1 and k2. For this range of ξ, it is customary to write
the quantity ω0(ξ2 − 1)1/2 from equations 10.14a and 10.14b as iωd , where
i =
√
−1, and ωd is called the “damped natural frequency”. For the limiting

case of ξ = 0, you find

y(t) = 1/2[exp(iω0t) + exp(−iω0t)] (10.17)

= cos(ω0t) (10.18)

i.e., the system oscillates at its natural frequency, ω0.
The behavior of the output y(t) varies as the damping ratio is changed.

When ξ > 1, = 1, or < 1, you’ll have an over damped, critically damped, or
under-damped system (respectively). For the latter situation, you’ll find a
transient response that exhibits oscillations with decreasing amplitude. As ξ
approaches zero, the transient oscillations never die out.

Part of our discussion in section 10.4 considered an impulse force applied
to the oscillator at t = 0, i.e., r(t) = αδ(t), for which the Laplace transform
R(s) = α. We can also consider the effect of applying a step function force:

r(t) = αu(t) =
{

0 (for t < 0)
α (for t ≥ 0) (10.19)

R(s) =
α
s

(10.20)

that would change the equilibrium position. Equation 10.13 changes to:

Y (s) = G(s)R(s) =
α∆yω2

0

s(s2 + 2ξω0s+ω2
0)

(10.21)

which changes only in having an extra factor of s in the denominator, i.e.,
one extra pole at s = 0. Since the original poles of the transfer function don’t
change, the fundamental behavior in terms of natural oscillation frequency
and damping remain the same. The only change is that the phenomena dis-
cussed in Section 10.4 of rise time, peak time, percent overshoot, and setting
time come into play (see Figure 10.4). The pole at s = 0 represents a shift
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in the equilibrium position for the oscillator. This is sort of a compromise
between a disturbance fading away (as happens if Real(s) < 0) and growing
indefinitely (as happens if Real(s) > 0).

Besides the insights learned from an impulse force δ(t) and unit step force
u(t), one can also gain useful insights by sending a sinusoid through the
system. This allows one to determine the system’s frequency response. In
this case you would use:

r(t) = αu(t)sin(ωt) (10.22)

R(s) =
αω

(s2 +ω2)
(10.23)

Y (s) = G(s)R(s) =
αω∆yω2

0

(s2 +ω2)(s2 + 2ξω0s+ω2
0)

(10.24)

where ω is the frequency of the input force. Now we have two new poles at
s = ±iω. Since these are purely imaginary, the associated disturbance neither
grows nor diminishes. A damped harmonic oscillator driven forever at fre-
quency ω will respond at the same frequency forever, with any disturbances
at ω0 fading away over time. This is not to say that the oscillator doesn’t re-
tain knowledge of its fundamental parameters ω0 and ξ. These govern the
strength and phase of the response. If ω ≈ ω0, the oscillator is being driven
in resonance, meaning the response is very strong.

10.6 Adjusting Gains: The Root Locus Diagram

When considering a dynamic system from the perspective of a controls en-
gineer, it is natural to ask how the behavior changes as you change various
tunable parameters, where “tunable” might mean turning a control knob,
changing a software parameter, or replacing a piece of hardware. A tool that
control engineers regularly use to examine such behavior is the so-called root
locus diagram. In Figure 10.5 we present a sample root locus diagram for the
rate gain parameter (i.e., the damping ratio ξ) for the harmonic oscillator
example discussed in the previous section. (If you didn’t read section 10.5,
don’t worry; the example is just for illustration.)

The diagram shows how the poles change in the complex plane as the
gain, ξ, changes from 0 to ±∞, with the poles for this specific example being
as given by equations 10.14a and 10.14b. The plot is normalized so that the
system’s natural frequency is set to unity (i.e.,ω0 = 1). For generality we have
extended the plot to include negative damping ratio (i.e., ξ < 0) which would
correspond to positive rate feedback - not something that would be realized
via friction, so just think of it as a generic illustration.

For the example, the poles are at ±ω0 (the two ×’s in the figure) when
ξ = 0. As discussed in Section 10.5, this corresponds to pure oscillations
with no damping. As ξ increases from 0 to 1, the two poles move down to
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Fig. 10.5. Root locus diagram for variable rate gain.

the real axis, merging at s = −1 (i.e., the point of being critically damped).
As ξ continues to increase, one pole moves towards s = 0, asymptotically
reaching 0 as ξ reaches +∞, while the other pole moves towards s = −∞.

The positive feedback curves in the figure (i.e., those for ξ < 0) are mirror
images of the negative feedback curves. Having Real(s) > 0 everywhere, these
curves represent unstable systems that would amplify without bounds any
disturbance whatsoever. For −1 < ξ < 0, the amplification would involve os-
cillations with ever increasing amplitude. For ξ < −1, the disturbance would
simply grow exponentially with no oscillation.

Although the light blue portions of the root loci curves are nonphysical
for the damped harmonic oscillator example, having root loci in the positive-
real part of the complex s-plane may well make physical sense in some con-
trol system designs - imagine the runaway screech in an audio system with
the speaker too close to the microphone. Quite generally, it’s a bad thing
when modification to a gain parameter causes a root locus branch to cross
the frequency space imaginary axis, though perhaps not as bad as crossing
the streams in the movie Ghostbusters. In our case it just means we have to
restrict the gain value, not deal with the consequences of all of a spacecraft’s
protons repelling from each other at the speed of light. Logically (leaving
sci-fi cinema behind), the further away the poles are from the imaginary axis
(while remaining on the negative side of the real axis), the more stable the
system will be. However, stability isn’t the only consideration that one has
when designing a control system. Having a system that is ultra-ultra stable
may translate into uselessly sluggish and non-responsive. One looks for a
reasonable compromise between stability and responsivity.

Control engineers have technical characterizations for stability safety
margins in their systems. These characterizations go by the names gain mar-
gin and phase margin. Their technical meaning is not as simple as “so far
to the left of zero in frequency space,” but they roughly translate into that.
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If you hear either term in a control systems presentation regarding a new or
modified control law, the speaker is referring to how much he had to back off
from a marginally stable configuration to achieve an acceptably robust de-
sign. Gain margin is a multiplicative factor typically expressed in decibels.
A rule of thumb is that the lowest acceptable gain margin is 3 dB, i.e., a fac-
tor of

√
2. Phase margin is an angular measure; the rule of thumb is that the

lowest acceptable phase margin is 30◦. Use of lower margins may indicate
that the designer enjoys bridge diving as a hobby.

10.7 Discrete Systems and the Z Transform

All of our discussion in this chapter, and all the tools and methods presented,
pertain to continuous systems. Unfortunately, all of the onboard applications
we work with are discrete systems. For example, attitude sensors output data
at fixed time intervals, not continuously, and even if they did output their
data continuously, they would only be interrogated at fixed times in the con-
trol cycle (the sampling period). Our onboard calculations utilizing the sen-
sor data, as well as onboard error computations, onboard torque command
generation, etc., are also performed within well-defined time intervals, and
the actuator commands are issued (and executed) at set times in the control
cycle too. One thing that should be immediately clear is that any control sys-
tem based on discrete measurements will be unable to meaningfully detect
and respond to disturbances with time scales shorter than its own control
cycle time, ∆t. Indeed, the system will be fairly myopic even at time scales
equal to and slightly greater than ∆t. Generally speaking, disturbances will
only be well controlled at frequencies at least an order of magnitude or so be-
low the sampling frequency. Even for those frequencies there will be a slight
phase lag in control because the system will be able to introduce corrections
for disturbances no sooner than a cycle after an error is detected.

Another implication when doing careful analysis on discrete systems is
that the continuous integral Laplace transform must be replaced with a sum-
mation expression called the Z transform expressly designed for discrete sys-
tems. The Z transform takes you from “sample space” (where each sample is
associated with a discrete sample time) into “z space”. Formally, a Z trans-
form has the form:

F(z) = Z{{fn}} ≡
∞∑
n=0

fnz
−n (10.25)

where {fn} is an infinite series, just as f (t) was a function defined over all time
t > 0. If you compare this equation with equation 10.1, you’ll see that the Z
transform is similar to the Laplace transform with z = est and t = n∆t. For our
limited purposes, we don’t actually care a great deal about the Z transform
except for one detail. When drawing control system diagrams (examples to
be shown in the next chapter), control law engineers use a symbol from Z
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transform theory when indicating that a term proportional to rate is to be
used in a feedback loop. Specifically, when the current cycle’s measurement
of some quantity, fn, is to be combined with a prior cycle’s measurement,
fn−1, to form a rate-like term, (fn − fn−1)/∆t, the operation is indicated by
a symbol of the form “−[z−1]→”. This usage stems from the fact that the Z
transform of the shifted sequence {fn−1} (with an assumed extra leading term
of f−1 = 0) is given by:

Z{{fn−1}} =
∞∑
n=0

fn−1z
−n =

∞∑
n=0

fnz
−n−1 = z−1Z{{fn}} (10.26)

Just as differential equations for continuous systems can be handled via
Laplace transforms, difference equations for discrete systems can be dealt
with using Z transforms. We are, however, not going to present any exam-
ples of such analysis. At this point we really only want to alert you to the
fact that the Z transform exists for discrete systems and that the associated
symbol “−[z−1]→” indicates a first derivative, “−[z−2]→” indicates a second
derivative, and so on; and that (by symmetry) the symbol “−[z]→” indicates
an integral term. Some of you may note a possible oddity in this usage. The
control system doesn’t have access to the whole infinite sequence {fn}, so it
really can’t construct a Z transform. If the system’s logic is just reusing the
prior value of f , why not represent that as “−[fn−1]→”? All we can really say
is “when in Rome, learn to speak Latin” - or in this case, when talking with
control law engineers, learn to understand their jargon.
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Control Laws: Attitude Applications

There’s nothing that excites a scientist more than discovery of something new
in nature. Sometimes, when the object or phenomenon is first predicted by
theory and then observed later experimentally, it’s a cause for great celebra-
tion, at least among the proponents of the theory. Other times, the new object
or phenomenon just comes out of left field. In a rather famous example from
theoretical physics, no one predicted (or had a theory that required) the ex-
istence of the muon, an elementary particle that appears to be identical to an
electron except it’s over 200 times heavier. When it was discovered anyway
in cosmic rays in 1947, the general head-shaking in the physics community
over the apparent lack of purpose to the particle led the Nobel Prize winning
physicist I. I. Rabi to complain, “Who ordered this?”

It is somewhat ironic that when one of these “surprise” discoveries hap-
pens, the first thing the science community tries to do is shoehorn it into
some previously understood pattern. For example, in 1911 Rutherford demon-
strated in a scattering experiment that an atom of gold behaved like an object
having a very small “hard” positively charged nucleus surrounded by a much
larger electron cloud containing an equal amount of negative charge, render-
ing the atom electrically neutral. This experimental result was greatly at vari-
ance with the then-popular “plum-pudding” model, which viewed the atom
as a mixture of heavy positively charged objects and light negatively charged
objects that somewhat uniformly filled-out the atomic volume. Two years
later, Bohr took Rutherford’s results and the empirical formula for hydrogen
spectral lines developed by Balmer in 1885, and came up with a model the-
orizing that an atom having a radius of about an angstrom (10−10 meters)
and central mass of 1.7 × 10−27 kilograms works pretty much the same as
our Sun-Earth system having a radius of 93,000,000 miles (1.5×1011 meters)
and central mass of 2×1030 kilograms, with Newton’s inverse square law for
gravity replaced by Coulomb’s inverse square law for electrostatics. Consid-
ering that things typically don’t scale up or down very successfully in nature
over an order of magnitude or two (for example, the design of a greyhound’s
leg doesn’t look much like an elephant’s), Bohr’s conceptual parallel between
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atomic systems and solar systems might be considered by a rational person
to be breathtakingly reckless.

In fact, the models don’t match up at all without adding in two additional
constraints, namely Bohr’s First Postulate that requires that only a discrete
set of electron orbital radii are legal and Bohr’s Second Postulate that re-
quires that (in spite of what classical electrodynamics says happens for all
accelerating charged objects) no electron radiates energy unless it leaves its
current orbit. With just those two “kluges” in place (it’s pretty remarkable
that only two tinkerings were needed), Bohr was able to replicate Balmer’s
formula for the wavelengths of spectral lines and other known results, and
successfully predict new spectral relationships not previously measured.
Eventually, Bohr’s simple model started falling apart, to be replaced by a
quantum mechanically consistent model (pioneered by, of course, Bohr), but
in its day Bohr’s planetary model for the atom seemed the perfect tool for
explaining the then new phenomena of atomic physics.

11.1 Equivalence of L-R-C Circuits and Harmonic Oscillators

In this respect (i.e., the shoehorning of old models into new phenomena),
engineers’ mental processes have much the same tendencies as those of the
physicist. What the solar system is to physicists, an L-R-C (inductance - resis-
tance - capacitance) circuit is to engineers. Whenever they have to dream up
something new, they always seem to fall back on their old friend from electri-
cal engineering. In classical circuit design, L, R, and C are the only elements
that change the electromotive force (emf). They show up as coefficients to
terms in a differential equation for electrical charge as follows. L multiplies
the second derivative of charge, R multiplies the first derivative of charge,
and 1/C multiplies the charge, which now makes the equation for emf look
a lot like our friend from Chapter 10, the harmonic oscillator, the physicist’s
favorite idealized model. In the electrical circuit case, L takes on the role of
the mass on the spring (M), R provides the damping effect (like the friction
constant, f), 1/C is the spring constant (K), and the natural frequency of the
circuit is given by 1/

√
LC, as compared to

√
K/M for the harmonic oscillator.

Of course, since the form of the differential equation is the same for both a
harmonic oscillator and an L-R-C circuit, a purist mathematician would in-
sist that the two problems do not resemble each other; they are identically
equal to each other.

Actually electrical engineers normally work with the first derivative of
charge, the electrical current, in which case L multiplies the first derivative
of the current, R multiplies the current, and 1/C multiplies the integral of
the current. In this form, the electrical engineer’s favorite idealized model
maps directly onto the controls engineer’s favorite idealized model, the PID
(proportional-integral-derivative) control law. But we’re getting a bit ahead
of the game. Before getting into the different types of control laws, let’s first
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talk about how an attitude control law functions and about some of the stan-
dard elements that go into constructing one.

11.2 PID Control Laws

For spacecraft flying gyros, which provide only attitude change information,
and an attitude sensor (or sensors) providing absolute attitude information,
the attitude control law combines the two types of information needed to
estimate required pointing corrections relative to the desired pointing (or
pointing profile). The control law determines the command torques designed
to

1. maintain observation of the science target;
2. maintain spacecraft stability;
3. slew to new science targets;
4. perform small attitude maneuvers under fine pointing control;
5. perform small attitude maneuvers to locate science targets;
6. compensate for time-varying changes in apparent target direction, such

as those arising from velocity aberration;
7. follow moving targets, such as asteroids, planetary moons, comets, etc.

This is a pretty long laundry list of activities the control law must be able
to support, many of which seem like opposites of each other, such as both
being able to change the pointing by a large amount and maintain it steady
to a high level of precision. That suggests either that you’re going to need
a lot of different, specialized control laws to support all these functions, or
you’re going to need an awfully complicated single control law that can do
anything. In fact, both of these approaches have been used, and which ap-
proach gets implemented on a given mission seems to be as much dependent
on the personal preferences of the mission’s controls analyst as on the in-
trinsic characteristics of the mission itself. What that suggests is that control
theory is an extremely powerful tool, and there are a lot of satisfactory ap-
proaches to skinning the same cat. Although characterized by high levels of
sophistication and flexibility, the basic structure of an attitude control law
can be built from some fairly simple functionality. For example, you can

1. use gain multipliers to scale different error contributions;
2. limit the contributions of terms to prevent overflows, satisfy hardware

constraints, or avoid inducing excessive jitter;
3. smooth, average, or accumulate error terms to avoid “whipsaw” response

and extract secular trends from noise;
4. leak-in corrections over time when delicate handling is required

The next step up in complexity from these basic mathematical operations
is to construct a feedback loop to pick up errors previously not compensated
for. The three flavors of feedback we’ll concentrate on here are proportional,
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integral, and derivative, which of course map to the pieces that constitute
a PID control law (see Figure 11.1a). For grins, weve included a diagram
showing the same control law in Z-jargon notation (see Figure 11.1b).

Σ	
Error (e) 

P 

I 

D 

Kp e(t) 

Ki (∫0t e(τ) dτ) 

Kd (de/dt) 

Σ	
input output + 

- 

Fig. 11.1a. Simplified PID control law

Kp 

Ki z 

Kd z-1 

Σ	
input output 

Σ	
+ 

- 

Fig. 11.1b. Simplified PID control law in Z-transform notation.

The general form of proportional feedback is up = Kpe(t), where up is a
control torque, Kp is a gain (i.e., an adjustable parameter used to modify
the response), and e is the error signal determined by differencing processed
sensor data relative to desired values. So if the error signal falls to zero, the
control torque goes to zero as well. Integral feedback looks like ui = Ki

∫
edt,

where ui is a second control torque, and Ki is the integral term gain (a sec-
ond adjustable parameter). Whereas the proportional term used an instan-
taneous snapshot of the error signal to determine a corresponding instanta-
neous control torque, the integral term sums the influence of a swath of error
terms over time to determine its current, instantaneous control torque. That
means that unlike the proportional term, which falls to zero as soon as the
error term does, the integral term will maintain a constant value if all suc-
cessive error signals are zero. Therefore, if you have a constant disturbance
affecting your spacecraft (say, a steady solar radiation torque), an integral
feedback term could build up to the appropriate value to null it out. Finally,
the general form of the derivative feedback is given by ud = Kd(de(t)/dt),
where ud is a third control torque, and Kd is the derivative term gain (a third
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adjustable parameter), and (de(t)/dt) is the rate error. Depending on the sen-
sor suite, (de(t)/dt) can either be the derivative of e as defined above (e.g.,
a time difference of attitude error as determined from two consecutive star
tracker measurements), or it may be rate error estimate based on a distinct
sensor (e.g., (de(t)/dt) being the difference between spacecraft rate measured
with gyros and a currently desired rate). So if the change in error signal drops
to zero, the derivative term will drop to zero, which means that the deriva-
tive term will be insensitive to steady-state error. Figures 11.2a and 11.2b
show how the three pieces of the puzzle (proportional, integral, and deriva-
tive control) are put together to build a PID control law for a typical LEO
spacecraft mission, with attitude control torque commands going out to the
reaction wheel assembly (RWA). The figure includes the extra level of de-
tail associated with reaction wheel momentum management (i.e., saturation
avoidance) realized via magnetic torquer bar (MTB) coupling to the geomag-
netic field.
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Fig. 11.2a. PID control law for attitude control in context.
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Fig. 11.2b. Control of reaction wheel momentum with magnetic torquer bars.
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There is a caveat that you should keep in mind with respect to the pre-
ceding discussion. All measurements are somewhat stale, even the ones most
currently available for use. ST measurements require a finite exposure; gyro-
scope measurements require a finite rotation to occur; data signals require a
finite time to be delivered to the CPU for processing. Thus the error(s) used
in any closed loop control law (e.g., PID control) are not current error(s) rela-
tive to what should be the attitude state now, but rather slightly stale error(s)
relative to what should have been the case a little while ago (at least half of
a measurement cycle). Similarly, there is a slight lag in getting the resultant
commands out to the actuators, which compounds the lag in the system re-
sponse. This control system lag will itself be a contributor to the errors that
the control system is trying to correct. The noise content of such lag-induced
errors will be at frequencies of 1/τ and higher, where τ is a few times longer
than the ACS control cycle time.

For clarity, let’s take a step back and look at control system responsivity
as progressively more detail is added, starting from a very primitive “bang-
bang” system, working our way through proportional and proportional-
derivative sytems, and finally returning to proportional-integral-derivative
systems.

11.2.1 Bang-bang Control

Bang-bang just uses part of the information utilized by proportional control.
Instead of scaling the size of the response relative to the error signal using
the gain, bang-bang only cares about the sign of the error signal. Bang-bang
control torques only take on three values, a fixed positive number, a fixed
negative number, and zero. This kind of control law has been used (infre-
quently) in the past for some missions employing only magnetic torquer
bars as actuators. A somewhat better approach is bang-bang plus deadband
control. As with bang-bang, there are only three command torque values, but
the non-zero values are only commanded when the magnitude of the error
exceeds a threshold. The deadband protects against whipsawing effects by
simply driving the error into a “close enough for government work” region
rather than aiming at attaining “perfect” error reduction. Sometimes even
more protection against unnecessary, wasteful torquing is provided through
the specification of two sets of limits. A hysteresis construction of this sort
will support an algorithm that only corrects the error until the error gets be-
low a lower limit and, once settled, doesn’t start correcting again until the
error rises above a higher limit. This bang-bang with deadband and hystere-
sis control approach is often used on GSFC missions where thrusters supply
the control torques.

11.2.2 Proportional Control

As mentioned previously, the system response under proportional control
is a function of the gain. As the gain is increased, the system responsive-
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ness improves, i.e., the response time decreases. However, if the gain is too
high, high frequency oscillations with large overshoots can occur and the
system can become unstable. That’s because proportional control can be too
responsive to the instantaneous error term, which may be greatly corrupted
by noise. So instead of convergence to a desired value, you may end up with
wild oscillations that fail to converge at all. On the other hand, if the gain
is too small, proportional control will not be responsive enough to the er-
ror signals that must be nulled and the system again can go unstable. The
bottom line is that there’s a limit to the amount of error you can take out
using proportional control alone, hence the need to introduce other, more
sophisticated, feedback devices.

11.2.3 Proportional-Derivative Control

If the biggest problem with proportional control is that when the gain is too
high, the control law becomes “twitchy” (i.e., responds too quickly and too
massively), a logical first step would be to add in a term that slows the re-
sponse down, without having to reduce the gain. Recall from our harmonic
oscillator and L-R-C circuit examples that the term supplying the damping
in the differential equation is the first derivative term (first derivative of po-
sition for the harmonic oscillator, first derivative of charge for the L-R-C cir-
cuit). So if we add a derivative term, also called a rate term, to the mix, we
should introduce a damping effect that will reduce oscillations originating
from the proportional term, thereby improving stability. This kind of control
law is called proportional-derivative (PD). When undamped, the system oscil-
lates without restraint, i.e., you have pure proportional control. As damping
is added, overshoot is reduced and oscillations are decreased. If the system
is overdamped, overshoots and oscillations are eliminated, but system re-
sponse will be slow, or even unable to reduce the steady-state error to an
acceptable value. If underdamped, the system will oscillate with decreas-
ing amplitude, gradually reaching steady state. Figure 10.4 shows typical
performance for an underdamped PD control law. If the system is critically
damped, you’ll hit the target perfectly, going straight to steady-state with-
out overshoot, undershoot, or oscillations. So PD control, if the damping is
set properly, sounds at first like a pretty good deal. However, because the
derivative term is differencing error signals, a PD can undesirably amplify
high frequency noise. Also, as mentioned earlier, the derivative term is in-
sensitive to steady-state error, so a PD can leave you with a large uncorrected
error at the end. Nevertheless, PDs have been used in flight, as for example
with missions utilizing gyros for attitude error and rate information, and
reaction wheels for control torque application.

11.2.4 Proportional-Integral-Derivative Control

To deal with the problem of large uncorrected steady-state error, we need to
add more sophistication and move up in class to a full-fledged proportional-
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integral-derivative (PID) controller described earlier. Unfortunately, the im-
provement can come at the cost of reduced stability. In our attitude control
applications, this problem can display itself in actuator saturation. If too
large an error is detected, the control torque will be limited since control ac-
tuators have maximum output capabilities (i.e., the actuator will saturate).
Because the commanded torque is limited, the error signal cannot be zeroed
and the integral term will continue to grow. If saturation continues for an
extended duration, the integral term will therefore grow very large. After
saturation has ceased, you’ll still have a very large integral term, which can
produce large overshoots even though the current instantaneous error sig-
nal now is not very big. One solution to this problem is to stop integrating
as long as the actuator is saturated. In addition to its ability to reduce the
steady-state error, a PID provides a generally higher level of flexibility sim-
ply from its ability to tune three control parameters (the gain, integral time,
and derivative time). For example, increasing Kp or Ki allows you to reduce
system errors, although potentially at the risk of damaging stability. And
increasing damping by increasing Kd can help increase stability.

11.3 Hubble Space Telescope Pointing Control Law

Section 11.2 provides a reasonably accurate (albeit simplified) description of
basic control law processing for many NASA missions, with Figure 11.2a/b
capturing the main highlights for most LEO missions (well, ignoring those
that also use thrusters). We’d like now to look in a bit more detail at a mis-
sion with more-than-generic pointing requirements, i.e., the Hubble Space
Telescope (HST). We’re not about to subject you to the HST control law in
all of its detail (which can be pretty intimidating), but there are some extra
details worth discussing at a high level.

The sensors of interest for HST pointing control are its three fixed-head
star trackers (FHSTs), three fine guidance sensors (FGSs), and its gyroscopes.
The actuators are its reactions wheels (RWs) and magnetic torquer bars. Of
these five components, only the FGSs are unique to HST. The FGSs sample
light from the HST primary optical system, thereby taking full advantage of
the telescope’s light gathering ability and resolution. Each FGS full field-of-
view (FOV) consists of an arc around the main optical axis with an azimuthal
range of 82 degrees and a radial range extending from ∼ 10 to 14 arcminutes.
The three FGS FOVs (would you prefer FsOV?) together form a three-quarter
annulus (more-or-less a horse-shoe shape), interior to which all of the HST
science instrument FOVs reside. The angular area of the FGS FOVs combined
is only about 0.026 square degrees, in contrast to each 8◦×8◦ FHST FOV. The
magnitude range for guide stars usable by the FGSs is ∼ 9 to 16mV . When
fully calibrated, the FGSs have an accuracy for determining relative star po-
sition of ∼ 0.003 arcsecond, though they must be regularly recalibrated to
preserve this measurement accuracy. This high-precision is possible based
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on the FGS design as an amplitude interferometer using Koesters prisms
(don’t worry about what they are, though you can find discussions on the
web) combined with photomultiplier tubes. It may be compared with HST’s
optical resolution (∼ 0.050 arcsecond) and the FHST measurement accuracy
(∼ 20 arcseconds).

An FGS can measure the position of only one star at a time. Each FGS
has a 5 × 5-arcsecond instantaneous FOV (IFOV) that can be commanded to
a selected position within the FGS full FOV. The FGS sees the star if it falls
within the IFOV. A star image falling within the inner 0.020 arcsecond of
the IFOV will produce a significant interferometric signal. The FGS is said
to be in “fine lock” when so measuring a star’s direction. A second mode of
FGS operation, “coarse track”, is also available. In this mode, the center of
the IFOV is commanded to rotate about the true star position in such a way
that the edges of the IFOV cut across the image of the star in a symmetric
pattern (no interferometric processing). The accuracy of determining star
positions using coarse track mode is ∼ 0.020 arcsecond. Coarse track mode is
less sensitive to spacecraft jitter than is fine lock mode, particularly for faint
stars; it is available to support science observations in situations in which
high pointing precision is not required.

With that overview of FGS functionality under your belts, let’s now turn
to the functioning of the HST control system. Let’s start with HST having
just completed an observation and about to move on to another at a new de-
sired target, typically in some quite different direction in the sky. The first
task is to reorient the observatory. There is a problem, however; if the obser-
vatory were commanded to swing as quickly as possible to the new pointing,
with nearly instantaneous acceleration and deceleration, the sudden start
and stop would induce an overall ringing of the spacecraft structure that
would take considerable time to die out, thereby making it impossible for
the FGSs to immediately lock onto guide stars (thereby delaying the obser-
vation), and also blurring science images even if FGS lock could be obtained.
To avoid (or at least minimize) this structural ringing, HST follows a smooth
slew profile when changing attitude, with no discontinuous changes in angu-
lar acceleration anywhere along the way. The slew profile, characterized by a
small number of parameters (slew angle, maximum rate, maximum accelera-
tion, maximum acceleration derivative [a.k.a., jerk]), is computed in the form
of desired slew angle and rate as smooth, analytic, functions of time. HST’s
control logic then uses gyro-only measurements to determine true rate and
propagated attitude through the slew. These measurements are then com-
pared at each moment through the slew with the profile-specified desired
rate and attitude to generate rate and attitude errors for use in PD control
law processing. (In Figure 11.2a, imagine the star tracker(s) temporarily in-
active, the desired attitude computed onboard as a function of time since
slew start, and the PID control law replaced with a PD law.)

There is a further bit of sophistication that some satellite control laws,
including HST’s, apply to further reduce jitter introduced by slewing. Recall
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our earlier discussion of how the intrinsic staleness of observations results
in a lag in control law response, and how this lag itself results in control
errors at frequencies comparable to the control cycle frequency and above. To
somewhat suppress such lag-induced noise, the HST control law adds onto
its PD-computed torque an extra “feed-forward” torque based upon the slew
profile acceleration. Without the feed-forward, the control law could only
respond to errors after the fact and would tend to overshoot a bit whenever
the desired (profiled) rate changed. By applying feed-forward, the control
law is able to anticipate changes in rate as they are needed, thereby reducing
the PD response to mere tweaks to an otherwise open-loop commanding of
the slew. (So the control law box in Figure 11.2a actually becomes for slew
processing “PD Control Law with Feed Forward.”)

Upon arrival at the new (i.e., post-slew) attitude, the HST star trackers
are engaged to estimate any actual attitude error that may have developed
over the course of the slew as a consequence of any miscalibration of the
gyroscopes. The HST FHSTs are 1970s technology, so they don’t have the
smarts to determine attitude on their own. What really happens is that the
ground-based mission scheduling system will have determined for each of
two FHSTs where an isolatable bright star should appear when the slew is
complete. The onboard logic then compares these predicted positions with
the observed positions for the two stars and generates a small attitude adjust-
ment quaternion to apply to the post-slew attitude estimate that integration
of the gyro data had produced. With the attitude estimate corrected, the de-
sired attitude known, the control law uses gyro data as input to remove the
residual post-slew error. (So we have another variation on 11.2a, now with
the star trackers active for a single cycle, and the “desired attitude” trans-
formed to a specification of what the trackers should observe.)

So, with the telescope having completed its slew and post-slew adjust-
ment, it is then pointing in nearly the proper direction for science, to within
the accuracy of the FHSTs and their alignment calibration with the FGSs.
Scientists with precise FGS FOV maps will have selected an isolatable guide
star for each of two FGSs (sometimes just one) that can be placed in appro-
priate places in the FGS FOVs such that the desired science target will fall in
a desired location in the science instrument FOV. However, given the FHST
accuracy of ∼ 20 arcseconds, and the FGS IFOV size only 5×5 arcseconds, the
selected guide stars will typically not immediately be within the FGS IFOVs.
The FGSs are therefore commanded to execute spiral search patterns with
the IFOVs until the stars are found (a few 10s of seconds), after which they
are commanded to transition to coarse track, followed usually by fine lock.
For our purposes, it doesn’t really matter whether coarse track or fine lock is
used. (The logic of this paragraph would result in a number of variations on
Figure 11.2a: (a) holding spacecraft attitude fixed based on gyro data while
simultaneously controlling the FGS IFOV search for the guide stars, (b) a
post-search attitude adjustment analogous to the post-slew attitude adjust-
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ment, and finally maybe (c) again holding the attitude fixed using gyro data
while simultaneously executing the FGS fine lock procedure.)

With guide star lock established, the next step for the FSW is to compare
the observed positions of the guide stars with the desired FGS coordinates
that the scientist had selected to determine the attitude error in both point-
ing and roll if two guide stars are being used, or just pointing if only one
guide star was specified. With the attitude error determined, the FSW com-
mands a small slew to move the telescope to put the guide stars where they
need to be to get the science target where it belongs in the science instrument
FOV. Sound familiar? This is basically (at least on a logical level) just a repeat
of the problem of correcting the post-slew attitude using FHST data. There
are a few complications for how this is realized – for example, the optimal
attitude for finding the guide stars in the FGS fields is generally not exactly
where the telescope needs to be pointing for science, so there may be some
extra pointing tweaks along the way – but you get the general idea.

There is a complication on “the general idea.” Recall our discussion of
velocity aberration from section 6.6; the apparent position of a star shifts by
an amount in radians of ∼ (v/c)sin(θ), where v is the velocity of the space-
craft relative to the Sun, and θ is the angle between the direction to the star
and the direction of spacecraft velocity. Motion of HST about the Earth, of
Earth about the Earth/Moon center-of-mass, and of the Earth/Moon center-
of-mass about the Sun all contribute to velocity at a level significant relative
to HST measurement accuracy; indeed, the accuracy requirements are such
that the computations must be done using Einstein’s relativity theory. The
largest contribution to the amplitude of the velocity is the motion about the
Sun (v/c ≈ 20 arcseconds, with a period of 1 year), but the largest contribu-
tion to the rate of change of velocity is the motion about the Earth (v/c ≈ 5
arcseconds, with period ∼ 90 minutes). Over the course of a single orbit, HST
needs to execute a small oscillation in pointing, roughly through an ellipse of
size 5 arcseconds, to keep proper pointing at the science target. Furthermore,
because of the small differences in θ for the guide stars vs. the science target,
although the guide stars and target object appear to move in lock step at the
arcsecond-level, there are slight differences at the level of a few tens of mil-
liarcseconds. To keep the target properly positioned, the desired guide star
tracks follow small ellipses of semi-major axis ∼ 40 milliarcseconds relative
to the FGS FOVs, this effect superimposed on top of the larger 5-arcsecond
elliptical motion. So, cast in control law parlance, the PID components of the
control law work on FGS errors relative to those desired 40-milliarcsecond
elliptical trajectories, while a feed-forward torque component is applied to
the reaction wheels to open-loop follow the bulk of the 5 arcsecond motion.
(Yes, there are further variations on Figure 11.2a, but at this point consider
it an exercise for the reader to think through these changes. By the way, all
these variations would be [in fact, were] manifest using Z-transform symbol-
ogy in the HST control diagrams provided by the HST system engineers at
Lockheed-Martin.)



228 11 Control Laws: Attitude Applications

Note the “I” in PID in the previous paragraph. With the FGSs continu-
ously engaged, use of an integral term on the FGS error signal during this
process allows the control system to correct for uncompensated gyro drift
bias. The astute among you, those that were paying attention to our dis-
cussion of the attitude+gyro-rate recursive (Kalman) filter (c.f. Chapter 7),
might ask whether keeping the gyro bias well calibrated was suppose to
have been the job of a Kalman filter. Well, it turns out that HST doesn’t
use an optimal, recursive least-squares (Kalman) filter for attitude estima-
tion. With exception of the control law integral term, the HST control law
uses only instantaneous, unfiltered FGS measurements. This method does
not yield the statistically optimized results of a Kalman filter, but enables
the generation of more compact flight code than would have been true of a
Kalman approach, a vital concern given HST’s narrow CPU and storage mar-
gins with its original flight computer. Besides compensating for gyro drift
errors, the integral term also attenuates low-frequency disturbance torques,
such as gravity gradient torque. To avoid potentially introducing a large er-
ror at a new science target, the HST FSW resets the integral term to zero
whenever the spacecraft slews to a new attitude.

11.4 Control Law Tuning

Now that we’ve examined an attitude control law that worked on-orbit (al-
though required post-launch modification due to unexpected solar array dy-
namic behavior), let’s look at how you go about tuning a control law pre-
launch to work on-orbit. First, you need to specify the system performance
requirements that must be satisfied. Expressed in the time domain, that
means defining values for the desired peak time or rise time, maximum over-
shoot, settling time (for example, for a step input), and maximum steady-
state error (look back at Figure 10.4 for a pictorial representation of these
parameters).

The most natural first approach to take in satisfying these requirements is
the PID, with which you have available three free parameters (proportional
(Kp), integral (Ki), and derivative (Kd)) for adjustment in order to achieve
your goals. Specifically, if the rise time is too slow, you can increaseKp, which
will also raise the natural frequency. To improve stability and decrease over-
shoot, you can increase Kd , thereby increasing the damping effect. If you’ve
got a problem with a transient that persists too long, you can move the pole
to the left (i.e., make the real part more negative) by appropriate adjustments
to Kp and Kd . And to reduce steady-state errors, you can increase Kp or de-
crease Ki . If none of these kinds of changes to the three free parameters gets
the job done, the next logical thing to try is adding a compensating network,
also called a filter. This was the approach used to deal with HST’s unexpected
solar array “twanging”, which resulted from sudden differential heating or
cooling of the arrays as HST made night-to-day or day-to-night transitions.
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To finish off this chapter, we’ll examine a few such filters qualitatively, star-
ing with a generic first order filter.

So, what is this notion of filter order? The order of a filter is the highest
polynomial order of either the numerator or denominator of the associated
transfer function. Thus a first order filter transfer function can be written in
the form:

G(s) = K(s+ z)/(s+ p) (11.1)

where K is a gain, and z and p are the negatives of the filter transfer function
zero and pole, respectively. We assume for this discussion that both z and
p are both real and positive. (Recall that if the real part of p were negative,
than the associated pole would be positive, and the filter would be unstable.)
We’ll also assume s = iω, i.e., we’ll be concentrating on the effect of a pure
sine wave input. G/K can be written as

G(ω)/K = (z+ iω)(p − iω)/(p2 +ω2)

= ((zp+ω2) + iω(p − z))/(p2 +ω2) (11.2)

for which the magnitude and phase are

M(ω) = (((zp+ω2)2 +ω2(p − z)2)/(p2 +ω2)2)1/2 (11.3)

Φ(ω) = tan−1(ω(p − z)/(zp+ω2)) (11.4)

There are two distinctly different behaviors, depending on whether z < p
or p < z. In the former case where z < p, (see Figure 11.3), M(ω) starts out
small (at z/p) for ω near 0, increases slowly until ω becomes comparable to
z, increases relatively quickly for ω between z and p, and then asymptoti-
cally approaches 1 for large ω. Meanwhile, Φ(ω) starts out at 0, increases
slowly until ω becomes comparable to z, changes relatively quickly between
z and p (going through a maximum at ω = (zp)1/2), and then asymptotically
returns to 0 for largeω. This behavior is both high-pass and phase-lead, with
the phase-lead behavior pertaining particularly for the region between z and
p. In this way the filter behavior is qualitatively similar to the effects of a
derivative component (simple multiplication by s).

Relative to the four performance requirements we’re trying to satisfy, a
phase-lead filter will lower rise time and decrease transient overshoot. In
many ways, a phase-lead filter acts like a PD control law, but alleviates the
high frequency amplification characteristic of a PD. Since you can keep the
gain lower at high frequency, a phase-lead filter will make the control law
less sensitive to sensor noise. You can attenuate the noise still further by
adding more than one pole. Reduction of the high frequency gain by adding
poles is also a way to avoid possible resonances in the higher frequency
regions, a technique called amplitude stabilization. There’s also a technique
called phase stabilization that, for cases where a resonance frequency location
is well known, reduces the gain at that frequency with a notch filter, which
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log(ω) 

z = 1; p = 10 M(ω) 

Φ(ω) 

Fig. 11.3. Example of a first-order, high-pass, phase-lead filter.

we’ll discuss later. Note that some of these potential high frequency reso-
nance problems take care of themselves in real life because high frequency
modes require a lot of energy to get excited (i.e., at high enough frequen-
cies, neither the ACS nor external perturbations can provide enough energy
to get the mode excited). In general, the phase-lead filter gain is tuned to
accomplish two objectives. First, you must have a minimum low-frequency
gain to reduce the steady-state error. Second, the high-frequency gain must
be constrained to a maximum value in order to enable acceptable noise per-
formance and to ensure a low probability for instabilities arising from plant
modeling errors.

Let’s now consider the case where p < z (see Figure 11.4). The effect is
qualitatively a mirror image of that seen for the phase-lead filter previously
discussed. M(ω) starts out large (at z/p) for ω near 0, decreases slowly until
ω becomes comparable to p, decreases relatively quickly for ω between p
and z, and then asymptotically approaches 1 for large ω. Meanwhile, Φ(ω)
starts out at 0, decreases slowly until ω becomes comparable to p, changes
relatively quickly between p and z (going through a minimum atω = (zp)1/2),
and then asymptotically returns to 0 for large ω. This behavior is both low-
pass and phase-lag, with the phase-lag behavior pertaining particularly for
the region between p and z. In this way the filter behavior is qualitatively
similar to the effects of a integral component (simple division by s).

A phase-lag filter acts like a PI control law, but when used in conjunc-
tion with a PI can improve the system stability. Since a phase-lag filter acts
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Fig. 11.4. Example of a first-order, low-pass, phase-lag filter.

like a PI and a phase-lead filter acts like a PD, putting the two filters to-
gether should (and does) give you something with the characteristics of a
PID, which is why a PID sometimes is called a lead-lag filter. Lastly, by re-
ducing the phase-lag filter’s high frequency gain you can improve the phase
margin, and by increasing the low frequency gain you can obtain better error
reduction characteristics.

Assuming that you like the frequency space behavior of a first order filter
that you have in mind, you might reasonably ask how to realize it in time
space. Let vi(t) and vo(t) be your input and output signals respectively, with
corresponding Laplace transforms Vi(s) and Vo(s). Equation 11.1 implies

Vo(s)(s+ p) = KVi(s)(s+ z) (11.5)

for which the inverse Laplace transform yields

dvo(t)/dt + pvo(t) = K(dvi(t)/dt + zvi(t)) (11.6a)

vo(t) = [K(dvi(t)/dt + zvi(t)− dvo(t)/dt] /p (11.6b)

Note the inclusion of a (dvo(t)/dt) term on the right-hand side; to con-
struct a filter of this form requires feedback of the derivative of the output
back into the filter. This may require some iteration to achieve. Another vari-
ation would be to write equation 11.5 as

Vo(s)(1 + p/s) = KVi(s)(1 + z/s) (11.7)
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for which the inverse Laplace transform yields

Vo(t) + p
∫
vodt = K(vi(t) +

∫
vidt) (11.8a)

Vo(t) = K(Vi(t) + z
∫
vidt)− p

∫
vodt (11.8b)

One still needs feedback of the output signal into the filter, but it may prove
more convenient to realize in this integral form.

Although the easiest to analyze, first order filters don’t have a lock on the
phase-lead (high-pass), or phase-lag (low-pass) behavior. One can adjust the
filter behavior by increasing the order of the filter, adding extra zero and pole
terms as needed. The HST solar array motion compensator, for example, was
a sixth order filter. For either low-pass or high-pass filters, one can sharpen
the cut-off/cut-on edge by use of progressively higher order terms. (Butter-
worth1 is the name associated with low-pass filters that are maximally flat
(for a given order) up to a selected cut-off frequency, and thereafter drop
to zero very quickly.) One can combine low-pass and high-pass filters into
a “notch” filter (one that suppresses signals within some selected frequency
band), a “band-pass” filter (one that enhances a signal within a selected fre-
quency band), or more complex variations on the theme. For example, if the
satellite structure has certain characteristic frequencies at which it would
naturally tend to ring if those frequencies were excited, one may want to
modify one’s preliminary PID control law design with a set of notch filters to
suppress generation of reaction wheel torque commands near those frequen-
cies to suppress excitation of such ringing. Alternatively, if an “outside” sys-
tem occasionally imposes a disturbance on the satellite at specific frequen-
cies (e.g., the HST solar arrays occasionally shaking the observatory body),
one may want to add enhanced responsivity at those frequencies (a set of
band-enhancing filters) to move such disturbances quickly from the body to
the reaction wheels.

Our discussion of control law and filter transfer functions has all been
simplified via the use of Laplace transforms and the implied sensitivity to
arbitrarily high frequencies. In practice, satellite sensors are read discretely
and control law generated commands are issued discretely. The satellite is
blind to, and unable to compensate for, disturbances with frequencies at and
above ∼ 1/(2π∆t), where ∆t is the cycle time for the attitude control system.
Even at slightly lower frequencies, there will be lag in control law responsiv-
ity of order ∆t (not to be confused with phase-lag discussed above). As much
as filter order and the locations of various poles and zeroes, an appropriate
selection of ∆t must be considered part of control law design.

1S. Butterworth, On the Theory of Filter Amplifiers, Wireless Engineer, vol. 7,
1930, pp. 536-541.
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Mission Characteristics

Our final chapter is largely a tabular listing (see Tables 12.1 to 12.8 at the end
of the chapter) of the characteristics of four mission types, namely celestial-
pointers, Earth-pointers, “fixed”-pointers, and survey missions. Probably the
most relevant information (with respect to relating the way the spacecraft
has been built and launched in order to satisfy its mission requirements) is
provided in

1. Table 12-2: Pointing Behavior (really just another way of describing the
mission categories)

2. Table 12-3: Pointing Accuracy (strongly correlates with mission expense)
3. Table 12-4: Orbit Characteristics (dictated by science needs or launch

vehicle cost budget)
4. Table 12-5: Orbit Modeling Accuracy (typically most demanding for

nadir-pointers such as LEO Earth-pointers that image the Earth)

But for folks who like a little prose along with the dry data, we’ve also in-
cluded discussion in the following subsections on

1. how mission orbits are selected
2. how celestial-pointers compare with nadir-pointers (specifically, Earth-

pointers)
3. how safemodes and rate-nulling modes work
4. how mission attitude is acquired

12.1 Mission Orbit Selection

One of the earliest key decisions in mission design is selection of the space-
craft’s orbit. Most of the GSFC missions are launched into one of three ba-
sic orbit types, Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO),
and Earth-Sun Lagrange Point Orbit. With the exceptions of missions whose
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orbits are selected to satisfy special science needs, many GSFC celestial-
pointers end up in near-circular LEO orbits having inclinations near 28.5◦.
That orbit is the “cheapest” you can get, from a launch vehicle cost stand-
point, if you launch due-East from Kennedy Space Flight Center (KSC),
whose latitude is 28.5◦N. The altitude of the orbit is usually between about
500 km and 600 km, high enough to get you away from the worst of the at-
mospheric drag, but low enough to avoid the Van Allen radiation belts and
to be (well, to have been) serviceable by the Space Shuttle. The Hubble Space
Telescope (HST), Compton Gamma-ray Observatory (CGRO), and Rossi X-
ray Timing Explorer (RXTE) are good examples of spacecraft that fall in this
category. The downside to the cheap LEO orbit is that the scientific instru-
ments will often be blocked (or occulted) by the Earth, reducing operational
efficiency. Also, the spacecraft will regularly cycle between orbit day and
orbit night, which induces large temperature fluctuations; communications
will suffer frequent outages even if the Tracking and Data Relay Satellite
System (TDRSS) is utilized; and after a few years the spacecraft will need
an orbit re-boost to continue its mission (or a controlled de-orbit to avoid
hitting anything important, like your house).

To deal with the communications problem, the International Ultravio-
let Explorer (IUE) was placed in a GEO elliptical orbit, which provided
round-the-clock communications opportunities, thereby enabling realtime
ground scheduling and operation, colloquially referred to as “joystick” op-
eration. “Joystick” in this context means that IUE observations were sched-
uled within “block time”, as is the case for ground-based observatories. That
system allowed the astronomer to issue commands in realtime to perform
science within the time block assigned to him, the only condition being that
he return the spacecraft to a standard configuration at the end of his allot-
ted time. GEO also can increase a spacecraft’s operational lifetime (drag is
very low) and places the spacecraft above the Van Allen belts. Sometimes
GEO isn’t far enough away. To avoid Earth shine and infrared radiation from
Earth, the James Webb Space Telescope (JWST) will orbit the second Earth-
Sun Lagrange point (L2) (more on that later), eliminating the occultation
problem and ensuring a benign thermal environment. Typically, the orbit
knowledge and control accuracies for these missions are not very tight; atti-
tude accuracy requirements are the more important concerns.

By contrast, Earth-pointers (because their imaging devices follow their
orbital “footprint”) tend to be much concerned about the details of the or-
bit, and the accuracy with which the orbit is known and controlled. In or-
der to maintain consistent lighting, temperature, and visual (vis-a-vis cloud
cover) conditions, LEO Earth-pointers tend towards Sun-synchronous orbits,
i.e., near-polar orbits, whose inclination and altitude are set to cause the or-
bital plane to follow the Sun’s apparent motion. The Earth Observing Sys-
tem (EOS) series and Landsat series are good examples of imaging spacecraft
whose Sun synchronous orbits ensure consistency between multiple observa-
tions taken over several repeat cycles. LEO altitudes also have the advantage
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of enabling smaller, cheaper optics (i.e., the closer you are to what you’re
photographing, the smaller the lens needs to be to obtain the same resolu-
tion). On the downside, as a Sun-synchronous orbit rotates relative to the
(also) rotating Earth below, the time between observations of the same target
will typically be about a couple of weeks, not a good number if you want to
watch the development of a storm front.

For those kinds of applications, a GEO orbit is a much better idea. At
GEO, an Earth-pointer can image the same region of the Earth 24 hours per
day. And since it’s hanging over the same point on the Earth’s surface, com-
munications can also be continuous. A good example of this kind of mission
is the Geostationary Operational Environmental Satellite (GOES) series. Of
course, a GOES orbits much further from the Earth’s surface (over 30,000 km
further) than a LEO Earth-pointer, so its optics need to be much more pow-
erful and expensive, and it needs more delta-V (i.e., change in velocity) to get
on-station. However, although a GEO Earth-pointer has an excellent view of
the low latitudes (being in an equatorial orbit, i.e., having inclination zero),
its view of the high latitudes will be pretty poor. So GEO is a great orbit
for U.S. communications satellites (e.g., the TDRS series), but is a bad orbit
for Russian communications satellites. Their communications spacecraft are
placed in Molniya orbits, whose inclinations are selected to “freeze” perigee
at a desirable location. Specifically, to service Russian users best, perigee is
frozen in the southern hemisphere. The orbit then is made extremely ellipti-
cal so that most of the potential contact time is in the high northern latitudes.
Other advantages are that the delta-V is lower than would be required for a
circular orbit having the same apogee altitude, and the high eccentricity (for
other missions) allows sampling of a wider range of altitudes. Geometry is
also the name of the game for an Earth-pointer orbiting the first Earth-Sun
Lagrange point (L1). A satellite at L1 can view a sunlit Earth 24 hours per
day. It also provides a unique geometry for viewing the action of sunlight on
the Earth.

Perhaps Earth-pointers at L1 might more properly be listed under the
third category of mission, the “fixed”-pointers. That’s because unlike space-
craft in LEO or GEO orbits, Earth-pointers at L1 do not execute the charac-
teristic 1 revolution per orbit (1 RPO) motion required to keep an imaging
instrument pointed along the spacecraft’s nadir vector. A 1 RPO motion for
a LEO spacecraft means the attitude rotates with a period of between 96 and
100 minutes, while for a GEO the period is 24 hours. But as viewed from
inertial space, the line defined by the Sun, L1, and Earth completes a full
rotation about the Sun over the course of a year. So for an Earth-pointer at
L1 (ignoring the complication of the halo orbit), the attitude of the spacecraft
only needs to rotate 360◦ over a one year period to stay aligned with the nadir
vector, a sufficiently slow rotation that for control purposes we can consider
the attitude to be fixed. The inverse of this situation is that for the Solar and
Heliospheric Observatory (SOHO) spacecraft, which looked “up” at the Sun
from L1 instead of “down” to Earth as the Triana mission was intended to.
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(Triana was cancelled near the end of the implementation phase, but came
back rechristened as the Deep Space Climate Observatory (DSCOVR).) An-
other “Sun worshipper” was the Solar Maximum Mission (SMM), which oc-
cupied a LEO, mid-inclination, near-circular orbit. Also in the fixed-pointing
category is the ST-5 mission, for which three spin-stabilized spacecraft were
launched into a highly elliptical, high altitude orbit to enable sampling of
the entire geomagnetic field over the mission lifetime.

The last of the four categories, the survey mission, is kind of an oddball
one for which we’ll only mention one example, the Wilkinson Microwave
Anisotropy Probe (WMAP). WMAP occupied an L2 halo orbit in order to
take advantage of L2’s benign thermal environment. Its attitude motion was
a combination of spin-axis rotation and spin-axis precession designed to
sample the microwave background of the entire celestial sphere at least twice
over the course of the mission’s minimum required lifetime.

Having touched on a fair number of different orbit types in the course of
discussing why the different types of missions end up in these orbits, let’s
do a little clean-up on a special, but increasingly popular, orbit type given
short shrift in the previous discussions, halo orbits about Lagrange points.
Lagrange points are points of stable or unstable equilibrium created by the
gravity of two celestial objects acting on a third object whose orbit is defined
relative to the other two. The way the physics works is that the gravitational
attraction of the two bodies combines to cancel the centrifugal acceleration
“felt” by the third body in the rotating reference frame in which the third
body appears stationary. Alternately, you can say that the object’s gravita-
tional potential energy exactly is canceled by its kinetic energy. For all the
Lagrange point missions discussed in this chapter, the two celestial objects
are the Sun and the Earth, while the third object is the spacecraft.

For any given pair of celestial objects, there will be five Lagrange points
(see Figure 12.1). Two of the points are located off-axis (L4 and L5). These
points exhibit stable equilibrium, i.e., a test mass placed at L4 or L5 sub-
jected to a small perturbative force will tend to return to its point of initial
placement. For the Sun-Jupiter system, the off-axis Lagrange points are natu-
ral “clumping” spots for the Trojan asteroids. The other three points (L1, L2,
L3) are located on the line connecting the two celestial bodies. These points
exhibit unstable equilibrium, i.e., a test mass placed at L1, L2, or L3 sub-
jected to a small perturbative force will tend to follow the force away from
its point of initial placement. For the Earth-Sun system, L1 and L2 are lo-
cated about 1.5 million km from the Earth, so the Moon is close enough to
both points to exert a significant perturbative force on any spacecraft located
there.

Since the axial symmetric Lagrange points are unstable, you can’t simply
place a spacecraft on the point and expect it to stay there. Instead, you place
the spacecraft in an orbit about the Lagrange point (which in that respect
plays the role of a small, imaginary central body), performing occasional,
regular stationkeeping maneuvers to maintain the orbit. This is the halo or-
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Fig. 12.1. The five Earth/Sun Lagrange Points. Note that the distances from Earth to
L1 and L2 are only about 1% of the distance from the Earth to the Sun.

bit referred to previously, which is an elliptical orbit that usually is tilted out
of the ecliptic plane in order to facilitate communications with a ground sta-
tion on the Earth. Typically, the halo orbital period is 6 months, with station-
keeping performed every 3 months. Although 1.5 million km seems pretty
far away, it’s still close enough that communications with spacecraft at L1
or L2 does not constitute a major challenge. And, as mentioned previously,
L1 and L2 offer many nice geometric advantages, including benign thermal
environments, lack of occultation issues, and (at L1) an uninterrupted view
of a sunlit Earth.

12.2 Celestial-pointers vs. Earth-pointers

Since most of GSFC’s missions nowadays fall into the celestial-pointer or
Earth-pointer categories, we’ll spend some time comparing the two mis-
sion types for a host of non-orbit related topics, including attitude behavior,
attitude sensor and actuator suites, and acquisition and safemode control
modes. The trademark attitude behavior of a celestial pointer is to slew to
a target, take observations, and then slew to the next target, which is why
they are sometimes called “point-and-shoot” missions. Depending on how
much time you need to spend photon-counting on target (a function of tar-
get intensity and scientific instrument design) and how large an area you’re
viewing at that target attitude, the slewing frequency can be as high as 20
times per day or as low as once every two weeks. But in practice, the atti-
tude behavior of a celestial-pointer is usually much more complicated than
a simple-minded point-and-shoot. For example, you don’t really point at a
celestial target; you actually point at the direction on the celestial sphere
from which light from the target appears to be arriving. That direction may
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be a function of velocity aberration, parallax, and science instrument char-
acteristics such as distortion. Also, because the target direction may not be
known with high enough accuracy to permit immediate post-slew observa-
tion, the spacecraft may instead slew to the target’s near-neighborhood and
then execute attitude scans or “dithers” in order to locate the target precisely
enough to permit target acquisition to proceed. Another complication (pri-
marily a scheduling issue) is that the target’s direction is defined relative to
the GCI reference frame, whose z-axis is the Earth’s spin axis. Unfortunately,
the Earth’s spin axis is not inertially fixed, so the target’s coordinates are time
dependent. Since the movement of the spin axis is very slow (precesses about
50 arcsec/year and nutates about 0.5 arcsec/year), this doesn’t mean you
have to adjust the pointing while viewing the target. It just means that you
have to define all quantities that “live” in the GCI frame, such as spacecraft
pointing, target coordinates, guide star information, and ephemeris data, to
be consistent with each other. Usually, the approach taken is to use the target
catalog and guide star catalog information as the standard, which nowadays
means defining everything with respect to how the GCI reference frame was
oriented relative to the “fixed” stars at the start of year 2000, taking into
account the precession but not the nutation.

Whereas celestial-pointers are usually trying to keep their attitude fixed,
Earth-pointers by contrast usually keep changing their attitude in order to
keep imaging the Earth beneath them. This produces their trademark 1 RPO
rotation of the boresight of spacecraft’s imaging instrument. For LEO or-
bits, the rotation rate is around 4 deg/min, while for GEO orbits the rate
is 15 deg/hr. However, the attitude behavior looks a lot more like a celestial-
pointer’s if you simply switch to a more appropriate frame of reference. For
a perfectly circular orbit, a natural set of orthogonal axes to pick places the
spacecraft x-axis (the roll axis) along its velocity, the y-axis (the pitch axis)
along negative orbit normal, and the z-axis (the yaw axis) along the nadir
vector. If the orbit is not perfectly circular, everything still works if you just
set the x-axis equal to the cross-product of y- and z-unit vectors. In this non-
inertial reference frame, an imaging instrument mounted on the body of the
spacecraft and aligned with the spacecraft z-axis will remain nadir-pointing
as the spacecraft orbits the Earth. For GEO Earth-pointers that are spin-
stabilized, the imaging instrument often is mounted on a despun section
that tracks the Earth, just as the spacecraft itself did in the previous exam-
ple. Although spin-stabilized spacecraft were very popular in the past (e.g.,
GOES-1 through GOES-6), the extremely high electrical power demands of
large modern spacecraft mitigate against spinners because body-mounted
solar cells on spinners are so much less efficient than an articulated solar
array. Some of the smaller, cheaper recent spacecraft, though, have found
spin-stabilization to constitute an effective trade (e.g., ST-5).

Whether your spacecraft is an Earth-pointer or celestial-pointer, in or-
der to achieve the attitude profiles described above, you need to be able
to measure the spacecraft’s attitude (or attitude change) to see if it’s what
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you want, and then must be able to change the spacecraft’s attitude if it
isn’t. Often you’ll see almost the same kinds of attitude sensors and actu-
ators on celestial-pointers and Earth-pointers. The choice of hardware usu-
ally relates more to the pointing accuracy requirements and the orbit occu-
pied by the spacecraft than to which way the spacecraft is looking (up or
down). But there are a few general differences that usually hold true. Since
a celestial-pointer looks up, not down, it doesn’t make much sense to fly
an Earth sensor on a celestial-pointer to support science operations directly,
although for some missions (the Chandra X-Ray Observatory (CXO), for ex-
ample) they have been included to facilitate initial orbital verification. On
the other hand, since what an Earth-pointer does for its science is look at the
Earth, flying an Earth sensor used to be mandatory. Nowadays, star tracker
hardware costs have dropped far enough that they are used along with space-
craft ephemerides to define for the FSW where the Earth is.

Similarities between the missions are much more common than the diff-
erences – a commonality that was exploited for significant cost savings when
the RXTE and Tropical Rainfall Measuring Mission (TRMM) spacecraft were
designed. Since both types of missions are dead if they don’t have electrical
power, both fly some sort of Sun sensor, if for no other reason than to be able
to find the Sun during safemode, and thereby be able to reorient to a power-
positive attitude. Medium to large missions of both types tend to utilize gy-
ros, tend to fly magnetometers and torquer bars when performing their sci-
ence at LEO altitudes, tend to use reaction wheels for primary attitude con-
trol, and include propulsion systems if maintaining a specific orbit to a rea-
sonable degree of accuracy is needed, or if their orbit is so high that thrusters
must be used for momentum dumping due to the ineffectiveness of torquer
bars in weak geomagnetic fields. Clearly orbit stationkeeping is much more
important for an Earth-pointer, where a specific footprint and target dis-
tance must be maintained, than for a celestial-pointer. Also, the hydrazine
that fuels the most common propulsion systems can be extremely corrosive
to some celestial-pointers’ optics. HST got around this problem by using the
Space Shuttle for orbit re-boosts, which were occasionally needed because of
HST’s LEO orbit. For those reasons, most Earth-pointers fly propulsion sys-
tems, while most LEO celestial-pointers do not. On the other hand, celestial
pointers tend to have the most demanding pointing accuracy requirements
because of the nature of the science targets they’re observing (e.g., X-ray
experiments such as the High Energy Astronomy Observatory-2 (HEAO-2),
RXTE, and CXO). So you almost always will see star trackers or fine error
sensors (FESs) included in a celestial-pointer’s attitude sensor suite.

12.3 Safemodes

Now that we’ve seen what sort of orbits are typical of the various missions,
and what sort of attitude sensor and actuator combinations are employed to
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support their science operations, let’s look at the flavors of safemode (i.e.,
a robust control mode used in response to onboard anomalies) flown on
celestial-pointers and Earth-pointers to help ensure they’re on-orbit long
enough to accomplish their respective tasks. The number and complexity
of safemodes implemented is largely a function of the mission’s expense and
the uniqueness of its science data. Missions that are cheap and whose sci-
ence data is fairly repeatable (e.g., a spacecraft that measures the geomag-
netic field over a period of years) typically just fly one or two safemodes. The
safemodes themselves tend to be simple in construction, and modest in goal.
The usual philosophy is just keep the bird alive. Don’t worry about losing
some science. Don’t try to “fly through” the anomaly. Just go into safemode,
let the ground analyze and solve the problem, then restart science again
when you’re sure everything’s okay. These sorts of bargain basement mis-
sions rarely are designed to handle more than one show-stopping failure, i.e.
they don’t provide protection against more than single-point failures.

Missions that are expensive and whose science data are unique often have
the assets to implement a layered series of safemodes. The mildest level of re-
sponse to an anomaly may not even be a safemode entry. There may instead
be an autonomous hardware reconfiguration designed to allow the space-
craft to continue making its science observations. If the spacecraft can’t fly
through the anomaly, there might be a transition to a fairly benign level of
safemode that expedites resumption of nominal operations after the ground
fixes the problem. At the lowest level of safemode, there will still be a safety
net mode whose sole intent is just to keep the spacecraft alive. Depending on
the nature of the hardware anomaly that has placed the spacecraft in these
dire straits, there may be several safety net modes, each tailored to a spe-
cific problem (e.g., zero-gyro for multiple gyro failures, spin-stabilized for
multiple wheel failures, and hardware safemode for processor failure). Some
of these safemodes may be designed to address multiple problems, i.e., they
may selectively protect against more than single-point failures.

For celestial-pointers, two popular safemodes are inertial hold and sun-
point; on much rarer occasions, you run into a celestial-pointer that utilizes
spin-stabilized safing. Inertial hold typically uses only reaction wheels and
gyros to maintain the spacecraft attitude at the pointing associated with the
onset of the anomaly. Since celestial-pointers typically follow a carefully or-
chestrated schedule, holding the current attitude (which, since it was a “le-
gal” observing attitude, is probably a safe one to be at) improves the chances
of being able to restart the interrupted science if it doesn’t take too long to
fix the problem, or at least facilitates intercepting the original mission sched-
ule. On one mission, RXTE, a more sophisticated version of inertial hold was
implemented called stellar hold. During early operations before the space-
craft was calibrated, RXTE used its stellar hold mode to process star tracker
position data without trying to identify the stars. RXTE dates back to a post-
FHST era but pre-quaternion star tracker era where ground-computed atti-
tudes were still needed to initialize the onboard attitude quaternion.
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Nowadays, advanced star trackers with “Lost-in-Space” capability ensure
that the spacecraft can always identify stars and compute their own attitude
autonomously. Although RXTE could not determine a fine attitude at this
point, the Kalman filter could be run with the processed star tracker data and
gyro data in order to calibrate the gyro drift bias inflight. That way, more re-
liable gyro data became available at an earlier stage of the mission, enabling
more accurate pointing. And since RXTE’s high-gain antennas (HGAs) could
be pointed using the FSW’s coarse attitude determination algorithm (Triad)
run with Sun sensor and magnetometer data, the initial unavailability of a
fine attitude did not deter use of the higher speed data links. Nowadays,
quaternion star trackers make this stellar hold mode superfluous. And the
implementation of inertial hold itself has become less frequent as missions
strive to reduce costs by reducing the number of spacecraft control modes.

Just about every mission type utilizes one or more forms of sunpoint safe
mode. In its most complicated form, sunpoint run in the main processor can
utilize sun sensor data (from either a fine or coarse sun sensor), with or with-
out gyro data. In its simplest form, sunpoint-based only on coarse sun sen-
sor data can be run in analog mode in a backup processor, although nowa-
days (to reduce costs) a separate Attitude Control Electronics (ACE) box may
be omitted. In any form, sunpoint is designed to keep the spacecraft in a
power-positive condition while satisfying system thermal constraints. Since
sunpoint also keeps a spacecraft axis pointed at the Sun (at least while the
spacecraft is in orbit day), communications should at least be predictable, if
not facilitated. There is no concern regarding how quickly transition from
sunpoint back to a science operational mode can be executed. The objective
is just to keep the spacecraft alive, maintaining autonomous control indefi-
nitely.

While sunpoint without gyros was designed as a response to a multiple
gyro failure problem, HST’s spin-stabilized safemode was intended to deal
with multiple reaction wheel failures. Spin-stabilized mode uses torque bars
and gyros to keep the spacecraft in a power-positive configuration that can
also support low data rate communication with the ground. Since HST is
(was) Shuttle-serviceable, spinning the spacecraft about one of its primary
moment axes supplies gyroscopic stability to help keep the spacecraft alive
until a Shuttle rescue could be organized. Usually, even for asset-rich mis-
sions, there is not enough funding to provide a spin-stabilized control mode
in the flight software prior to launch. But it may be developed after launch
in response to hardware failures experienced on-orbit, or if the mission is
long-lived enough (and well-staffed enough) to allow its development by a
long-term flight software maintenance team.

There are two other control mode types, rate-null mode and B-dot, that
are neither operational modes nor safemodes. They are instead designed to
reduce the unusually high body rates that may be experienced on separation
from the launch vehicle (also referred to as high tip-off rates), or suffered as a
result of a major propulsion system failure, such as a stuck-on thruster. The
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rate-null mode employed on both celestial-pointers and Earth-pointers uses
reaction wheels and gyros to null moderately high body rates, typically up
to the sizes of those arising from the gyro drift bias errors present at launch.
Since nearly all GSFC Earth-pointers fly a propulsion system, while many
GSFC LEO celestial-pointers do not, one difference between the two mis-
sion types is that Earth-pointers may also allow for a contingency thruster-
based rate-null mode as well. B-dot is almost exclusively for LEO missions,
either celestial-pointer or Earth-pointer. It uses torque bars and magnetome-
ters to reduce anomalously high body rates (incurred either on separation,
or following a thruster malfunction or venting) steadily, but slowly. The B-
dot control law works by assuming that any change in the magnetic field
measured by the magnetometers is due to body rates. Since the geomagnetic
field is actually changing as the spacecraft flies through it, B-dot does not re-
duce the body rates to zero, but instead creates a steady-state situation where
the spacecraft follows the geomagnetic field, resulting in a twice-orbital fre-
quency vehicle rotation rate. B-dot was created and first utilized to place
the SMM spacecraft in a controlled rotation state that kept it alive until a
Shuttle rescue mission could be scheduled, and facilitated its capture once
a Shuttle rendezvous was achieved. Following the SMM experience, B-dot
was included for many years as a standard control mode on most GSFC LEO
missions, often packaged with rate-null as a single rate-reducing mode.

12.4 Mission Attitude Acquisition

That covers the safemodes and the special modes designed to deal with the
high body rate conditions that can be experienced right after tip-off. These
control modes, along with the science operations modes, are usually all the
tools a celestial-pointer needs to be successful on-orbit. That’s because once
a celestial-pointer has been calibrated, it can point extremely accurately, and
the locations of the point-sized targets it needs to point to are known very
accurately as well. The situation with an Earth-pointer used to be a bit more
difficult. After separation (or after inflight anomalies producing large atti-
tude errors), an Earth-pointer had to “find” the Earth, which (given the way
a LEO-tuned Earth sensor works) was not necessarily a simple task, and had
to get the Earth sensor properly locked on the Earth to commence science ob-
servations. To get all this done, LEO Earth-pointers (such as EOS and Land-
sat) use a three-step process. First the Earth sensor needs to find the Earth,
which is accomplished by using coarse data from the Earth sensor quad-
rants to point the spacecraft yaw axis at the Earth. Data for control of body
rates (at this step, called Earth search mode) comes entirely from the gyros.
The moderate-level attitude errors remaining after Earth search mode has
successfully acquired the Earth are reduced in the next step, local vertical
acquisition (LVA) mode. The LVA control law (a PD type on Landsat-7) uses
data from both the Earth sensor and gyros to point the yaw axis at the Earth,
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and uses just Earth sensor data to control attitude errors about the other two
axes (roll and pitch). Rates about all three axes are controlled via data col-
lected just from the gyros. The final step is yaw gyro control (YGC), which
deals with the small pointing errors left over after a successful LVA. The
YGC control law (a PID on Landsat-7) maintains yaw-axis pointing towards
the Earth, and uses both Earth sensor and gyro data to measure attitude er-
rors and rate errors. Of course nowadays, if the Earth-pointer is flying an
advanced star tracker, the tracker provides the spacecraft attitude, the space-
craft ephemeris tells you where the Earth is, and the FSW can easily compute
the Earth-pointing attitude.

12.5 Spacecraft Comparisons

• Celestial Pointers
– JWST: 2018 (planned)
– RXTE: 1995
– HST: 1990
– CGRO: 1990

• Earth Pointers
– DSCOVR (Triana): 2015
– EOS-AM: 2000
– Landsat-7: 1999
– GOES D-F: Early 1980s

• Fixed Pointers
– ST-5: 2004
– SMM: 1980

• Sky Survey
– WMAP:2001

Table 12.1. Spacecraft comparisons: launch dates
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• Celestial Pointers
– JWST: small number of slews per day
– RXTE: slews up to 20 times per day
– HST: slews several times per day
– CGRO: slewed after about 2 weeks

• Earth Pointers
– DSCOVR (Triana): Earth pointing with small re-orientations
– EOS-AM: 1 RPO pitch option for Earth pointing
– Landsat-7: 1 RPO pitch option for Earth pointing
– GOES D-F: spin axis fixed at negative orbit normal

• Fixed Pointers
– ST-5: spin axis fixed normal to sunline
– SMM: Sun pointing with small re-orientations

• Sky Survey
– WMAP: spins at 0.5 rpm; precesses at 1 rev/hr;

half cone angle of 22.5◦;
maps celestial sphere twice per year

Table 12.2. Spacecraft comparisons: pointing behavior

• Celestial Pointers
– JWST: ∼ 0.005 arcsec (relative to guide stars)
– RXTE: control: 42 arcsec pitch and yaw; 60 arcsec roll (3σ );

knowledge: 8 arcsec pitch and yaw; 44 arcsec roll
– HST: ∼ 0.005 arcsec (relative to guide stars)
– CGRO: control: 0.28 deg/axis; determination: 0.024 deg/axis

• Earth Pointers
– DSCOVR (Triana): control: 0.05◦ pointing; 1◦ roll
– EOS-AM: required control: 150 arcsec/axis;

required knowledge: 90 arcsec/axis;
expected knowledge: ∼10 arcsec/axis

– Landsat-7: control: 180 arcsec/axis;
knowledge: 135 arcsec/axis

– GOES D-F: required accuracy for apogee motor firing: 2◦;
required accuracy in drift orbit: 0.5◦;
accuracy using image data: 0.1◦

• Fixed Pointers
– ST-5: controls spin axis to within 5◦ of ecliptic pole;

knowledge of spin axis: 1◦;
knowledge of spin phase: 1◦

– SMM: knowledge: 0.5 arcsec pitch and yaw; 0.1◦ roll
• Sky Survey

– WMAP: knowledge: 1.3 arcmin (RSS, 3σ )

Table 12.3. Spacecraft comparisons: pointing accuracy
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• Celestial Pointers
– JWST: L2 elliptical halo orbit
– RXTE: LEO, 23◦ inclination, near circular
– HST: LEO, 28.5◦ inclination, near circular
– CGRO: LEO, 28.5◦ inclination, near circular

• Earth Pointers
– DSCOVR (Triana): L1 elliptical halo orbit
– EOS-AM: Sun synchronous LEO, near polar, near circular
– Landsat-7: Sun synchronous LEO, near polar, near circular
– GOES D-F: Geostationary, equatorial, near-circular

• Fixed Pointers
– ST-5: 200 km × 35,790 km elliptical orbits;

3 spacecraft in constellation
– SMM: LEO; 28.5◦ inclination, near circular

• Sky Survey
– WMAP: L2 elliptical halo orbit

Table 12.4. Spacecraft comparisons: orbit characteristics

• Celestial Pointers
– JWST: requirements likely to be loose
– RXTE: 30 km over 1 day
– HST: 10 km over 1 day (actually good to about 2 km)
– CGRO: 3 km

• Earth Pointers
– DSCOVR (Triana): 100 km for Earth targeting
– EOS-AM: 150 m/axis Ground track repeatability (orbit control) 20 km
– Landsat-7: 20 m / axis
– GOES D-F: no OBC model

• Fixed Pointers
– ST-5: as needed to maintain spacing between spacecraft

• Sky Survey
– WMAP: 7500 km

Table 12.5. Spacecraft comparisons: orbit modeling accuracy requirements (3σ )
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• Celestial Pointers
– JWST: FGS, CCD ST, IRU, CSS
– RXTE: CCD ST, IRU, DSS, TAM, CSS
– HST: FGS, FHST, RGA, TAM, CSS
– CGRO: FHST, IRU, FSS, TAM, CSS

• Earth Pointers
– DSCOVR (Triana): CCD ST, MIMU, DSS, CSS
– EOS-AM: SSST, IRU, Earth Scanner Assembly (ESA), FSS, TAM, CSS
– Landsat-7: CSA, IMU, ESA, TAM, CSS
– GOES D-F: 5◦ FOV Earth sensor, 2-slit Sun sensor

• Fixed Pointers
– ST-5: 2-slit Sun sensor, TAM
– SMM: FHST, IRU, FSS, TAM, CSS

• Sky Survey
– WMAP: CCD ST, IRU, DSS, CSS

Table 12.6. Spacecraft comparisons: attitude sensors

• Celestial Pointers
– JWST: RWA, RCA
– RXTE: RWA, MT
– HST: RWA, MT
– CGRO: RWA, MT, RCA

• Earth Pointers
– DSCOVR (Triana): RWA, RCA
– EOS-AM: RWA, MT, RCA
– Landsat-7: RWA, MT, RCA
– GOES D-F: RCA, passive nutation damper

• Fixed Pointers
– ST-5:RCA, passive nutation damper
– SMM: RWA, MT

• Sky Survey
– WMAP: RWA, RCA

Table 12.7. Spacecraft Comparisons: attitude actuators
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• Celestial Pointers
– JWST: ground station
– RXTE: TDRSS
– HST: TDRSS
– CGRO: TDRSS

• Earth Pointers
– DSCOVR (Triana): ground stations
– EOS-AM: TDRSS and ground stations
– Landsat-7: ground stations
– GOES D-F: ground stations

• Fixed Pointers
– ST-5: ground stations
– SMM: ground stations

• Sky Survey
– WMAP: ground stations

Table 12.8. Spacecraft comparisons: telemetry capture
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Time Measurement Systems

There are many different systems for measuring time currently in use in
spacecraft attitude work - the least convenient of which is the Gregorian
calendar system common in civil use (years, months, days, hours, minutes,
and seconds). This civil system, while familiar, has the drawback of making
it difficult to find the time difference between two different dates and times.
It also makes it inconvenient to create plots that include a time axis, since
the months have different lengths.

One commonly used alternative method for measuring dates is the day
of year (DOY). In this system, one simply counts the number of days elapsed
during the current calendar year, with January 1 being DOY 1, and December
31 being DOY 365 (or 366 during leap year).

The day of year is a convenient scale when working with time intervals on
the order of a few weeks to a few months, but it has the disadvantage that it
rolls over to 1 at the beginning of each calendar year. For longer time periods
covering several years, a more convenient method for measuring dates is the
Julian Day (JD). The Julian Day is the total number of days elapsed since
noon on January 1, 4713 BC (this date being chosen for historical reasons).
As an example, January 1, 2000 at time 00:00 is Julian Day 2451544.5. (The
fraction 0.5 occurs because each new Julian Day starts at noon.) Julian Days
are very convenient, since they provide a continuous, uniform time scale,
and make it simple to compute the time elapsed between two dates; one
simply computes the difference between the Julian Days. Algorithms and
tables are available for converting dates on the standard Gregorian calendar
to the corresponding Julian Day and back. One may add a day fraction to the
Julian Day in order to include the time of day.

A variation of the Julian Day is the Modified Julian Day (MJD), which is
the Julian Day minus 2400000.5. The idea with the Modified Julian Day is to
discard the first couple of significant digits, which rarely change: JD 2400000
was in 1858, and JD 2500000 won’t be until the year 2132. Also notice that
the Modified Julian Day subtracts an extra fraction of 0.5 day from the Ju-
lian Day, so that the Modified Julian Day begins at midnight, just as dates
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in our civil calendar do. The Modified Julian Day was 0 at midnight at the
beginning of November 17, 1858.

Universal Time (UT) is a term that is sometimes used informally to mean
the same thing as Greenwich Mean Time (GMT), i.e. civil time in Greenwich,
England. More precisely, though, it refers to one of several different time
scales based on the rotation of the Earth. The Universal Time scale called
UT0 is a simple time scale based on the rotation of the Earth relative to the
distant stars, and depends on the location of the observer on the Earth. Time
scale UT1 is UT0 corrected for shifts in the longitude of the observer due
to polar motion (“Chandler wobble”) and is independent of the observer.
Another Universal Time scale called UT2 includes additional corrections,
but is seldom used.

International Atomic Time (TAI) is time based on cesium (atomic) clocks,
rather than on the rotation of the Earth. Since the Earth rotates at an irregular
rate, cesium clocks are a more reliable time standard than Earth rotation, and
are the basis for all precise time measurements. The TAI time scale is defined
so that TAI exactly equaled UT1 at the beginning of 1958; since then the two
time scales have drifted apart because of the Earth’s irregular rotation.

Terrestrial Time (TT), formerly known as Terrestrial Dynamical Time (TDT),
is also based on cesium clocks, and differs from TAI only by a constant:

T T = TAI + 32.184 sec (A.1)

The 32.184 second offset is included to make TT continuous with an ear-
lier time scale called Ephemeris Time (ET). At the beginning of 1958, ET was
32.184 seconds ahead of UT1 (and therefore also 32.184 seconds ahead of
TAI, since TAI and UT1 were equal at that instant), so this definition makes
TT continuous with ET.

Barycentric Dynamical Time (TDB) is a time scale that includes relativistic
corrections due to the motion of the Earth in the gravitational potential of
the solar system. TDB oscillates about TT with an amplitude of about 1.6
milliseconds and a period of one year.

An important aspect of TDB is that it appears in the definition of the
astronomical epoch called J2000, which is an instant in time used as a con-
venient reference point for many astronomical calculations. Epoch J2000 is
defined to be the instant of January 1, 2000, at 12:00:00 TDB. Since finding
the difference between a given time and epoch J2000 requires that both times
be measured on the same scale, it is useful to know the time of the instant of
epoch J2000 in several time scales, shown here:

• 12:00:00.000 TDB
• 11:59:27.816 TAI
• 11:58:55.816 UTC Julian Day 2451545.0

Coordinated Universal Time (UTC) is the time scale used as the basis for
our everyday civil time (corrected to the local time zone). UTC is a compro-
mise between the Universal Time scales based on Earth rotation and time
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scales based on the more precise cesium clocks. Due to the tidal drag on the
oceans due to the Moon, the Earth’s rotation is gradually slowing; this causes
the Earth’s rotation to drift with respect to time kept by cesium clocks. In or-
der to have a time scale that has the precision of an atomic clock, and is also
in step with the Earth’s rotation, UTC introduces extra leap seconds at irregu-
lar intervals, intended to keep UTC to within 0.9 seconds of UT1. When the
decision is made to introduce a leap second, an extra second is added at the
end of a day (generally a June 30 or December 31), which has the same ef-
fect as setting the clock back one second to allow the Earth’s rotation to catch
up. During a leap second, a clock will read 23:59:60 before rolling over to
00:00:00 of the following day. Leap seconds are introduced at irregular inter-
vals as needed, but on average occur about every 18 months. Announcements
of upcoming leap seconds are made by the International Earth Rotation Ser-
vice a few months in advance of their occurrence.

UTC is offset from TAI by the number of leap seconds LS that have oc-
curred up to that point:

UTC = TAI−LS (A.2)

UTC has the advantage of having both the precision of cesium clocks
and of being in step with the Earth’s rotation, but it has the disadvantage of
requiring the use of a table of leap seconds to convert to other time scales.
Also, since variations in the Earth’s rotation rate are unpredictable, it is not
possible to accurately express times in the UTC time scale more than a few
months in the future: there is no way of knowing how many leap seconds
may occur in the future, or when exactly they will occur. For that reason, it is
generally better to use some other time scale such as TAI to represent times
of future events (ephemeris predictions, for example).





B

Variation on Deriving the Kalman Gain

This appendix provides an alternative derivation of the Kalman equations,
alternative relative to the standard approach of minimizing the trace of the
covariance matrix,PX (see, e.g., Gelb1). For whatever reason, one of us has al-
ways been most comfortable with least-squares derivations that begin with a
loss function defined as a sum of normalized residuals. The following shows
an approach to deriving the Kalman equations based on minimizing such a
loss function. The target audience for this appendix is really folks comfort-
able with least-squares fitting, the use of the method of Lagrange multipliers
to impose constraints, and matrix inversion, i.e., a bit beyond the target au-
dience for the bulk of this book. We’re including it for completeness, and
because to the best of our knowledge it is not available elsewhere.

Let’s suppose we’ve got a state vector solution X0, and its associated co-
variance PX0

, obtained though whatever mechanism (e.g., a standard batch
least-squares based on minimization of a sum-of-weighted-residuals loss
function). We can pose the question of how X would change from X0 given
some hypothetical ideal (noise-free) measurement ZI . This is the standard
least squares problem subject to constraints, i.e., minimize

L(X) = [X−X0]T P −1
0 [X−X0] (B.1)

subject to the constraint set

X−HZI = 0 (B.2)

You can do this using the method of Lagrange multipliers2, which produces
the matrix equation (

PX−1
0 HT

H 0

)(
X
λ

)
=

(
P −1
X0

X0
ZI

)
(B.3)

1Applied Optimal Estimation, MIT Press, 1974, Arthur Gelb, et al
2If you’re not familiar with the method of Lagrange multipliers, see e.g., the

Wikipedia article at http://en.wikipedia.org/wiki/Lagrange_multipliers
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where λ is the set of Lagrange multipliers. The solution is

A =BC (B.4)

where

A =
(

X
λ

)
B =

PX0
−PX0

HT
[
HPX0

HT
]−1
HPX0

PX0
HT

[
HPX0

HT
]−1[

HPX0
HT

]−1
HPX0

−
[
HPX0

HT
]−1


C =

(
P −1
X0

X0
ZI

)
This yields for X:

X = [I −KH]X0 +KZI = X0 +K [ZI −Z0] (B.5)

K ≡ PX0
HT

[
HPX0

HT
]−1

= PX0
HTP −1

Z0
(B.6)

(Z0,PZ0
) ≡ (HX0,HPX0

HT ) (B.7)

This shows how X varies as a function of some hypothetical ideal mea-
surement. Now we imagine introducing an actual measurement Zm with co-
variance PZm . We can ask what the optimal estimate is for Z given measure-
ments (Zm,PZm ) and (X0,PX0

), of which the latter projects to (Z0,PZ0
) in Z

space. The optimal estimate minimizes the loss function

L(Z) = [Z−Z0]T P −1
Z0

[Z−Z0] + [Z−Zm]T P −1
Zm

[Z−Zm] (B.8)

This yields

Z =
[
P −1
Z0

+P −1
Zm

]−1
(P −1

Z0
Z0 +P −1

Zm
Zm) (B.9a)

= PZ0
P −1
Z0

[
P −1
Z0

+P −1
Zm

]−1
(P −1

Zm
PZmP

−1
Z0

Z0 +P −1
Zm

Zm) (B.9b)

= PZ0

[
PZm +PZ0

]−1
(PZmP

−1
Z0

Z0 + Zm) (B.9c)

Z in equation B.9a is our best estimate for the projection of X into mea-
surement space. Using that as your “ideal” solution, i.e., inserting Z as ZI in
equation B.5, you have
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∆X = X−X0

= PX0
HTP −1

Z0
(PZ0

[
PZm +PZ0

]−1
(PZmP

−1
Z0

Z0 + Zm)−Z0)

= PX0
HT (

[
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[
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)P −1

Z0
Z0 +KZm

= −KZ0 +KZm
= −KHX0 +KZm (B.10)

X =
[
INx −KH

]
X0 +KZm (B.11)

K = PX0
HT

[
PZm +PZ0

]−1
= PX0

HT
[
HPX0

HT +PZm
]−1

(B.12)

This corresponds to Kalman’s equations for X and K (i.e., 7.39 and 7.41),
which shows the desired correspondence.
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Acronyms

ACE - Attitude Control Electronics
ACS - Attitude Control Subsystem
AOS - Acquisition of Signal
AST - Advanced Star Tracker
AU - Astronomical Unit
CCD - Charged-Coupled Device
CDR - Critical Design Review
CGRO - Compton Gamma Ray Observatory
CPU - Central Processing Unit
CSA - Celestial Sensor Assembly
CSS - Coarse Sun Sensor
CXO - Chandra X-Ray Observatory
DCM - Direction Cosine Matrix
DSCOVR - Deep Space Climate Observatory
DoD - Department of Defense
DOY - Day of Year
DSS - Digital Sun Sensor
ECI - Earth-centered Inertial
emf - electromotive force
EOS - Earth Observing System
ESA - European Space Agency
ESA - Earth Scanner Assembly
FDF - Flight Dynamics Facility
FEEP - Field Emission Electric Propulsion
FES - Fine Error Sensor
FGS - Fine Guidance Sensor
FHST - Fixed-Head Star Tracker
FOG - Fiber Optic Gyro
FOV - Field-of-View
FSS - Fine Sun Sensor
FSW - Flight Software
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GCI - Geocentric Inertial
GEO - Geosynchronous Earth Orbit
GMT - Greenwich Mean Time
GOES - Geostationary Operational Environmental Satellite
GPS - Global Positioning System
GSFC - Goddard Space Flight Center
GTDS - Goddard Trajectory Determination System
HCI - Heliocentric Inertial
HEAO-2 - High Energy Astronomy Observatory-2
HGA - High-Gain Antenna
HRG - Hemispheric Resonating Gyro
HST - Hubble Space Telescope
ICOB - Inclined-Center-of-Box
IFOG - Interferometric Fiber-Optic Gyro
IFOV - Instantaneous Field-of-View
IGRF - International Geomagnetic Reference Field
IR - Infrared
IRU - Inertial Reference Unit
ISEE-1 - International Sun-Earth Explorer-1
IUE - International Ultraviolet Explorer
JD - Julian Day
JPL - Jet Propulsion Laboratory
JWST - James Webb Space Telescope
KSC - Kennedy Space Center
LISA - Laser Interferometer Space Antenna
LEO - Low Earth Orbit
LMSC - Lockheed Missiles and Space Company
LOS - Loss of Signal
L-R-C - inductance - resistance - capacitance
LVA - Local Vertical Acquisition
MJD - Modified Julian Day
MT - Magnetic Torquer
MTB - Magnetic Torquer Bar
NASA - National Aeronautics and Space Administration
NCC - Network Control Center
NMR - Nuclear Magnetic Resonance
OBC - Onboard Computer
PD - Proportional-Derivative
PI - Proportional-Integral
PID - Proportional-Integral-Derivative
RFOV - Reduced Field-of-View
RG - Rate Gyro
RGA - Rate Gyro Assembly
RIG - Rate Integrating Gyro
RLG - Ring Laser Gyro
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RPO - Revolution Per Orbit
RWA - Reaction Wheel Assembly
RXTE - Rossi X-ray Timing Explorer
SAMPEX - Solar Anomalous and Magnetospheric Particle Explorer
SDOF - Single-Degree-of-Freedom
SI - Science Instrument
SLP - Solar-Lunar-Planetary
SMM - Solar Maximum Mission
SOHO - Solar and Heliospheric Observatory
ST 5 - Space Technology 5
TAI - International Atomic Time
TAM - Three-Axis Magnetometer
TDB - Barycentric Dynamical Time
TDT - Terrestrial Dynamical Time
TDOF - Two-Degree-of-Freedom
TDRS - Tracking Data and Relay Satellite
TDRSS - Tracking Data and Relay Satellite System
TFOV - Total Field-of-View
TONS - TDRSS Onboard Navigation System
TRIAD - Tri-Axial Attitude Determination
TRMM - Tropical Rainfall Measuring Mission
TT - Terrestrial Time
UT - Universal Time
UTC - Universal Time Coordinate
WMAP - Wilkinson Microwave Anisotropy Probe
YGC - Yaw Gyro Control





D

Glossary

Acceleration - Second derivative (with respect to time) of the position vec-
tor. Describes the rate of change of the spacecraft’s velocity vector.

Advanced Star Tracker - A more advanced version of the Fixed-Head Star
Tracker that incorporates its own internal star catalog and star recogni-
tion software.

Aerodynamic Drag - Retarding force arising from collisions between the
spacecraft and gas molecules comprising the Earth’s atmosphere. A fric-
tional force acting to oppose the spacecraft’s direction of motion.

Aerodynamic Torque - Torque induced by a difference between the space-
craft center of mass and center of pressure (with respect to a cross-
section perpendicular to the direction of motion).

Albedo - Defines how much incident light an object reflects. Is the ratio of
reflected energy divided by incident energy. The Earth’s albedo has a
value of about 0.3.

Alignment Matrix - The matrix that defines the orientation of an attitude
sensor or actuator relative to the spacecraft reference frame.

Altitude - Height of a spacecraft above the Earth’s surface.
Angstrom - A unit of length equal to 10−8 centimeters.
Angular Acceleration - The second derivative (with respect to time) of the

spacecraft’s orientation. Describes the rate of change of the spacecraft’s
angular velocity vector.

Angular Frequency - See Angular Velocity.
Angular Momentum - For a point particle, the angular momentum of the

particle relative to the reference frame origin is equal to the cross-
product of the particle’s position and momentum vectors. For a system
of particles, the angular momentum of the system is equal to the sum of
the angular momenta of each of the individual particles.

Angular Rate - See Angular Velocity.
Angular Velocity - The first derivative (with respect to time) of the space-

craft’s orientation.
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Antisolar Point - Point on the celestial sphere defined by the negative of the
vector pointing from the spacecraft to the Sun.

Aphelion - Point of farthest distance from the Sun for a Solar orbit.
Apocenter - General term for the farthest distance of an orbiting body from

its parent body.
Apogee - Point of farthest distance from the Earth for an Earth orbit.
Arc Length - The angle between two vectors.
Arc-minute - One 60th of a degree.
Arc-second - One 60th of an arc-minute.
Argument of Perigee - For an Earth orbit, the angle between the right as-

cension of the ascending node and perigee, as measured in the orbital
plane.

Argument of Perihelion - For a solar orbit, the angle between the right as-
cension of the ascending node and perihelion, as measured in the orbital
plane.

Ascending Node - The point in the orbit where a spacecraft crosses the
equatorial plane as it moves from the southern hemisphere to the north-
ern hemisphere.

AST - See Advanced Star Tracker.
Astigmatism - An aberration in an optical system in which the system has

different foci for rays that propagate in two perpendicular planes. If an
optical system with astigmatism is used to form the image of a cross,
the vertical and horizontal lines will be in sharp focus at two different
distances.

Astronomical Unit (AU) - The length of the Earth’s semimajor axis with re-
spect to its orbit about the Sun. It is equal to 1.49597870×108 kilometers.

Attitude - The orientation of the spacecraft in inertial space. Usually, atti-
tude defines the orientation of all 3 spacecraft axes with respect to an
inertial reference frame, although for spin-stabilized spacecraft it often
is the case that only the orientation of the spin axis is specified.

Attitude Acquisition - The initial establishment of a desired spacecraft ori-
entation.

Attitude Actuator - A control hardware component that generates control
torques required to maintain spacecraft stability, null attitude errors, re-
orient the spacecraft to a new orientation, etc.

Attitude Control - The mechanism for establishing and maintaining a de-
sired spacecraft orientation.

Attitude Control Accuracy - A quantitative measurement of the success with
which the spacecraft attitude is maintained at its desired orientation.

Attitude Control Torque - Torques intentionally applied to the spacecraft
to maintain or establish a desired spacecraft orientation.

Attitude Determination - The computation of the spacecraft orientation
relative to a specified reference frame. For celestial-pointing spacecraft,
the reference frame is usually either the geocentric inertial (GCI) frame
or the heliocentric inertial frame.
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Attitude Determination Accuracy - An estimate of the error magnitude of
the computed spacecraft attitude.

Attitude Dynamics - Study of motion about a spacecraft’s center of mass.
Attitude Maneuver - A commanded change in the spacecraft’s desired atti-

tude.
Attitude Matrix - A specification of the spacecraft orientation in DCM for-

mat.
Attitude Perturbations - Influences on a spacecraft’s attitude behavior, typ-

ically arising from environmental effects.
Attitude Propagation - Adjustment of the last absolute attitude solution to

reflect later relative changes in the spacecraft orientation measured by
gyro data.

Attitude Quaternion - A specification of the spacecraft orientation in quater-
nion format.

Attitude Sensors - Spacecraft hardware providing measurements that can
be used to determine the spacecraft orientation or changes in the space-
craft orientation.

Attitude Stabilization - Maintaining a desired spacecraft orientation.
Autumnal Equinox - The moment in time at which the Sun, in its apparent

orbit about the Earth, crosses the Earth’s equatorial plane as it moves
from the Northern hemisphere to the Southern hemisphere. The first day
of Northern hemisphere Fall.

Azimuth Angle - Angle (as measured on the Earth’s equatorial plane, or on
the equatorial plane of the reference frame in question) between a refer-
ence point on the equator and a given point on the equator.

Ballistic Coefficient - A measure of the effect of atmospheric drag on the
spacecraft.

Bandpass Filter - A data processing algorithm that amplifies frequency re-
sponse at selected frequencies, thereby providing disturbance rejection.

Bandwidth - The frequency delta over which the frequency response has
dropped off by 3 dB. Colloquially in spacecraft communications, band-
width is a measure of how much data per unit time you can reliably get
down from the spacecraft.

Bang-Bang Control Law - For bang-bang control, the magnitude of the con-
trol torque is fixed. Only the sign of the control torque varies, depending
on the sign of the error term.

Bang-Bang-Plus-Dead-Zone Control Law- Bang-bang control, except if the
magnitude of the error falls below a threshold, the control torque is zero.

Barycenter - The position of the center of mass of two or more objects (e.g.,
the Earth-Moon Barycenter).

Batch Estimator - A state estimation process where all the observations are
processed simultaneously to yield a single state solution (opposite of a
sequential or recursive estimator).
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Batch Least-Squares Estimator - A batch estimator which operates by min-
imizing the squares of the differences between observed and modeled
values.

B-Dot Control Law - A control law that treats measured changes in the ge-
omagnetic field as if they arose entirely from attitude changes. Since the
geomagnetic field varies over an orbital period, B-dot will cause the at-
titude to oscillate with a frequency equal to twice the orbital frequency
(the B-dot natural frequency). (The name arises from the shorthand no-
tation Ḃ ≡ dB/dt for the time derivative of the magnetic field.)

Bias - Systematic measurement error.
Bipropellant Gas Jet - A gas jet utilizing a fuel system where the fuel and

oxidizer are stored separately.
Bode Diagram - A graphical means of observing control system response.

It graphs the logarithm of the transfer function magnitude vs. the loga-
rithm of the frequency.

Body-Mounted - Fixed to the spacecraft body.
Body Rate - The angular velocity of the spacecraft.
Bolometer - A thermistor that detects infrared (IR) radiation. Often used in

Earth sensors.
Boresight - The line of sight of sensor or science instrument.
Brahe, Tycho (1546-1601) - Danish astronomer.
Brazilian Anomaly - See South Atlantic Anomaly (SAA).
Bremsstrahlung - Radiation emitted when a charged particle (e.g., an elec-

tron or a proton) is decelerated suddenly. Comes from the German words
Bremsung, meaning deceleration, and Strahlung, meaning radiation.

Cartesian Coordinates - An ordered set of three real numbers defining the
position of a point relative to three equal scaled, orthogonal coordinate
axes; typically referred to as (x,y,z) coordinates.

Celestial Coordinates - Defining directions on the celestial sphere, typi-
cally using right ascension and declination.

Celestial Equator - The great circle on the celestial sphere perpendicular to
the Earth’s spin axis.

Celestial-Pointer - A spacecraft whose fine-pointing science instruments
are oriented towards “fixed” points on the celestial sphere. For example,
a spacecraft that slews from one attitude to another to observe a series of
X-ray point-sources would be a member of the class of celestial pointers.

Celestial Poles - The North and South directions on the celestial sphere.
Celestial Sphere - The surface of a sphere of unit radius, whose points con-

stitute directions in space. Not surprisingly, the spacecraft-centered ce-
lestial sphere places the spacecraft at the origin of the coordinate system.

Center of Mass - Average position of a system of objects, weighted in pro-
portion to their masses.

Center of Pressure - For an object exposed to solar radiation (for example),
the point on the object at which the cumulative effect of all the solar flux
can be viewed as being applied as a single force. If there is a difference
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between the center of pressure and the center of mass, that force will
generate a torque on the object.

CGRO - See Compton Gamma Ray Observatory.
Characteristic Frequency - A frequency at which a lightly damped system

will resonate when driven by an external force (assuming that the force
contains a component at that frequency).

Charge Coupled Device (CCD) Star Tracker - A star tracker that detects
stars by digitally scanning an array of photosensitive components (pix-
els). The star tracker integrates the electrical charge in the pixels “struck”
by (for example) starlight. The measurement is performed by reading-
out the pixel output line-by-line.

Circle - A conic section whose eccentricity is zero. An ellipse whose semi-
major axis and semiminor axis are equal.

Circular Velocity - Velocity of a spacecraft within a perfect circular orbit of
a given radius.

Closed-Loop Control - A control law utilizing error feedback (i.e., the dif-
ference between the measured output and the desired output).

CO2 Absorption Band - Spectral region of Earth’s atmosphere associated
with the carbon dioxide absorption band. Solar radiation is absorbed by
carbon dioxide molecules, and then re-emitted uniformly in all direc-
tions. Because of its relative stability, most Earth sensors are designed to
trigger on the CO2 band.

Coarse Attitude Determination (CAD) - Spacecraft attitude determination
(typically) at an accuracy level of 1 degree or worse, typically based on
Sun sensor and magnetometer data.

Coarse Pointing Control - Spacecraft attitude control (typically) at accu-
racy levels of a degree or worse.

Coarse Sun Sensor (CSS) - Measures photocell output as a function of Sun
angle, with photon flux proportional to the cosine of the Sun angle rela-
tive to photocell surface normal.

Cold Gas Thrusters - Thrusters that generate their energy by releasing a
phase change’s latent heat (or, if there’s no phase change, from the work
of compression).

Colored Noise - Noise with a non-uniform frequency distribution, in con-
trast to “white” noise.

Column Matrix - An N × 1 matrix, where N is the number of entries in the
matrix. Column matrices are matrix representations of vectors.

Coma - An aberration in an optical system manifest as a variation in mag-
nification across the entrance pupil. The typical result of comatic aber-
ration is that the image of point source of light that is offset from the
optical axis will appear like a tear drop with the narrow end pointing
away from the optical axis.

Commanded Attitude - Desired spacecraft orientation.
Command Quaternion - Desired spacecraft orientation expressed in quater-

nion format.
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Component - An element of a vector or matrix.
Compton, Arthur (1892-1962) - American physicist and Nobel laureate.
Compton Gamma Ray Obervatory (CGRO) - A NASA satellite that detects

cosmic sources of gamma radiation
Cone Angle - Equivalent to arc length. Frequently used when referring to

the angle between a spacecraft’s spin axis and an attitude sensor bore-
sight.

Cone-Cone Intersection - Method used to solve for the attitude of a spin-
ning spacecraft, where a snapshot of data from two attitude sensors is
used to determine the spin axis. Similar to the triangulation method used
to determine the location from which an earthquake has originated.

Conic Sections - The 4 types of curves resulting from intersecting a plane
with a cone: specifically the circle, ellipse, parabola, and hyperbola.

Coning - The attitude motion of a rotating spacecraft resulting when the
geometric axes are not co-aligned to the principal axes.

Consumables - Non-reusable spacecraft resources.
Control Law - A process for controlling the spacecraft attitude, utilizing

sensors to determine the attitude error and actuators to generate the con-
trol torques required to null the attitude error.

Control Torque - Torques generated by spacecraft actuators for the purpose
of controlling the attitude.

Convergence - The state when an estimator has reached a stable solution.
Coordinated Universal Time (UTC) - A time scale based on atomic clocks,

but which includes leap seconds to keep the time synchronized with the
Earth’s rotation.

Cosine Detector - See Coarse Sun Sensor.
Covariance - A statistical measure of how the errors (noise) for two mea-

sured quantities are interdependent.
Covariance Matrix - A square matrix whose diagonal elements are the vari-

ances of the state vector elements, and whose off-diagonal elements are
the covariance of pairs of state vector elements.

Critically Damped - Control law behavior where steady state is reached
without overshoots or oscillations. Condition at the boundary between
under-damped and over-damped.

Cross Product - A vector product yielding a vector whose direction is per-
pendicular to the input vectors and whose magnitude is proportional to
the sine of the angular separation between the vectors.

Cross-track Error - The error in spacecraft position with respect to the plane
of the orbit.

Damping - Retarding motion, or when the amplitude of an oscillation is re-
duced over time.

Data Dropout - The intermittent absence of data.
Data Filter - An algorithm that separates desired low-frequency informa-

tion from the accompanying high-frequency noise.
Data Flagging - Identifying and removing invalid data.
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Data Smoothing - Removing noise from data.
Data Validation - Examining data to determine if it is acceptable for down-

stream processing.
Data Weighting - Quantitatively rating some data higher than other data to

improve the accuracy of algorithm using all the data as input.
dB- see Decibel.
Deadband - An error region (less than a given threshold) in which active

attitude control is inhibited.
Decibel - A logarithmic scale for expressing the ratio of a quantity x to a

reference level xref : dB = 10log10(x/xref ). Since 10log10 2 ≈ 3, doubling
x is equivalent to adding approximately 3 dB to the decibel measure of
x, while halving x is equivalent to subtracting approximately 3 dB from
the decibel measure of x.

Declination - Angle between an object and the plane of the Earth’s equator
as seen from the center of the Earth.

Definitive Orbit - The best estimate of a spacecraft’s orbit during a time
period in which tracking data, or other direct orbit measurements, have
been made.

Degeneracy - A pathological attitude geometry condition, as for example
(in coarse attitude determination) when the Sun vector and Geomagnetic
field vector are parallel. Mathematically, is usually characterized by the
presence of a singularity (i.e., a divide by zero) in the algorithm.

Delta Function - The delta function δ(x) is a “Narrow peak” function; it is
zero everywhere except at x = 0. At x = 0 it is infinitely large, but defined
so that the total area under the curve is equal to 1.

∫∞
−∞ δ(x)dx = 1.

Delta V - Change in velocity. Also, the name of a control mode associated
with using thrusters to adjust the orbit by changing the spacecraft veloc-
ity.

Descartes, Rene (1596-1650) - French philosopher, mathematician, and sci-
entist.

Descending Node - The point in the orbit where a spacecraft crosses the
equatorial plane as it moves from the Northern hemisphere to the South-
ern hemisphere.

Diagonal Matrix - A square matrix whose off-diagonal elements are all zero.
Differential Velocity Aberration - The small difference in light direction

shift due to velocity aberration due to slight differences in star or target
direction.

Digital Sun Sensor (DSS) - Measures output from a series of photocells to
determine Sun angle. If a photocell’s output is greater than a threshold,
it is considered to be “on”. The pattern of “on” photocells is directly as-
sociated with the Sun angle. Note that this scheme provides a digital
representation of the Sun angle.

Dipole - The first order term in a spherical harmonic expansion.
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Dipole Model - Approximating a physical phenomenon by keeping just the
first order term in a spherical harmonic expansion, as for example a
dipole model of the geomagnetic field.

Dipole Moment - For a wire coil wrapped around a bar, the dipole moment
is a vector quantity proportional to the magnetic moment vector, with
the constant of proportionality reflecting the nature of the material of
which the bar is composed.

Direction Cosine Matrix - A 3 × 3 square matrix used (in our context) to
represent rotations, spacecraft attitude, or relative alignments between
devices.

Distribution Law - For reaction wheel systems comprising more than 3 re-
action wheels, an algorithm to assign torque commands to individual
wheels so as both to reduce the attitude error and prevent wheel run-up.

Disturbance Torque - An environmental torque perturbing the spacecraft.
Diurnal Variations - Variations (for example, in atmospheric density) driven

by local time.
Divergence - The state when an estimator’s solution disagrees with truth by

a continuously increasing amount.
Doppler Effect - The apparent change in the frequency of waves (light,

sound, etc.) being emitted by an object due to the relative radial velocity
between the emitting object and the receiving platform.

Dot Product - A vector product yielding a scalar that is proportional to the
cosine of the angle between the two vectors.

Downlink - Telemetry transmission from the spacecraft to the ground.
Drag - Retarding of the spacecraft orbital motion due to atmospheric fric-

tion.
Drag Coefficient - A parameter describing the spacecraft’s response to at-

mospheric drag.
Dual-Slit Sun Sensor - A digital Sun sensor designed for a spinning space-

craft. One slit is canted relative to the other slit such that the time delay
in Sun pulses in the two slits can be directly associated with the Sun
angle relative to the spacecraft spin axis.

Dynamic Equations of Motion - Equations relating the first derivative (with
respect to time) of the spacecraft angular momentum vector to the
torques being applied to the spacecraft.

Earth Oblateness - Bulging of Earth (from a perfect sphere) at the equator.
Earth oblateness is a major perturbation on low Earth orbits.

Earth-Pointer - A spacecraft whose fine-pointing science instruments are
oriented along the nadir vector towards the Earth.

Earth Sensor - An attitude sensor that detects reflected light from the Earth,
typically in the IR range. Because the disk of the Earth is quite large (as
opposed to point objects, like stars), Earth sensors reporting a nadir vec-
tor must do fairly elaborate centroid calculations to report the direction
of the Earth center. In the case of narrow FOV sensors on spinning space-
craft, the Earth sensor simply may report Earth-in and Earth-out times,
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leaving it to ground or onboard processing to determine the Earth angle
with respect to the spin axis.

Eccentric Anomaly - Angle between perigee and the projection of space-
craft position onto a circle in the plane of the orbit circumscribed about
the orbit.

Eccentricity - A scalar parameter quantitatively describing an ellipse’s de-
parture from a perfect circle.

Eclipse - An occultation of one celestial object by another. For example, a
Solar eclipse observed on the Earth occurs when the Moon occults the
Sun.

Ecliptic - The plane of the Earth’s orbit.
Eigenaxis - The axis about which a slewing spacecraft rotates.
Eigenvector - For rotations, the vector about which the rotation occurs.
Elevation - Angle above the Earth’s equator, or above the equator of the ref-

erence frame in question.
Ellipse - A conic section whose eccentricity is less than 1. The general form

of an ideal bound orbit. A circle is a special case of an ellipse for which
the eccentricity is zero.

Energy Dissipation - Loss of energy, typically due to frictional effects.
Environmental Torques - External influences applying torques to the space-

craft. Examples are aerodynamic, magnetic, gravity gradient, and Solar
radiation.

Ephemeris - A listing of positions (either of celestial objects or spacecraft)
at regular time intervals. Also, colloquially referred to as an empirical
(as opposed to algorithmic) specification of a spacecraft’s orbital position
(either historical or predicted).

Epoch Time - The start time of an ephemeris file, or the reference time of a
set of (Keplerian) orbital elements.

Equator - In Earth-centered coordinates, the great circle perpendicular to
the Earth’s polar axis.

Equinoxes - The two days in the year when day and night are of equal du-
ration. See Autumnal Equinox and Vernal Equinox.

Escape Velocity - The velocity required to place a spacecraft in a parabolic
orbit.

Euler, Leonhard (1707-1783) - Swiss mathematician and physicist.
Euler Angles - A specification of the attitude, or a change in attitude, by a

series of rotations. The angles of rotation are called the Euler angles.
Euler Axes - The axes, relative to which, the Euler angles are defined (see

Euler Angles).
EUVE - See Extreme Ultraviolet Explorer.
External Torque - A torque applied to a spacecraft that does not originate

from the spacecraft (for example, a gravity gradient torque), or that cou-
ples the spacecraft to the outside “world” (for example, magnetic torques
arising from magnetic torquer bars coupling with the geomagnetic field).
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External torques will change the total angular momentum of the space-
craft.

Extreme Ultraviolet Explorer - A NASA satellite that detects cosmic sources
of extreme ultraviolet radiation.

Fading Memory - The process in (for example) a Kalman Filter by which
more recent data is weighted higher than older data.

Failure Correction - A flight software correction of an inflight problem, ei-
ther due to a hardware anomaly or a malfunctioning of a flight software
element, also referred to as fault correction.

Failure Detection - Identification of an inflight problem by flight software,
either due to a hardware anomaly or a malfunctioning of a flight software
element, also referred to as fault detection.

Failure Detection and Correction (FDAC) - See the individual entries on
failure detection and failure correction. It is also referred to as fault de-
tection and correction with the same acronym (FDAC), or the acronym
FDC.

Feedback Control - Use of realtime measured errors to maintain attitude
stability or conduct accurate slews.

Feed-Forward Control - Use of onboard models (e.g., gravity gradient torq-
ue) to anticipate environmentally-induced errors or planned adjustments
and compensate for them in advance.

FHST - See Fixed-Head Star Tracker.
Fine Error Sensor (FES) - A star sensor having greater accuracy than a con-

ventional star tracker, often using the optics of the primary imaging sci-
ence instrument (for example, HST’s fine guidance sensors (FGSs)). Of-
ten, an FES will be built into the science instrument itself, or constitutes
a special operational mode of the science instrument.

Fine Pointing Control - Flight software control of the spacecraft attitude to
an accuracy (typically) of a few tens of arcseconds or better, although
nadir-pointing missions may have looser requirements.

Fine Sun Sensor (FSS) - A high precision digital Sun sensor (DSS).
First Point of Aries - The point the Sun passes through on the vernal equi-

nox.
Fixed-Head Star Tracker (FHST) - Purely electronic star acquisition and

tracking devices. Initially, the NASA Standard FHST was an image dis-
sector tube (IDT) device, but starting in the early 1990s charge coupled
devices (CCDs) became the new standard.

Flag - A software variable specifying the results of a validity check.
Flat Spin - For spin-stabilized spacecraft initially rotating about a body axis

other than the major principal axis, energy dissipation will cause angular
momentum to be pumped out of the spin axis and into rotation about
the major principal axis. When the rotational motion of the spacecraft
has been converted entirely into rotation about the major principal axis,
the spacecraft is said to be in a condition of flat spin.
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Flexible Modes - Natural spacecraft vibrational frequencies. Care must be
taken in control law design to avoid exciting these frequencies, thereby
producing a destabilizing resonant behavior.

Flexible Spacecraft Dynamics - The rotational behavior of spacecraft in re-
sponse to the bending characteristics of spacecraft flexible components
due to the influence of external torques.

Fluxgate Magnetometer - A device that detects external magnetic fields by
measuring currents induced (by external fields) in two saturable coils.

Focus - Each ellipse has two foci. The foci are located relative to points on
the ellipse such that the sum of the distances from the point to the foci
is the same for all points on the ellipse. For elliptical orbits, the center of
mass of the gravitational system is located at one of the foci.

Force - The product of mass times the acceleration.
Fourier, Joseph (1768-1830) - French mathematician.
Fourier Expansion - An approximate representation of an algebraic func-

tion by a Fourier Series.
Fourier Series - The representation of an algebraic function in terms of sine

and cosine functions.
Fourier Transform - A mathematical procedure converting a function in the

time domain to a function in the frequency domain. Specifically, it de-
composes a function into sinusoidal functions covering a spectrum of
frequencies. The inverse procedure transforms from the frequency do-
main to the time domain.

Frequency - The inverse of period. A measure of angular rate.
Frequency Response - In control systems, the steady-state response of a

control system to a sinusoidal input.
Friction - A dissipative force converting organized (usually mechanical) en-

ergy into heat.
Gain - A multiplier on a term in a control law enabling you to amplify or

diminish the term’s contribution.
Gamma Rays - Light having wavelength less than 0.1 angstroms. Gamma

rays are produced by nucleus and particle decays.
Gas Jet - A thruster utilizing gas propellant, either hot or cold.
Gauss, Carl Friedrich (1777-1855) - German mathematician and scientist.
Gaussian Coefficients - Scalar quantities in a spherical harmonic expansion

used for empirical modeling of the geomagnetic field.
Gaussian Measurement Errors - Random errors that follow a bell-shaped

(i.e., Gaussian) distribution.
Gaussian Noise - Noise that follows a bell-shaped (i.e., Gaussian) distribu-

tion.
Gauss’s Equation - Expresses the true anomaly in terms of the eccentric

anomaly.
Geocentric Inertial (GCI) - An Earth-centered, inertial (i.e., non-rotating

with respect to the “fixed” stars) reference frame. The Euler angles spec-
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ifying spacecraft orientation within the GCI are right ascension, declina-
tion, and roll.

Geomagnetic Field - The magnetic field of the Earth.
Geomagnetic Field Model - A mathematical representation of the Earth’s

magnetic field specifying the magnitude and direction of the field at a
given point in an Earth-rotating reference frame.

Geometric Spacecraft Axes - “Natural” axes defined relative to the space-
craft’s structure. For example, the x-axis (or roll axis) of a stellar pointer
is usually defined to be parallel to the boresight of its primary imaging
instrument.

Geostationary Orbit - An orbit that maintains a spacecraft directly above
the same point on the Earth’s surface at all times. This is made possible
by the orbit altitude being precisely chosen so that its associated period
is 24 hours, matching the Earth’s rotational rate. All geostationary orbits
are equatorial (i.e., inclination equals zero).

Geosynchronous Orbit - An orbit having the same altitude as a geostation-
ary orbit, but not necessarily maintaining the spacecraft above the same
point on the Earth at all times. Geosynchronous orbits may have non-
zero inclinations.

Gimbal - A rotatable element of a piece of spacecraft hardware, for example
a gimbaled high gain antenna (HGA) or solar array.

Global Positioning System (GPS) - A constellation of low Earth orbiting
satellites supporting realtime, onboard measurement of spacecraft po-
sition.

Goddard Trajectory Determination System (GTDS) - The primary ground
software system at Goddard for computing definitive and predictive
spacecraft ephemerides.

Goodness-of-Fit Function - A statistical algorithm for specifying the valid-
ity with which a model portrays actual data.

Gravitation - The phenomenon of mutual attraction of massive objects. In
our context, the force of gravity is well-modeled by Newton’s Law of
Gravitation.

Gravitational Constant - The constant of proportionality G in Newton’s
Law of Gravitation. It is equal to 6.67428× 1011m3kg−1s−2

Gravity-Gradient Stabilization - A passive attitude control strategy appli-
cable to spacecraft with elongated (e.g., rod-shaped) structures. Exploits
the behavior of an elongated body to be pulled by gravity so as to be
oriented radially relative to the gravitational object.

Gravity-Gradient Torque - The torque arising from the difference in gravi-
tational force “felt” at opposite ends of an elongated body. The resulting
torque acts to align the elongated body radially relative to the gravita-
tional object.

Gray Code - Bit pattern characterization of output from a digital Sun sensor.
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Great Circle - A circle drawn on the surface of a sphere, where the plane
of the circle intersects the center of the sphere (i.e., the center of a great
circle and the center of the sphere coincide).

Gyro - Originally, a mechanical sensor containing a spinning mass that ex-
ploits conservation of angular momentum to measure changes in atti-
tude. Recently gyros have been employed on-orbit that use non-mechan-
ical structures (for example, hemispheric resonating gyros (HRGs) and
laser ring gyros).

Gyro Drift - A ramping error (with time) in the gyro’s output.
Gyro Drift Bias - Scalar calibration offset correcting for the effects of gyro

drift in gyro measurements.
Gyro Scale Factor & Alignment Calibration - A series of large slews are ex-

ecuted to generate gyro data that the ground system uses to determine
the gyro scale factors and gyro alignments relative to absolute attitude
sensors (such as star trackers).

Gyroscope - See Gyro.
Heliocentric Coordinates - Similar to GCI coordinates, except the Sun is at

the center of the coordinate system instead of the Earth.
Hermite, Charles (1822-1901) - French mathematician.
Hermite Polynomials - An infinite set of polynomials in the independent

variable x that satisfy the differential equation y′′ −2xy + 2ny = 0, with n
an integer. The Hermite polynomials are orthogonal with respect to the
weight function exp(−x2) over the interval (−∞,+∞). They have proven
useful for representation of orbits for onboard ephemeris algorithms.

Horizon Radiance Model - A mathematical model describing the behavior
of the Earth’s CO2 band as a function of time. Provides reference data in
defining the horizon when using horizon sensors for attitude determina-
tion.

Horizon Sensor - An attitude sensor that measures spacecraft orientation
relative to the Earth.

Hot Gas Thrusters - Thrusters that generate their energy by a chemical re-
action.

HST - See Hubble Space Telescope.
Hubble, Edwin (1889-1953) - American astronomer who discovered the ex-

pansion of the universe.
Hubble Space Telescope - A NASA satellite used to study celestial bodies

emitting radiation from the near infrared to the near ultraviolet.
Huygens, Christiaan (1625-1695) - Dutch mathematician, astronomer, and

physicist.
Hydrazine - A monopropellant fuel (i.e., fuel and oxidizer are mixed to-

gether) with chemical formula N2N4.
Hydrazine Thruster - A gas jet utilizing hydrazine for fuel.
Hyperbola - A conic section whose eccentricity is greater than 1.
Hysteresis - In the context of electricity and magnetism, the property of

ferromagnetic substances in which the behavior of the substance in the
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presence of a magnetic field depends on the substance’s previous expo-
sure to magnetic fields.

Identity Matrix - A square matrix which when multiplied by (or multiplies)
another matrix returns that matrix. It is a diagonal matrix with 1s along
the main diagonal.

Impulse - The time integral of the force or torque. So the impulse is the
change in momentum (translational or angular) over a specified (typi-
cally short) period of time.

Inclination - Keplerian element describing the tilt angle of the orbit relative
to the equatorial plane.

Induction Magnetometers - Attitude sensors measuring external magnetic
fields by utilizing Faraday’s Law of Magnetic Induction, which relates the
line integral of the electric field induced in a coil to the time variation in
the magnetic field to which it’s exposed.

Inertial Frame - A reference frame that’s hat’s neither rotating nor acceler-
ating with respect to the “fixed” stars.

Inertial Reference Unit (IRU) - See Gyro.
Infrared (IR) Light - Light roughly at wavelengths between 0.76 microns

and 2 millimeters. Infrared light is produced by heat radiation.
Injection - Placing a spacecraft in its orbit.
In-Plane Orbit Maneuver - Orbit maneuvers that don’t change the inclina-

tion.
Input Axis - Axis of rotation with respect to which the gyro can sense mo-

tion.
Instantaneous Rotation Axis - The axis about which a spacecraft is rotating

at a given time.
Instrumental Star Magnitude - The brightness of a star as observed by a

star tracker, as opposed to the brightness of the star as it would be ob-
served by an ideal sensor. Note that the star brightness in either case is
reduced by the separation distance between the star and the observer, so
neither is a measurement of the star’s intrinsic brightness.

Internal Torque - A torque generated by one component of a spacecraft that
(as a result of conservation of momentum) causes an equal, but opposite
torque to be applied to the body of the spacecraft (for example, a reaction
wheel torque applying an inverse torque to the body). Internal torques
cannot change the total angular momentum of the spacecraft.

International Geomagnetic Reference Field (IGRF) - A set of Gaussian co-
efficients that empirically model the Earth’s magnetic field as a function
of both position and time.

In-Track Error - The error in spacecraft position along the arc of the orbit
(an azimuthal error).

Invertible Matrix - A square matrix possessing an inverse.
Ion Thrusters - Thrusters that generate thrust by accelerating ionized mole-

cules.
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J2 Perturbations - Gravitational perturbations arising from Earth oblate-
ness.

J2 Term - The first-order term in a harmonics expansion of the Earth’s grav-
itational potential.

Jacchia-Roberts Atmospheric Density Model - A model of the Earth’s at-
mospheric density, taking into account altitude, molecular mixing, tem-
perature, time of day, seasonal variations, Solar cycles, etc.

Julian Day - The number of days since noon on January 1, 4713 BCE.
Kalman, Rudolf (1930-) - Hungarian-American mathematician and electri-

cal engineer.
Kalman Filter - The most computationally efficient recursive filter, com-

monly used for attitude and gyro bias estimation on GSFC spacecraft.
Kepler, Johannes (1571-1630) - German mathematician and astronomer.
Kepler’s Equation - Expresses the mean anomaly of a spacecraft’s orbit in

terms of the eccentric anomaly.
Kepler’s Laws - Pre-Newtonian descriptions of planetary motion that stated

that (for two-body problems) an orbiting object follows an elliptical path
(an unbound object follows a hyperbolic path), that the line joining the
two celestial objects sweeps out equal areas in equal times, and that the
square of the orbital period is proportional to the cube of the semi-major
axis. Newton later showed that Kepler’s laws could be derived from New-
ton’s laws of mechanics and gravitation.

Keplerian Orbit - An ideal two-body orbit parameterizable by Kepler’s or-
bital elements.

Keplerian Orbital Elements - Parameters describing the size, shape, and
orientation of the orbit, as well as the location of the orbiting body at
a specific time (the epoch time of the orbit). Kepler’s elements are the
semimajor axis, eccentricity, inclination, right ascension of the ascend-
ing node, argument on perigee, and mean anomaly.

Kinetic Energy - The energy of motion, defined as the amount of work re-
quired to bring a body from rest to a final velocity v. It is equal tomv2/2,
where m is the mass of the body.

Lag Filter - A filter designed to improve steady-state accuracy. Has similar-
ities to a proportional-integral (PI) control law, but when used in con-
junction with a PI can improve system stability.

Lagrange, Joseph (1736-1813) - Italian mathematician and astronomer.
Lagrange Point Orbit - An orbit having a Lagrange point as a focus. The

orbit is referred to as a halo orbit.
Lagrange Points - Positions of stable or pseudo-stable gravitational equilib-

rium for a small body under the gravitational influence of two large bod-
ies orbiting each other in nearly circular orbit.

de Laplace, Pierre (1749-1827) - French mathematician.
Laplace Transformation - A mathematical procedure for converting a func-

tion in the time domain to a function in the frequency domain. Laplace
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transforms are used to convert differential equations (in the time do-
main) into equivalent algebraic equations (in the frequency domain)
whose solution (mechanically) is easier than the original differential
equation. The inverse procedure transforms from the frequency domain
to the time domain. The inverse transformation can be used to take the
solution to the algebraic equation (in the frequency domain) and convert
it back to the desired (time domain) solution to the differential equation.

Latitude - Angle above the Earth’s equator, or above the equator of the ref-
erence frame in question.

Latus Rectum - A chord through a focus of an ellipse, and perpendicular to
the major axis.

Launch Window - A time duration during which a spacecraft can be launch-
ed and successfully achieve mission orbit. Launch windows may also be
constrained by attitude issues, such as shadow avoidance or Sun angle at
orbit insertion.

Lead Filter - A filter designed to lower rise time and decrease transient over-
shoot. Has similarities to a position-derivative (PD) control law, but with
reduced sensitivity to sensor noise.

Lead-Lag Filter - A combination of lead and lag filters. Has similarities to a
proportional-integral-derivative (PID) control law.

Leak-In - Only responding to a fraction of the computed error on a given
control cycle, hence leaking the error in over time.

Leap Second - An extra second added to the UTC time scale to keep UTC’s
atomic-based time in synchronization with the Earth’s rotation.

Least-Squares Filter - A filter that minimizes the squares of the residuals
between measured and modeled quantities.

Leibniz, Gottfried Wilhelm (1646-1716) - German philosopher and math-
ematician.

Legendre, Andrien-Marie (1752-1833) - French mathematician.
Legendre Polynomials - An infinite set of orthogonal functions over the

range [−1,1], used for constructing latitude dependence in spherical har-
monic expansion.

Libration - For gravity-gradient stabilized spacecraft, an oscillatory motion
of the spacecraft attitude about its equilibrium pointing. With respect to
satellite orbits, oscillatory behavior associated with equilibrium points
in a gravitational system (see Lagrange Points).

Libration Damping - Suppression of the libration motion, either actively or
passively.

Libration Points - See Lagrange Points.
Lifetime - The time duration (starting at initial orbit insertion) before atmo-

spheric drag causes the spacecraft to reenter.
Light Year - The distance light travels in one Julian year (365.25 days).
Limit Checking - A validation procedure in which a data point value is

checked against a threshold (upper, lower, or both).
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Limited Stable System - Output converges to a value other than the initial
(pre-perturbation) steady-state value.

Line of Apsides - The line connecting the apogee and perigee of an orbit. It
also contains the orbit’s two foci.

Line of Nodes - The line connecting the ascending node and the descending
node of an orbit.

Linear Combination - A sum of a set of objects, where each object can be
multiplied by a scalar.

Linear Independence - A property of a set of N vectors whereby no linear
combination of (N − 1) of the vectors will yield the remaining vector.

Longitude - Angle (as measured on the Earth’s equatorial plane, or on the
equatorial plane of the reference frame in question) between a reference
point on the equator and a given point on the equator.

Low Earth Orbit (LEO) - Orbits for which atmospheric drag is the domi-
nant perturbation. A popular LEO altitude range is 500 to 600 km.

Magnetic Coil - Electrical current run through a wire loop that generates a
magnetic field. A magnetic coil is a series of wire loops wrapped about a
ferromagnetic core.

Magnetic Disturbance Torque - A spacecraft torque generated by the inter-
action of the spacecraft’s residual dipole with the geomagnetic field.

Magnetic Moment - For magnetic coils, a vector normal to the wire loops
comprising the coil, equal to the number of turns of wire multiplied by
the current in the coil and the cross-sectional area of the coil. The direc-
tion of the vector is given by the right-hand rule, with the fingers curling
in the current direction.

Magnetic Pole Strength - The magnetic analog of electric charge.
Magnetic Stabilization - See B-dot Control Law.
Magnetic Torque - Torque on the spacecraft arising from interaction of fields

generated by the spacecraft’s magnetic coils and the geomagnetic field.
If the torque arises from an interaction between a spacecraft residual
dipole moment and the geomagnetic field, the torque is called the mag-
netic disturbance torque.

Magnetic Torquer Bar (MTB) - See Magnetic Coil.
Magnetometer - An attitude sensor measuring the strength and direction of

the magnetic field external to the spacecraft. Note that this measurement
will include not only the geomagnetic field (for spacecraft in Earth orbit),
but also contributions from MTBs and the spacecraft residual dipole mo-
ment.

Magnitude - (1) The square-root of the sum of the squares of a vector. (2) A
logarithmic specification of an astronomical object’s brightness. Magni-
tude is actually a measure of dimness, since larger numbers correspond
to dimmer objects. The brightest stars in the night sky have an appar-
ent magnitude around 0, while the dimmest visible to the human eye
have an apparent magnitude of about 5. A magnitude 0 star is 100 times



278 D Glossary

brighter than a magnitude 5 star, so a difference of one magnitude rep-
resents a factor of 1001/5 change in brightness. The absolute magnitude
is a measure of intrinsic brightness; it is the apparent magnitude a body
would have if it were at a distance of 10 parsecs from Earth.

Major Principal Axis - The spacecraft axis associated with the largest prin-
cipal moment of inertia.

Marginally Stable System - When output displays continuous, bounded os-
cillatory behavior.

Matrix Inverse - The square matrix which when multiplying a given square
matrix, or multiplied by the given square matrix, yields the identity ma-
trix.

Mean - The average of N numbers, computed as the sum of the numbers
divided by N .

Mean Anomaly - Angle corresponding to the fraction of an orbit (360◦) de-
fined by the ratio of the time since perigee passage and the orbital period.

Mean of Date - When defining coordinates of directions in the GCI refer-
ence frame, taking into account the precession of the Earth’s spin axis
relative to inertial space, but not nutation of the spin axis.

Mean Orbital Elements - Average values of the orbital elements over a given
time duration.

Measured Attitude - The current best estimate of the spacecraft attitude.
Measurement - Output from an attitude (or orbit) sensor.
Measurement Covariance Matrix - In estimation theory, a matrix whose el-

ements describe the reliability of the measurements.
Meridian - A great circle on the celestial sphere that passes through the

poles. Meridians are perpendicular to the equator.
Minor Principal Axis - A spacecraft axis associated with either of the two

non-largest principal moments of inertial.
Misalignment - An error in the alignment of a sensor, actuator, or science

instrument.
Misalignment Matrix - The matrix characterizing the error in alignment of

a sensor, actuator, or science instrument.
Mode - See Control Mode.
Modified Julian Day - The Julian Day minus 2400000.5; it is therefore the

number of days since midnight on November 17, 1858.
Molniya Orbit - An orbit designed to support Russian communications satel-

lites. It freezes perigee in the southern hemisphere, tilting the orbit to
place the orbit curve at apogee at the northern latitudes, ensuring maxi-
mum communication opportunities between spacecraft and ground sta-
tions.

Moment of Inertia Tensor - A 3×3 matrix describing an object’s mass distri-
bution. For angular motion, the moment of inertia tensor is the parallel
concept to the mass in linear motion. The increase in complexity (9 num-
bers in a matrix as compared with a single scalar) is needed to describe
the motion of a 3 dimensional object rotating about its center-of-mass, as
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opposed to the much simpler translational motion of the center of mass
itself.

Momentum - For a point particle, the product of the particle’s mass and
velocity vector. For a system of particles, the sum of linear momenta of
each of the individual particles. Often in the aerospace business the term
“momentum” is used (technically incorrectly) interchangeably with the
term “angular momentum”, as in the phrase “momentum dumping”.

Momentum Bias - Operation of a wheel or system of wheels at non-zero an-
gular momentum (e.g., a Sun-pointing safemode may build up a non-
zero total angular momentum to provide gyroscopic stiffness for stability
enhancement).

Momentum Dumping - For spacecraft controlled by reaction or momentum
wheels, angular momentum must be removed from the wheel system or
the wheels can saturate (i.e., wheel speeds can be run up to maximum
values). Angular momentum dumping utilizes other attitude actuators
to shift or remove angular momentum from the wheels (e.g., applying
current to magnetic coils thereby applying a desirable spacecraft torque
by coupling to the geomagnetic field).

Momentum Wheel - A large wheel typically flown on spinning spacecraft
or (in the past) on nadir-pointing spacecraft.

Monopropellant Gas Jet - A gas jet utilizing a fuel system where the fuel
and oxidizer are stored together.

Monotonic - A curve that either is continuously increasing or continuously
decreasing.

Nadir - Directly downwards towards the closest point on the Earth’s surface.
(Due to Earth oblateness, nadir can be slightly offset from the direction
to Earth center.)

Nadir Angle - For spinning, Earth-orbiting spacecraft, the angle between
the spacecraft spin axis and the nadir vector.

Nadir-Pointer - A spacecraft whose primary science instrument is directed
along the nadir vector.

Nadir Vector - For Earth-orbiting spacecraft, the vector directed towards
the Earth’s surface.

Natural Frequency - The characteristic frequency at which a control system
will oscillate if the damping is zero.

Nichols Chart - A graphical presentation of the relationship between open-
loop and closed-loop frequency response.

Newton, Isaac (1643-1727) - English physicist, mathematician, astronomer,
natural philosopher, alchemist, and theologian.

Nodal Regression - See Nodal Rotation.
Nodal Rotation - The rotation of the line of nodes due to orbital perturba-

tions caused by Earth oblateness.
Nodes - For Earth-orbiting spacecraft with non-zero inclination, the two

points where the spacecraft orbit intersects the Earth’s equator.
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Notch Filter - A filter that produces relative low gains at selected frequen-
cies, thereby providing rejection capability.

Nutation - The attitude motion resulting when the spacecraft’s rotation axis
is not parallel to a principal axis. For spin-stabilized spacecraft, a rota-
tional motion of the spacecraft attitude about its equilibrium pointing.

Nutation Damping - Suppression of the nutation motion, either actively or
passively.

Nyquist, Harry (1889-1976) - Dutch-American electrical engineer.
Nyquist Stability Criterion - A condition imposed on the roots and poles of

a feedback control system which, if satisfied, guarantees that the control
system will be stable. The examination naturally lends itself to graphical
representation for verification.

Oblate - The shape of a spheroid having an equatorial radius greater than
its polar radius (i.e. “bulging” at the equator).

Oblateness - See Earth Oblateness.
Obliquity of the Ecliptic - The dihedrall angle between the Earth’s equato-

rial plane and the Earth’s orbital plane.
Observability - The capacity of a state vector element to be solved for reli-

ably, given the amount and type of data available.
Observation - An attitude (or orbit) relevant quantity constructed from sen-

sor measurements.
Observation Model - Algorithm used to generate predicted values of obser-

vations.
Observation Model Vector - The set of predicted values of observations at a

time snapshot during an estimation calculation.
Observation Residual Vector - The set of differences between the modeled

observations and the actual observations.
Occultation - Geometric condition when the view of the spacecraft sensor

or science instrument is obstructed by a celestial body.
Open-Loop Control - A control law not utilizing error feedback.
Orbit Acquisition - Achieving mission orbit following launch vehicle sepa-

ration or completion of a major inflight orbit maneuver.
Orbit Decay - For Earth-orbiting spacecraft, the decrease in apogee due to

atmospheric drag.
Orbit Defined Coordinate System - A reference frame in which spacecraft

orientation is defined by three Euler angles, roll, pitch, and yaw. The yaw
axis is the nadir vector. The pitch axis is negative orbit normal. The roll
axis is cross-product of the pitch and yaw axis, and for a circular orbit is
approximately parallel to the spacecraft velocity vector.

Orbit Determination - Computation of the spacecraft (or celestial body) or-
bit in inertial space.

Orbit Determination Accuracy - A quantitative estimate of the error mag-
nitude of the computed spacecraft orbit.

Orbit Dynamics - Study of the motion of the spacecraft’s center of mass.
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Orbit Generator - An algorithm that computes predicted spacecraft posi-
tion and velocity vectors.

Orbit Maneuver - A commanded change in the spacecraft’s orbit. If applied
to null errors in the actual orbit relative to the desired orbit the maneuver
is called a stationkeeping maneuver.

Orbit Normal - A vector perpendicular to the orbital plane. The normal vec-
tor obtained by right hand rule, with the fingers curled in the direction
of spacecraft motion, is positive orbit normal. The opposite vector is neg-
ative orbit normal.

Orbit Perturbations - Lower order influences on a spacecraft’s orbit behav-
ior, typically arising from environmental or celestial effects. The largest
of the set of perturbations (for a given orbit geometry) is referred to as
the dominant perturbation, or the perturbation that dominates at that
geometry.

Orbit Propagation - Extrapolation of spacecraft position and velocity vec-
tors from actual measurements at an earlier time.

Orbital Elements - A set of parameters specifying the size, shape, and ori-
entation of the orbit in inertial space, as well as the location of the space-
craft at a given time (the epoch time). An example is the osculating Kep-
lerian elements.

Orthogonal - Two vectors are orthogonal if they are perpendicular to each
other.

Orthonormal Matrix - A square matrix whose inverse is equal to its trans-
pose. (A transpose matrix swaps column and row entries relative to a
given matrix.)

Osculating Orbital Elements - A set of Keplerian orbital elements that give
the correct spacecraft position and velocity at a given instant in time.

Out-of-Plane Orbit Maneuvers - Orbit maneuvers that change the orienta-
tion of the orbit plane by changing the inclination or ascending node.

Overdamped Control System - Damping in the control law that causes the
system to approach steady state asymptotically as time goes to infinity.

Overshoot - Control law behavior where the system response exceeds steady
state, leading to oscillatory behavior.

Parabola - A conic section whose eccentricity is equal to 1.
Parallax - A shift in the direction of an observed object when the platform

(i.e., spacecraft) observing it moves.
Parallels - Small circles on the celestial sphere that lie in planes parallel to

the equatorial plane.
Parameterization - Characterization of a system, phenomenon, or individ-

ual piece of hardware by a set of variables that plug into a model associ-
ated with the system, phenomenon, or piece of hardware.

Parking Orbit - The initial orbit into which a spacecraft is launched. Later
orbit maneuvers by the second stage of the launch vehicle, an attached
motor, and or the spacecraft’s own propulsion system then place the
spacecraft in its mission orbit.
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Parsec - The distance for which stellar parallax is 1 arcsec, given a shift by
the observer of 1 Astronomical Unit (AU). It is equal to 3.26 light-years,
or 3.086× 1013 km.

Passive Nutation Damper - Hardware that removes spacecraft motions ab-
out other than the major principal axis by converting the undesired ro-
tational energy to heat.

Pattern Match - Identifying star tracker stars by associating the stars ob-
served in the star tracker with a similar pattern of stars in the star catalog
by comparing relative angular separations.

Peak Time - In response to step input, the time required for a control system
to reach its maximum output value.

Penumbra - Part of the eclipse cone where only part of the Sun is blocked.
Pericenter - General term for the closest approach of an orbiting body to its

parent body.
Perifocal Distance - Separation between the barycenter and the point of

closest approach.
Perifocus - Point of closest approach to the barycenter.
Perigee - Point of closest approach to the Earth for an Earth orbit.
Perigee Rotation - For an Earth orbit, rotation of the line of apsides due to

orbital perturbations caused by Earth oblateness.
Perihelion - Point of closest approach to the Sun for a Solar orbit.
Period - An orbital period is the time it takes a spacecraft (or celestial object)

to complete an orbit.
Perturbation - Displacements of attitude or orbit from their “true” values

due to external influences of lesser magnitude to the dominant factor. For
example, at low Earth altitudes, atmospheric drag is a major perturbation
to an ideal two-body orbit.

Phase Angle - See Azimuth Angle.
Pitch - Relative to the body frame, a right-handed rotation about the space-

craft y-axis. Relative to orbit coordinates, a right-handed rotation about
negative orbit normal.

Plane Change - An orbit maneuver that changes the orbital plane (e.g., in-
clination change or nodal change maneuvers).

Plant - The physical object being controlled.
Plume - The thruster exhaust envelope.
Plume Impingement - Intersection of the thruster plume with a spacecraft

component. Plume impingement can result in undesired perturbative
torques being applied to the spacecraft.

Pole - A zero in the denominator of a transfer function.
Potential Energy - Energy stored in a system. For example, an object at rest

above the surface of the Earth has (near the Earth’s surface) a potential
energy equal to its mass times the gravitational acceleration times it’s
height. If the object is released, its potential energy gets converted to
kinetic energy (ignoring frictional effects).

Power - Energy per unit time.
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Precession - The change in direction (but not magnitude) of the spacecraft
angular momentum vector due to application of a torque.

Precession of the Equinoxes - Due to gravitational perturbations by the Sun
and Moon on the Earth’s equatorial bulge, the Earth’s spin axis rotates
about the ecliptic pole, which causes the directions of the Autumnal and
Vernal Equinox to rotate in inertial space (i.e., relative to the “fixed”
stars).

Predicted Orbit - Extrapolated spacecraft position and velocity (as a func-
tion of time) determined by applying mathematical models of physical
processes (e.g., the Earth’s gravitational potential) to actual measure-
ments of the spacecraft orbit at an earlier time.

Pressure - Force divided by the area over which the force is applied.
Prime Meridian - The 0◦ longitude meridian, used as a reference for defin-

ing longitude or azimuth angles.
Principal Moment of Inertia - The moment of inertia associated with a prin-

cipal axis.
Principal Spacecraft Axes - A body axis is a principal axis if rotations about

that axis yield an angular momentum vector that is parallel to the axis.
This is true of a spacecraft’s natural axes of symmetry.

Prograde Orbit - For an Earth orbit, an orbit whose sense of rotation is in
the same sense as the Earth’s rotation.

Prolate - The shape of a spheroid having a polar radius greater than its
equatorial radius (i.e. “football-shaped”).

Propagation - For orbits, extrapolation of a spacecraft position and velocity
from a known starting value. For attitudes, use of relative attitude in-
formation (from gyros) to extrapolate spacecraft absolute pointing from
a starting, measured absolute attitude (for example, from star tracker
data).

Propellant - Thruster fuel.
Propellant Slosh - For liquid-fueled thrusters, propellant motion inside the

fuel tank. If the fuel tank(s) is (are) not properly balanced, propellant
slosh can produce undesired disturbance torques. When centered prop-
erly about the spin-axis of a spin-stabilized spacecraft, propellant slosh
serves as a nutation damper as it will convert motions that are not about
the spin axis into heat, thereby removing those undesired motions.

Proper Motion - In star catalogs, the individual motion of an individual
star.

Proportional Control Law - A control law with one term, namely one pro-
portional to the coordinate being controlled. Without additional terms
to moderate the system’s performance, the control law will directly track
all measured noise and errors, producing large undesirable system oscil-
lations.

Proportional-Derivative (PD) Control Law - A control law with two terms:
a proportional (or position) term and a derivative (or rate) term. Each
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term has its own adjustable gain. The rate term damps out oscillations
generated by the proportional term.

Proportional-Integral (PI) Control Law - A control law with two terms: a
proportional (or position) term and an integral term. Each term has its
own adjustable gain.

Proportional-Integral-Derivative (PID) Control Law - A control law with
three terms: a proportional (or position) term, an integral term, and a
derivative (or rate) term. Each term has its own adjustable gain.

Pseudo-inverse - See matrix pseudo-inverse.
Q Method/Quest - A batch, least-squares algorithm created by Paul Daven-

port (GSFC) and refined by Malcolm Shuster (CSC) that computes statis-
tically optimal three-axis attitudes from vector observations (for exam-
ple, star tracker input).

Quantization Error - Measurement error due to the finite size of the least
significant bit (LSB).

Quarter Orbit Coupling - Geometric aspect exploited when performing at-
titude determination with Earth sensors. A roll error at one point in the
orbit becomes a yaw error of 90◦ (a quarter of an orbit) later.

Quaternion - A parameterization of the three pieces of information sup-
plied by Euler angles in terms of an ordered set of four real numbers.
The quaternion lacks the singularity issues present in Euler angle formu-
lations and is more compact than the nine elements of the DCM. Quater-
nions also are easily manipulated to determine (or incorporate) changes
in attitude, a useful feature when supporting attitude slews.

Quaternion Inversion - The quaternion inverse is obtained by negating the
first three elements (in one popular formulation) of the original quater-
nion. The product of the quaternion and its inverse is the identity quater-
nion, (0,0,0,1) (in that formulation).

Quaternion Multiplication - A mathematical algorithm for combining the
rotational instructions of two quaternions.

Radial Error - Error in spacecraft position with respect to distance from the
focus.

Radiation Pressure - Force per unit area applied to the spacecraft body
by incident Sunlight. When a spacecraft’s center-of-mass and center-
of-pressure are not coincident, solar radiation pressure will generate a
torque on the spacecraft.

Random Error - The precision error or error due to measurement fluctua-
tion.

Range and Range Rate Orbit Measurements - Measurements of a space-
craft’s distance and radial velocity used to determine the spacecraft’s or-
bit.

Rate Gyroscope - Provides a direct measurement of the spacecraft angular
velocity.
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Rate-Integrating Gyroscope - Measures spacecraft angular displacements
over a brief, fixed time interval. Division by the time interval yields the
spacecraft angular velocity.

Reaction Wheel - A flywheel that stores angular momentum. Reaction
wheels are attitude actuators that can be commanded to null spacecraft
pointing errors or slew the spacecraft to a new commanded attitude. Be-
cause the angular momentum of a closed system is conserved, changing
the rotation rate of a spacecraft’s reaction wheel (and thereby changing
the angular momentum of the reaction wheel) will initiate an opposite
movement in the spacecraft body so as to keep the total angular momen-
tum of the entire system constant.

Recursive Estimator - A state estimation process where the state vector is
updated after each new observation is received.

Redundancy - Built-in back-up capabilities provided to ensure that space-
craft functionality (in that area) will be retained in the event of a space-
craft hardware failure or anomaly. Spacecraft may be fully redundant,
partially redundant, or single string, where single string spacecraft (in
order to minimize mission costs) provide no redundancy in the event of
an inflight hardware problem.

Reference Data - Inertial frame information from a model, catalog, etc. that
can be combined with attitude observations in the body in order to de-
termine the spacecraft orientation.

Reference Vector - The predicted direction of the observation vector in the
inertial frame.

Regression of Nodes - A rotation of the line of nodes due to orbital pertur-
bations caused by Earth oblateness. When the spacecraft inclination is
less than 90◦, the line of nodes rotates opposite to the spacecraft orbital
rotation, and the nodal rotation is called regression of the nodes.

Residual - The difference between the measured quantity and the modeled
quantity.

Resolution - A quantitative measure of the capacity of a sensor or science
instrument to distinguish between two nearby observable objects.

Resonance Frequency - Input frequency (associated with an external force
driving a control system) yielding maximum output amplitude.

Retrograde Orbit - For an Earth orbit, an orbit whose sense of rotation is in
the opposite sense as the Earth’s rotation.

Revolution - A complete orbit.
Right Ascension - Angle (as measured on the Earth’s equatorial plane) be-

tween the vernal equinox and a given point on the equator.
Right Ascension of the Ascending Node - The angle between the vernal eq-

uinox and the orbit’s ascending node, measured in the Earth’s equatorial
plane.

Rigid Spacecraft Motion - The rotational behavior of spacecraft (in the ab-
sence of spacecraft flexible components) due to the influence of external
torques.
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Rise Time - For step input, the time required to attain a response equal to
the input magnitude.

Robust Control - A control system capable of delivering desired levels of
performance even in the presence of significant, unexpected plant be-
havior.

Roll - In celestial coordinates, the Euler angle specifying the rotation angle
of the spacecraft body about a specific body axis (for celestial pointers,
usually the boresight of the prime imaging instrument). Relative to the
body frame, a right-handed rotation about the spacecraft x-axis. Rela-
tive to orbit coordinates for circular orbits, the rotation angle about the
spacecraft velocity axis.

Root - A pole (or zero in the denominator of a transfer function).
Root Locus Diagram - Plot of a control system’s poles (or roots) in the com-

plex plane.
Rossi, Bruno (1905-1993) - Italian-American experimental physicist.
Rossi X-Ray Timing Explorer (RXTE) - A NASA satellite used to study X-

Ray sources.
Rotation - Angular motion of a spacecraft about a vector in the body frame.
Round-Off Error - Error due to finite word length of software variables.
Row Matrix - A 1×N matrix, whereN is the number of entries in the matrix.

Row matrices can be used to represent vectors. A matrix with only one
row.

Runga Kutta Method - A numerical integration algorithm. Developed a-
round 1900 by the German mathematicians C. Runge and M. W. Kutta.

RXTE - See Rossi X-Ray Timing Explorer.
Safemode - In ACS FSW applications, also called Safehold Mode. Safemode

is a spacecraft control mode designed to guarantee electrical power, and
to meet thermal and bright object constraints, in the extended absence of
contact with the ground. Most spacecraft achieve these capabilities via a
Sun-pointing Safehold Mode.

Saturation Limit - The highest speed at which a reaction or momentum
wheel can be operated.

Scalar - A number, as opposed to a vector. A scalar has a magnitude; a vector
has both a magnitude and a direction.

Scalar Product - See Dot Product.
Sectoral Harmonic Coefficients - Coefficients of terms in a spherical har-

monic expansion for which m = n (cf. Eq. 6.1). Graphically, sectoral pat-
terns are bands of longitude.

Secular Terms - Terms in an expansion that have a net change over long
time periods, as opposed to being periodic or constant with time.

Semimajor Axis - Half the length of an ellipse’s long axis.
Semiminor Axis - Half the length of an ellipse’s short axis.
Sensitivity - A measure of how output response is related to changes in in-

put. If small changes in an input produce large changes in output, the
system has a high sensitivity to that input.
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Sensor - In an ACS context, a measuring device whose output can be used to
determine the spacecraft’s attitude, either in absolute or relative terms.

Settling Time - In control theory, the time required for the system oscilla-
tions to reduce in amplitude to a specified band about the steady-state
solution.

Short Period Variations - In an orbital context, fluctuations in a parameter’s
value during an orbital period.

Sidereal Time - Time measurement derived from the Earth’s rotation rela-
tive to the “fixed” stars.

Single-Axis Attitude - For spin-stabilized spacecraft, the orientation of the
spacecraft’s spin axis. Can be parameterized by two Euler angles, right
ascension and declination.

Single-Axis Stabilized - Typically, a spin-stabilized spacecraft. Gyroscopic
stiffness helps the spacecraft to resist disturbance torques that would
otherwise cause that axis’s orientation in inertial space to fluctuate or
drift.

Single-degree-of-freedom Gyroscope - A gyro sensitive to motion in only
one direction.

Single-String Spacecraft - A spacecraft with no built-in hardware back-up
capability designed to deal with an inflight failure or anomaly in space-
craft hardware functionality.

Singularity - Mathematically, a divide-by-zero condition. Often caused by
trying to solve for more information (parameters) than available mea-
surements can support.

Singular Matrix - A square matrix for which an inverse cannot be defined.
Singularity Condition - A geometric state for which one or more coordi-

nates become undefined. For example, when the declination is 90◦, the
right ascension becomes undefined, yielding a singularity condition.

Skew-Symmetric Matrix - A square matrix whose transpose is the negative
of the original matrix.

SKYMAP - A star catalog designed to support attitude determination.
Slew - A large attitude maneuver.
Solar-Lunar-Planetary (SLP) Ephemeris File - Originally a JPL product ad-

apted by GSFC for attitude and orbit applications, the SLP file supplies
position information for the Sun, Moon, and planets.

Small Circle - A circle on the surface of a sphere where the plane of the
circle does not pass through the center of the sphere.

Smoothing - Reducing random noise from measured data or computed pa-
rameters.

Solar Radiation Pressure - Force per unit area applied to the spacecraft
body by incident sunlight. When a spacecraft’s center-of-mass and center-
of-pressure are not coincident, solar radiation pressure will generate a
torque on the spacecraft.
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Solar Radiation Torque - A torque induced on a spacecraft by incident Sun-
light when the spacecraft’s center-of-mass and center-of-pressure are not
coincident.

Solar Time - Time measurement derived from Earth rotation relative to the
Sun.

South Atlantic Anomaly (SAA) - A region of diminished magnitude in the
geomagnetic field. The SAA is located off the coast of Brazil. Because of
the reduced field strength in this region, proton and electron flux ener-
gies (as a function of altitude) are higher in the SAA.

Spherical Harmonic Expansion - A polar coordinates expansion. The sur-
face spherical harmonics are expressed as polynomials in terms of pow-
ers of sines and cosines of azimuth and elevation angles.

Spin - Rotation about a spacecraft axis.
Spin Axis - The axis of rotation.
Spin Axis Precession - Changing the direction of the axis of rotation.
Spin Rate - Speed of rotation about the spin axis.
Spin Stabilization - Exploitation of gyroscopic stiffness to maintain the com-

manded attitude in the presence of disturbance torques.
Spoiler - For missions utilizing guide stars to determine and maintain at-

titude, a star (nearby the actual guide star) that could be detected and
tracked instead of the desired star. Depending on the number of guide
stars, acquisition of a spoiler star can introduce large attitude errors.

Square Matrix - A matrix having the same number of rows as columns.
Stable System - When bounded input yields bounded output.
Star Catalog - A file containing a set of data associated with each star in the

catalog. The associated data includes unique ID, right ascension, declina-
tion, and magnitude. Star catalogs are used to support star identification
and provide the reference data required for use of star tracker (or fine
error sensor) measurements in attitude determination.

Star Identification - Association of stars detected in a star tracker (or fine
error sensor) with catalog stars.

Star Tracker - A star detecting device used for attitude determination and
control.

State Estimation - Formal, statistical method for determining values of a set
of observable quantities called a state vector.

State Transition Matrix - A mathematical object which when operating on
the known values of a state at a given time predicts what the values of
the state should be at a specific (typically) future time.

State Vector - The set of parameter values that describe the system.
Station Keeping Maneuver - An orbit maneuver performed to null errors in

the actual orbit relative to the desired orbit.
Steady State - In (for example) Kalman filter processing, when changes in

the computed state vector no longer vary much from time step to time
step and the error covariance matrix is stable.
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Steady-State Error - The difference between the actual control law output
and the desired control law output after the transient response has died
off.

Stellar-Pointer - A spacecraft that conducts its science by pointing a science
instrument (or instruments) at targets on the celestial sphere, i.e., stars,
galaxies, etc.

Stiction - The larger frictional force (between two surfaces) “felt” up until
one of the objects starts to move relative to the other one.

Strapdown Torque Rebalanced Gyroscope - A mechanical gyro for which
the gyro gimbal is torqued to maintain near-zero deflections. The torques
are applied by magnetic fields created by commanded currents. There-
fore, measuring the current required to keep the gimbal position near
null measures the attitude change of the spacecraft in which the gyro is
mounted.

Subsatellite Point - For Earth-orbiting spacecraft, the point on the Earth to-
wards which the nadir vector points.

Sun Angle - Angle between the Sun vector and a specific vector in the body
frame (for example, the spacecraft spin axis).

Sun-Pointer - A spacecraft whose attitude is maintained so as to keep its
science instrument(s) oriented towards the Sun.

Sun Presence Detector - An attitude sensor that outputs a value above some
threshold when the Sun is in its field of view.

Sun Sensor - An attitude sensor that detects the presence of the Sun and, in
the case of analog and digital Sun sensors, also outputs measurements
from which the Sun vector or Sun angle can be computed.

Sun Shade - A device attached to a star tracker designed to prevent the en-
trance of Sunlight into the star trackers light detecting electronics.

Sun-Synchronous Orbit - A spacecraft orbit whose plane rotates at the same
rate as the Earth’s orbital rate about the Sun. That way, the spacecraft or-
bital plane motion matches the apparent motion of the Sun (relative to
the Earth). Sun-synchronous spacecraft imaging the Earth will therefore
(for example) always image points on the Earth’s equator at the same
local time.

Symmetric Matrix - A square matrix whose transpose is equal to the origi-
nal matrix.

Synchronous Satellite - For Earth orbiting spacecraft, a spacecraft whose
orbital motion matches the Earth’s rotational motion. If the spacecraft in-
clination is zero, the spacecraft will appear to hover over the same point
on the Earth’s surface.

Systematic Error - Non-fluctuating error arising from a hardware inade-
quacy or flaw, a faulty calibration, etc. Systematic errors, unlike random
errors, can be measured and compensated for via improvements to cali-
brations, models, etc.

Tachometer - Devices that measure the speeds of reaction wheels and mo-
mentum wheels.
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Terminator - The day/night boundary on a planet or moon.
Tesseral Harmonic Coefficients - Coefficients of terms in a spherical har-

monic expansion for which m , n (cf. Eq. 6.1). Graphically, tesseral pat-
terns are mosaic-like “tiles” along bands of longitude.

Thermistor - A resistor whose resistance is temperature dependent, and
thereby serves as a thermometer.

Three-Axis Attitude - A specification of the orientation of the spacecraft
body axes with respect to a reference frame, typically expressed as a
transformation from the GCI reference frame to the body frame.

Three-Axis Magnetometer (TAM) - An attitude sensor that measures the
magnitude and direction of the magnetic field in which the spacecraft
is immersed.

Three-Axis Stabilized - Spacecraft all of whose body axes are controlled, as
compared with spin-stabilized spacecraft which only control the orien-
tation of the spin axis.

Three-Body Interactions - Orbit “problems” involving three objects (e.g.,
solving for the moon’s orbit about the Earth, as influenced by the Sun).

Thruster - Spacecraft hardware that generates thrust by expelling propel-
lant.

Torque - The rate of change of the angular momentum. Torques are gener-
ated when forces are applied to a body other than through the body’s
center-of-mass. Such forces introduce rotations about the object’s center-
of-mass.

Torque-Free Motion - Rotational motion for which the angular momentum
is conserved (i.e., unchanged).

Trace - The sum of a matrix’s diagonal elements.
Tracking and Data Relay Satellite (TDRS) - A communications satellite in

the TDRSS. TDRSs are approximately geostationary spacecraft. TDRS
spacecraft are used as relays to uplink commands and table loads from
the ground station to its spacecraft, and are used as relays to down-
link telemetry from the spacecraft to the ground station. In the future,
spacecraft constellations may utilize TDRS spacecraft as relays to sup-
port intra-constellation communications.

Tracking and Data Relay Satellite System (TDRSS) - The collection of
TDRSs, their ground stations, etc.

Trajectory - A spacecraft’s orbital path.
Transfer Function - The Laplace transform of a system’s output divided by

the Laplace transform of the system’s input.
Transfer Orbit - Intermediate orbit used as a stepping stone to get to mis-

sion orbit.
Transient Response - Control system response as a function of time.
Transpose Matrix - A transpose matrix swaps column and row entries rela-

tive to a given matrix.
TRMM - Tropical Rain Measuring Mission, a NASA satellite.
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True Anomaly - Angle measured at the primary focus between perigee and
spacecraft position.

True of Date - When defining coordinates of directions in the GCI reference
frame, taking into account both the precession and nutation of the Earth’s
spin axis relative to inertial space.

Tumbling - Uncontrolled rotational motion.
Two-Body Interactions - Orbit problems where the mutual gravitational ef-

fects of only two objects are considered. For example, approximating the
behavior of a spacecraft in low Earth orbit by only considering the grav-
itational influence of the Earth on the spacecraft.

Two-Degree-of-Freedom Gyroscope - A gyro sensitive to motion along two
axes.

Ultraviolet (UV) Light - Light roughly at wavelengths between 100 and
3900 angstroms. Ultraviolet light is produced by excited atoms.

Umbra - Part of the eclipse cone where the whole Sun is blocked.
Unstable System - When output increases without bound.
Uplink - Command transmission from the ground to the spacecraft.
UTC - See Coordinated Universal Time.
Vector - (1) A quantity with direction and magnitude. (2) See “state vector”

for alternative use of term.
Velocity - The rate of change of position.
Velocity Aberration - Apparent shift in the direction from which an object

is radiating light due to the relative lateral velocity between the radiating
object and the observing platform.

Vernal Equinox - The time when (in the Sun’s apparent orbit about the
Earth) the Sun crosses the Earth’s equatorial plane as it moves from the
Southern hemisphere to the Northern hemisphere. The time of this cross-
ing is defined to be the first day of Northern hemisphere Spring.

Visible Light - Light observable by the naked eye, roughly at wavelengths
between 3900 and 7600 angstroms.

Visual Magnitude - See Magnitude.
Weight - A quantitative specification of the relative importance of a given

observation.
Weight Matrix - A square matrix used to assign quantitatively different lev-

els of importance to different observations.
White Noise - Uncorrelated noise.
Wilkinson, David (1935-2002) - American cosmologist.
Wilkinson Microwave Anisotropy Probe (WMAP) - NASA satellite used to

study the microwave background radiation.
WMAP - See Wilkinson Microwave Anisotropy Probe.
X-rays - Light roughly at wavelengths between 0.1 angstroms and 100 ang-

stroms.
Yaw - Relative to the body frame, a right-handed rotation about the space-

craft z-axis. Relative to orbit coordinates, a right-handed rotation about
nadir vector.
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Zenith - The vector anti-parallel to the nadir vector (i.e., directly above the
spacecraft as opposed to directly below).

Zenith-Pointer - A spacecraft whose primary science instrument(s) is (are)
directed above local vertical (i.e., along the zenith vector).

Zonal Harmonic Coefficients - Coefficients of terms in a spherical harmonic
expansion for which the second index of the Legendre polynomials is
zero (cf. Eq. 6.1). Graphically, zonal patterns are bands of latitude.
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