View metadata, citation and similar papers at core.ac.uk

a2 United States Patent

Malekpour

US010025344B2

US 10,025,344 B2
Jul. 17,2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

SELF-STABILIZING DISTRIBUTED
SYMMETRIC-FAULT TOLERANT
SYNCHRONIZATION PROTOCOL

Applicant: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

Inventor: Mahyar R. Malekpour, Hampton, VA

Us)

THE UNITED STATES OF
AMERICA AS REPRESENTED BY
THE ADMINISTRATOR OF NASA,
Washington, DC (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 115 days.

Appl. No.: 15/097,883

Filed: Apr. 13, 2016

Prior Publication Data
US 2016/0315757 Al Oct. 27, 2016
Related U.S. Application Data

Provisional application No. 62/150,322, filed on Apr.
21, 2015.

Int. CL.
GO6F 1/12 (2006.01)
GO6F 11/07 (2006.01)
(Continued)
U.S. CL
CPC ..o GO6F 1/12 (2013.01); GOG6F 1/04

(2013.01); GOGF 11/0709 (2013.01):

(58) Field of Classification Search
CPC GO6F 11/0709; GO6F 11/079; GO6F 11/14;
GO6F 11/1675; GO6F 1/04; GO6F 1/12;

(Continued)
(56) References Cited
U.S. PATENT DOCUMENTS

4,866,606 A
4,979,191 A

9/1989 Kopetz
12/1990 Bond et al.

(Continued)

OTHER PUBLICATIONS

Koptez, H. “Real-Time Systems Design Principles for Distributed
Embedded Applications,” 1997, p. 47, Kluwer Academic Publish-
ers.

(Continued)

Primary Examiner — Joshua Kading
(74) Attorney, Agent, or Firm — Andrea 7. Warmbier;
Robin W. Edwards; Mark P. Dvorscak

(57) ABSTRACT

A network system includes at least one node configured to
exchange messages through a set of communication links.
Each node includes a synchronizer, a set of monitors in
communication with the synchronizer, a physical oscillator
and a state timer clock and a local timer clock, each clock
being driven by the physical oscillator and having a variable
clock value that locally tracks passage of clock time for the
node. The network system is configured to execute a syn-
chronization process when a specified condition occurs.
Upon receiving a Sync message, each of the nodes is
configured to store an incoming Sync message, increment a
local timer clock value, or ignore the Sync message based on
a local timer clock value associated with an incoming Sync
message.

(Continued) 20 Claims, 7 Drawing Sheets
123
Pz O
AY \\
‘\ - s b
AN Resyrwhronizaiion Y 190
i1 kY Process \ ;
Y ‘*\ Heneerereereeeerreesesennonit] \ /’
\
M \ {” #
"\ ...n..g
3 ﬁ’l—r
........ -
1 StweTimey peeet e Avcep
\ o
) W s AR
\ - an e
\\ e — Local Tiner / ; / oot
..... , / J—
e ; VAN o BN
\ :....5 ! o e
R
i
X
\
kY

-
brought to you by .{ CORE

provided by NASA Technical Reports Server

https://core.ac.uk/display/161999744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US 10,025,344 B2
Page 2

(51) Int. CL
HO4L 7/00 (2006.01)
GOGF 11/16 (2006.01)
HO4J 3/06 (2006.01)
HO4W 56/00 (2009.01)
GOGF 1/04 (2006.01)
GOGF 11/14 (2006.01)
(52) US.CL
CPC ... GOGF 11/0754 (2013.01); GOGF 11/14

(2013.01); GO6F 11/1675 (2013.01); H04J
3/0638 (2013.01);, H04J 3/0647 (2013.01);
HO04J 3/0652 (2013.01); H04J 3/0658
(2013.01); HO4J 3/0676 (2013.01); HO4L
770054 (2013.01); HO4W 56/001 (2013.01);
HO04W 56/003 (2013.01); HO4W 56/0055
(2013.01)
(58) Field of Classification Search

CPCcccue. HO04W 56/001; HO4W 56/003; HO4W
56/0055; HO4J 3/0638; HO4J 3/0647,
HO04J 3/0652; HO4J 3/0658; HO4J 3/0676;
HO4L 7/0016; HO4L 7/0054

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,984,241 A 1/1991 Truong
5,041,966 A 8/1991 Nakai et al.
5,249,206 A 9/1993 Appelbaum et al.
5,295,257 A 3/1994 Berkovich et al.
5,377,205 A 12/1994 Shi

5,377,206 A 12/1994 Smith
5,557,623 A 9/1996 Discoll
5,600,784 A 2/1997 Bissett et al.
5,775,996 A 7/1998 Othmer et al.
5,907,685 A 5/1999 Douceur
5,956,474 A 9/1999 Bissett et al.
5,964,846 A 10/1999 Berry et al.
6,178,522 Bl 1/2001 Zhou et al.
6,349,391 Bl 2/2002 Petivan et al.
6,567,927 Bl 5/2003 Brinkmann
6,671,821 B1 12/2003 Castro et al.
7,023,884 B2 4/2006 Chuah et al.
7,124,316 B2 10/2006 Kopetz et al.
7,257,133 B2 8/2007 Jeske et al.
7,260,652 B2 8/2007 Fuehrer et al.
7,263,630 B2 8/2007 Sailer
7,328,235 B2 2/2008 Mori et al.
7,509,513 B2 3/2009 Toillon et al.
7,792,015 B2 9/2010 Malekpour
7,912,094 B2 3/2011 Hall et al.
7,991,101 B2 8/2011 Kocaman et al.
7,996,714 B2 8/2011 O’Connell et al.
8,255,732 B2 8/2012 Malekpour
8,473,663 B2 6/2013 Somervill et al.
8,861,552 B2 10/2014 Malekpour

2002/0129087 Al
2002/0129296 Al
2004/0205372 Al
2005/0089131 Al
2006/0109868 Al
2008/0084833 Al
2009/0102534 Al
2009/0122812 Al
2010/0019811 Al
2012/0207183 Al
2012/0207258 Al*

9/2002 Cachin et al.
9/2002 Kwiat et al.
10/2004 Moser et al.
4/2005 Howell et al.
5/2006 Schopp
4/2008 Picard
4/2009 Schmid et al.
5/2009 Steiner et al.
1/2010 Malekpour
8/2012 Bobrek et al.
8/2012 Malekpour GO6F 1/12
375/357

2012/0243438 Al 9/2012 Steiner et al.

OTHER PUBLICATIONS

Arenas, Alex et al., “Synchronization in complex networks” Physics
Reports, Dec. 2008, pp. 93-153, vol. 469, Issue 3.

Daliot, Ariel et al., “Linear Time Byzantine Self-Stabilizing Clock
Synchronization,” Proceedings of 7th International Conference on
Principles of Distributed Systems, Dec. 2003, pp. 1-12, La
Martinique, France.

Davies, Daniel et al., “Synchronization and Matching in Redundant
Systems,” IEEE Transactions on Computers, Jun. 1978, pp. 531-
539, vol. C-72, No. 6.

Dijkstra, Edsger W., “Self-stabilizing Systems in Spite of Distrib-
uted Control,” Communications of the ACM, Nov. 1974, pp.
643-644, vol. 17, No. 11.

Dolev, Shlomi, et al., “Self-stabilizing Clock Synchronization in the
Presence of Byzantine Faults,” Journal of the ACM, Sep. 2004, pp.
780-790, vol. 51, No. 5.

Daliot, Ariel, et al., “Linear Time Byzantine Self-stabilizing Clock
Synchronization,” http://www.cs huji.ac.1l/-dolev/pubs/byz-ss-
clock-synch-TR pdf, Aug. 7, 2004, pp. 1-18.

Lamport, Leslie et al., “Synchronizing Clocks in the Presence of
Faults,” Journal of the ACM, Jan. 1985, pp. 52-78, vol. 32, No. 1.
Malekpour, Mahyar T., “Comments on the “Byzantine Self-Stabi-
lizing Pulse Synchronization” Protocol Counterexamples,” NASA
TM-2006-213951, Feb. 2006.

Malekpour, Mahyar R., “A Byzantine-Fault Tolerant Self-Stabiliz-
ing Protocol for Distributed Clock Synchronization Systems,” Figth
International Symposium on Stabilization, Safety, and Security of
Distributed Systems, Nov. 2006, pp. 1-17.

Malekpour, Mahyar R., “Verification of a Byzantine-Fault-Tolerant
Selft-Stabilizing Protocol for Clock Synchronization,” IEEE Aero-
space Conference, Mar. 1-8, 2008, pp. 1-13, Big Sky, Montana.
Malekpour, Mahyar R., “A Self-Stabilizing Byzantine-Fault-Toler-
ant Clock Synchronization Protocol,” NASA/TM-2009-215758,
Jun. 2009.

Mirollo, Renato e., et al., “Synchronization of Pulse-Coupled Bio-
logical oscillators,” SIAM Journal on Applied Mathematics, Dec.
1990, pp. 1645-1662, vol. 50, No. 6.

Peskin, Charles S., “Mathematical Aspects of Heart Physiology,”
1975, pp. 241-278, Courant Institute of Mathematics Sciences, New
York, New York.

Srikanth, T. K., et al., “Optimal Clock Synchronization,” Journal of
the ACM, Jul. 1987, pp. 626-645, vol. 34, No. 3.

Welch, Jennifer L., et al., “A New Fault-Tolerant Algorithm for
Clock Synchronization,” Information and Computation, Apr. 1986,
pp. 1-36, vol. 77, No. 1, Academic Press, Inc.

Daliot, Ariel, et al., “Self-Stabilizing Pulse Snchronization Inspired
by Biological Pacemaker Networks,” http://arxiv.org/pdf/0803.
0241v2 pdf, Mar. 4, 2008, pp. 1-45.

Daliot, Ariel, et al., “Linear-time Self-stabilizing Byzantine Clock
Sychronization,” http://arxiv.org/pdf/cs/0608096v1.pdf, Aug. 25,
2006, pp. 1-31.

Malekpour, Mahyar R., “A Self-Stabilizing Byzantine-Fault-Toler-
ant Clock Synchronization Protocol,” NASA/TM-2014-218285,
Jul. 2014, pp. 1-27.

Malekpour, Mahyar R., “Model Checking a Byzantine-Fault-Tol-
erant Self-Stabilizing Protocol for Distributed Clock Synchroniza-
tion Systems,” NASA/TM-2007-215083, Jan. 1, 2007, pp. 1-36.
Malekpour, Mahyar R., “A Self-Stabilizing Byzantine-Fault-Toler-
ant Clock Synchronization Protocol”, NASA TM-2008, Jan. 2008,
pp. 1-42.

Malekpour, Mahyar R., “A Self-Stabilizing Byzantine-Fault-Toler-
ant Clock Synchronization Protocol”, NASA LaRC Abstract, Nov.
26, 2007, pp. 1-14.

Malekpour, Mahyar R., “A Self-Stabilizing Byzantine-Fault-Toler-
ant Clock Synchronization Protcol”, NASA LaRC Abstract, May
23, 2008, pp. 1-14.

* cited by examiner

US 10,025,344 B2

Sheet 1 of 7

Jul. 17, 2018

U.S. Patent

T 54 171

\\ / SERD0L]

- J, \,
o 3 TOIREIIONHOUAEYY

IBUTL] 18007 IS s . /

SO | BN |31

I

[BV

US 10,025,344 B2

Sheet 2 of 7

AAE!

) «

e

DT e

i
i
3
%
'y

K

.
YO1iT

US 10,025,344 B2

Sheet 3 of 7

Jul. 17, 2018

U.S. Patent

£ OId

@A A
(¥1 = safvssaw Dusg paiogs fo mﬂmmmw b8

1o MW,M%QZW PP a.,m%mmmw,mw

e,

<

Mi foajyadossopy

. “3818]
mm%wm&m 188 mﬁmww m“_, 0t Hi mm mﬁ@.\ﬁ piEiate

paddys 1

M %.,Eﬁ@ %éﬁ
«ww mw_.w“&w

..... 8 .%w S mmxm?xm B¢

(1.

TISHRSSIA MEPHB A

gig

US 10,025,344 B2

Sheet 4 of 7

Jul. 17, 2018

U.S. Patent

¥

i

pie {4

%

-

AR SN MR E Ll BT EEIAN

LAY Ity
{{jidaaay Wud

T AR HHRUOAT)

P P H

O ADUL S AT
< .

By Tapuija
pue { F Lo f sy i
% 0 _@_ e DU TAHESHOLY T TLLL
S
5

10 {47 Q,

oo

el AL IO
BETDISEI LN
S 4B F 00T)

BuB oI

o,

AL Tiv

S mxﬁ,?w%:.
S :QMEW&GWW

= mewxo:w

s
s
<3

US 10,025,344 B2

Sheet 5 of 7

Jul. 17, 2018

U.S. Patent

¢ DI

A

5 o ; m 3

b ¢
auwig | o ﬂ T
AN / ;

0SS qovs . €0TS

,moﬁ

V0O§$ Vops V0TS

US 10,025,344 B2

Sheet 6 of 7

Jul. 17, 2018

U.S. Patent

49 "DId

o SPON mesEI-(L9

FRORT BBMOTY . ()99

1 s sy 059

e

Ny

(58

h FPON BRERI. 079
BPOK 1HR0TE- 019

US 10,025,344 B2

Sheet 7 of 7

Jul. 17, 2018

U.S. Patent

L O

" -
. s

o .m .\N{.{m

ERIE

el .
HPIFT £ HRIIF 0
R S R T/ 2 S N T e A

>,,,
HEIY

RCCe M

s

et | HEEINYC B
R HRSTE o o | X 0 | R 064

T a0l e
,wv.ww}....v,mm }.wmw.wwc u,wbpm.wmwmww e,

e

o
s
e} et
N
+
el

o 4 £ 431 Sy)T
66 AR AL _ON0T | F
GG RS 1:£ 31 £
WS T LD T4+
BOh LA T413
MG 00061 | 61

I

i
BT G e BT SHRLE \

O8L 0LL 09L sl OvL 0L 0ZL 014

(el
',,(;) e

US 10,025,344 B2

1
SELF-STABILIZING DISTRIBUTED
SYMMETRIC-FAULT TOLERANT
SYNCHRONIZATION PROTOCOL

CROSS-REFERENCE TO RELATED PATENT
APPLICATION(S)

This patent application claims the benefit of and priority
to U.S. Provisional Patent Application No. 62/150,322, filed
on Apr. 21, 2015, the contents of which are hereby incor-
porated by reference in their entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The invention described herein was made by an employee
of the United States Government and may be manufactured
and used by or for the Government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefore.

BACKGROUND OF THE INVENTION

Aspects of this disclosure generally relate to systems and
methods for fault-tolerant synchronization protocols and in
particular relate to self-stabilizing distributed-system clock
synchronization protocols and systems.

Distributed systems, in which components located on
networked computers communicate and coordinate their
actions by passing messages, have increasingly become an
integral part of many safety-critical computing applications.
As such, there is a need for system designs that incorporate
complex fault-tolerant resource management functions to
provide globally coordinated operations with ultra-reliabil-
ity. Robust clock synchronization has resultantly become a
fundamental component of many fault-tolerant safety-criti-
cal distributed systems.

Most clocks employ oscillators as timekeeping elements.
Such oscillators may consist of physical objects that oscil-
late repetitively at a constant frequency, i.e., physical oscil-
lators. Since physical oscillators are inherently imperfect,
local clocks of nodes of a distributed system, driven by these
physical oscillators, do not keep perfect time and can drift
with respect to real time and with respect to one another.
Thus, the local clocks of the nodes must periodically be
resynchronized. As a result, there is a need for a fault-
tolerant system with a clock synchronization algorithm that
tolerates imprecise local clocks and faulty behavior by some
processes.

Prior solutions for synchronization systems have not
resolved the need for an approach to perform the above
functions with precision, accuracy, efficiency, or that has
cross-applicability to many various system architectures.
Therefore, there is a need for systems and methods that
address one or more of the deficiencies described above.

BRIEF SUMMARY OF THE INVENTION

Aspects of the present invention relate to a protocol (e.g.,
an algorithm) that tolerates symmetric faults in local clocks
of nodes of a distributed system, provided that there are
more good nodes than faulty ones. Aspects of the present
invention also include model checking of a bounded model
of a protocol in order to validate the correctness of the
protocol as it applies to fully connected networks and
confirm determinism and linear convergence.

15

40

45

50

2

One aspect of the invention is a network system including
at least one node configured to exchange messages through
a set of communication links. Each node may include a
synchronizer, a set of monitors in communication with the
synchronizer, a physical oscillator, a state timer clock and a
local timer clock. The quantity of monitors may be equal to
one less than a quantity of nodes, and each monitor in the set
of monitors may be configured to receive the messages.
Each of the clocks may be driven by the physical oscillator
and have a variable clock value that locally tracks passage
of clock time for the node. The network system may be
configured to execute a synchronization process by causing
a first node to transmit a burst of consecutive Sync messages
to other nodes. Upon receiving a Sync message, each of the
nodes may be configured to determine whether a local timer
clock value associated with an incoming Sync message
meets a minimum event response delay value and store the
incoming Sync message upon determining the local timer
clock value associated with the incoming Sync message
meets the minimum event response delay value. Each of the
nodes may also be configured to determine whether the local
clock timer value associated with the incoming Sync mes-
sage is less than a Sync message lifespan, increment the
local timer clock value upon determining the message is less
than the Sync message lifespan, and ignore the Sync mes-
sage otherwise, and upon determining a number of stored
Sync messages is at least equal to a fault function, indicate
an accept event and set a state timer clock value to zero.

One embodiment of the invention is a self-stabilizing,
symmetric-fault tolerant synchronization protocol for self-
stabilizing a fully connected network from an arbitrary state.
The network may include any number of symmetric faulty
nodes. The synchronization protocol may apply to realizable
systems while allowing for differences in network elements.
In some aspects, the network may include more good nodes
than faulty nodes. A constraint on the behavior of a node
may be that interactions with other nodes are restricted to
defined links and interfaces. The synchronization protocol
may operate without relying on assumptions about an initial
state of the system and without the use of a central clock or
centrally generated signal, pulse, or message. The nodes
may be anonymous, i.e., the node may not have unique
identities. In some aspects, model checking results of a
bounded model of the synchronization protocol may be
included to validate the correctness of the synchronization
protocol applied to fully connected networks. Such model
checking results may also confirm determinism and linear
convergence of the synchronization protocol. The synchro-
nization protocol may apply to any method that can guar-
antee message symmetry across receiving good nodes.

Another embodiment of the invention is a synchronization
protocol configured to deterministically converge with a
linear convergence time with respect to a self-stabilization
period. The synchronization protocol may thus have the
benefit of low overhead, fast detection and fast recovery
times.

Yet another embodiment of the invention is a self-stabi-
lizing protocol. The self-stabilizing protocol may be used in
GPS (Global Positioning System) denied environments or in
non-existent GPS environments (e.g., a Mars mission),
embedded systems, power grids, distributed process con-
trols, synchronizations, computer networks, the Internet,
Internet applications, security, safety, automotive, aircraft,
distributed air traffic management systems, swarm systems,
wired and wireless telecommunications, graph theoretic
problems, leader election, TDMA (time division multiple
access), and banking and commerce. In some embodiments,

US 10,025,344 B2

3

the self-stabilizing protocol may be used in applications
having distributed systems that can use synchronization in
order to design more robust distributed systems.

These and other features, advantages, and objects of the
present invention will be further understood and appreciated
by those skilled in the art by reference to the following
specification, claims, and appended drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a time plot of an activity sequence of a node
during steady state in an example network in accordance
with one or more aspects of the present disclosure.

FIG. 2 is a schematic illustration of Sync message flow
between connected nodes in an example network in accor-
dance with one or more aspects of the present disclosure.

FIG. 3 is a listing of protocol functions in accordance with
one or more aspects of the present disclosure.

FIG. 4 is a listing of symmetric-fault protocol functions in
accordance with one or more aspects of the present disclo-
sure.

FIG. 5 is schematic illustration of network precision for
two nodes of a distributed system in accordance with one or
more aspects of the present disclosure.

FIGS. 6A and 6B are schematic illustrations of network
precision for a system with two nodes having an initial
nonzero precision and for a system where all nodes start in
synchrony, respectively, in accordance with one or more
aspects of the present disclosure.

FIG. 7 is a table depictions of an execution trace of a
network system in accordance with one or more aspects of
the present disclosure.

DETAILED DESCRIPTION OF THE
INVENTION

For purposes of description herein, the terms “upper,”
“lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizon-
tal,” and derivatives thereof shall relate to the invention as
oriented in FIG. 1. However, it is to be understood that the
invention may assume various alternative orientations and
step sequences, except where expressly specified to the
contrary. It is also to be understood that the specific devices
and processes illustrated in the attached drawings, and
described in the following specification, are simply exem-
plary embodiments of the inventive concepts defined in the
appended claims. Hence, specific dimensions and other
physical characteristics relating to the embodiments dis-
closed herein are not to be considered as limiting, unless the
claims expressly state otherwise.

In the following description of various examples of the
invention, reference is made to the accompanying drawings
which show, by way of illustration, various example systems
and environments in which aspects of the present disclosure
may be practiced. It is to be understood that other specific
arrangements of parts, example systems, and environments
may be utilized and structural and functional modifications
may be made without departing from the scope of this
disclosure.

In addition, the present disclosure is described in connec-
tion with one or more embodiments. The descriptions set
forth below, however, are not intended to be limited only to
the embodiments described. To the contrary, it will be
appreciated that there are numerous equivalents and varia-
tions that may be selectively employed that are consistent
with and encompassed by the disclosures below.

10

15

20

25

30

35

40

45

50

55

60

65

4

As used herein, synchronization is intended to encompass
self-stabilizing clock synchronization in distributed systems.
Synchronization may have significance as a fundamental
service for higher-level algorithms that solve other prob-
lems. For example, in safety-critical TDMA (Time Division
Multiple Access) architectures, synchronization may be the
most crucial element of these systems. In the context of
synchronization, the convergence and closure properties
address achieving and maintaining network synchrony,
respectively.

There are many known systems that deal with the closure
property which either do not address convergence or provide
an ad hoc solution for initialization and integration, sepa-
rately. Typically, the assumed topology in such systems is a
regular graph, such as a fully connected graph or a ring.
Although these topologies do not necessarily correspond to
practical applications or biological, social, or technical net-
works, they nevertheless provide a base case to solve the
distributed synchronization problem. Furthermore, the exist-
ing models and solutions do not always achieve synchrony
and, therefore, do not solve the general case of the distrib-
uted synchronization problem. Furthermore, even when the
solutions achieve synchrony, the time to achieve synchrony
is often very large.

As described herein, a fault may be a defect or flaw in a
system component resulting in an incorrect state. Capability
to handle faults in distributed systems may add a new
dimension of complexity of the synchronization of fault-
tolerant distributed systems. A fundamental property of a
robust distributed system is the capability of tolerating and
potentially recovering from failures that are not predictable
in advance. Various known systems may overcome failures
by tolerating Byzantine faults. Other known systems may
address permanent faults, where the issue of transient fail-
ures is either ignored or inadequately addressed. Other
systems, i.e., Byzantine clock synchronization algorithms,
are based on assumptions on initial synchrony of the nodes
or existence of a common pulse at the nodes. There are also
clock synchronization algorithms that are based on random-
ization and, therefore, are non-deterministic.

Byzantine-fault-tolerant self-stabilizing protocols for dis-
tributed systems may be demonstrated via mechanical veri-
fication to self-stabilize from any state, in the presence of at
most one permanent Byzantine faulty node, and to deter-
ministically converge in linear time with respect to the
synchronization period. These protocols, however, do not
solve the general case of the problem in the presence of
multiple Byzantine faults.

The present disclosure relates to systems and methods for
solving the Byzantine general problem for self-stabilizing a
fully connected network from an arbitrary state and in the
presence of any number of faults with various severities
including any number of arbitrary (Byzantine) faulty nodes.
Aspects described herein may be applied to realizable sys-
tems, while allowing for differences in network elements
where the number of arbitrary faults is not more than a third
of the network size. A node may have a constraint that
interactions with other nodes are restricted to defined links
and interfaces. In some aspects, such a constraint may be the
only constraint applied to the node.

Systems and methods described herein may operate with-
out relying on assumptions about the initial state of the
system and without using a central clock or centrally gen-
erated signal, pulse, or message. Nodes may be anonymous,
i.e., the nodes do not have unique identities. Aspects
described herein also include mechanical verification of the
synchronization protocols. Such mechanical verification

US 10,025,344 B2

5

may include verification of a bounded model of the protocol
using a Symbolic Model Verifier (SMV). The model check-
ing effort may be focused on verifying correctness of the
bounded model of the protocol as well as confirming deter-
minism and linear convergence with respect to a self-
stabilization period.

As described herein, synchronization of a distributed
system may encompass the process of achieving and main-
taining a bounded skew among independent local clocks by
exchanging local time information. A distributed system is
defined to be self-stabilizing if it is guaranteed to reach a
legitimate state from an arbitrary initial state in a finite
amount of time and to remain in a legitimate state. For clock
synchronization, a legitimate state may be a state where all
parts in the system are in synchrony.

Aspects of the present disclosure describe a self-stabiliz-
ing distributed-system clock synchronization algorithm (i.e.,
a protocol) configured to achieve and maintain synchrony of
local clocks in a distributed system after system-wide dis-
ruptions occur in the distributed system in the presence of
network element imperfections.

Aspects of the present disclosure describe systems and
methods for the synchronization of a distributed system.
Such systems may restore synchrony and coordinated opera-
tions after the distributed system has experienced system-
wide disruptions in the presence of network element imper-
fections and, for ultra-reliable distributed systems, in the
presence of various faults. In addition, such systems may be
verifiable for accuracy and correctness, e.g., via automated
formal methods. In such systems, addressing network ele-
ment imperfections, such as oscillator drift with respect to
real time and differences in the lengths of the physical
communication media, may be necessary to make a solution
applicable to realizable systems.

Aspects of the present disclosure describe systems and
methods for synchronization protocols that solve the Byz-
antine general problem by self-stabilizing a fully connected
network from an arbitrary initial state and in the presence of
any number of arbitrary (Byzantine) faulty nodes for real-
izable systems. Such systems and methods may also allow
for differences in the network elements, provided that the
number of arbitrary faults is not more than a third of the
network size. One main issue in the self-stabilization prob-
lem is a lack of a symmetric view of the system across all
good (non-faulty) nodes (processors). Systems and methods
described herein may resolve this issue and may self-
stabilize in the presence of symmetric faults (i.e., all good
nodes observe consistent error manifestations, but do rec-
ognize there is an error. Thus, such systems and methods
may first convert any message to a symmetric message and,
may use a verified protocol that is based on a message
symmetry assumption to solve the synchronization problem.

There are a number of ways of achieving message sym-
metry across the system. An Interactive Consistency (IC)
algorithm, for instance, may be used to transform a message,
including an asymmetric message, to a symmetric message,
whereby the good nodes collectively either accept or reject
the message symmetrically, i.e., an agreement, within a time
bound. Other methods include using variety of engineering
practices, for example, using self-checking pair at the node
level or central guardian at the system level.

According to certain aspects described herein, a protocol,
i.e., an algorithm, tolerates symmetric faults, provided that
there are more good nodes than faulty ones. Model checking
results of a bounded model of the protocol are also provided
to validate the correctness of the protocol as it applies to
fully connected networks and to confirm determinism and

15

40

45

50

6

linear convergence. Such systems and methods described
herein may be applied to any method that can guarantee
message symmetry across all receiving good nodes.

A system of pulse-coupled entities (e.g., oscillators, pace-
maker cells) may pulsate periodically at regular time inter-
vals. These entities may be physically coupled (e.g., via wire
or fiber cables, chemical processes, or wirelessly through air
or vacuum) so as to be influenced by each other. Such
systems may be modeled as graphs with a set of nodes
(vertices) that represent the pulse-coupled entities and a set
of communication links (edges) that represent their inter-
connectivity.

The underlying topology may be a fully connected net-
work of at least one node that exchanges messages through
a set of communication links (the number of nodes are
herein referred to as “K”). The nodes may be anonymous,
i.e., they do not have unique identities. The system may
include a set of good nodes and a set of faulty nodes. A good
node may be assumed to actively participate in the synchro-
nization process and correctly execute the protocol. A faulty
node may be either benign (detectably bad), symmetric, or
arbitrary (Byzantine). A faulty node may be defined from the
perspective of a source node, i.e., a sender. A maximum of
F faulty nodes (also referred herein as “F”’) may be assumed
to be present in the system, where Fz0. The minimum
number of good nodes in the system, “G”, may be defined
by G=K-F nodes. A maximum number of detectably bad
nodes may be denoted by F,, symmetrically bad nodes by
Fg, arbitrarily (Byzantine) bad nodes by F,, and thus, the
maximum number of bad nodes may be determined by
F=F +F +F ,. The communication links may be assumed to
connect a set of source nodes to a set of destination nodes
with a source node being different than a destination node.
In some aspects, there may be no physical self-loop link
from at least one node back to itself. A faulty link behavior
may be attributed to its source node. Therefore, all commu-
nication links may be assumed to be good, i.e., reliably
transfer data from their source nodes to their destination
nodes. The nodes may communicate with each other by
exchanging broadcast messages. Broadcast of a message by
a node may be realized by transmitting the message to all
nodes that are directly connected to thereto at the same time
or within a threshold time frame, including real-time trans-
missions. The communication network may not guarantee
any relative order of arrival of a broadcast message at the
receiving nodes. In other words, a consistent delivery order
of a set of messages may not necessarily reflect the temporal
or causal order of the message transmissions. There may be
neither a central system clock nor an externally-generated
global pulse or message at the network level. Communica-
tion links and nodes may behave arbitrarily, provided that
the system eventually adheres to the protocol assumptions.

Each of a plurality of nodes may be driven by an inde-
pendent, free-running local physical oscillator (i.e., the
phase is not controlled in any way) and two clocks (i.e.,
counters), denoted as StateTimer and LocalTimer, which
locally keep track of the passage of time and are driven by
the local physical oscillator. For example, the StateTimer
may be used for operations local to the node as they relate
to achieving and maintaining synchrony among the good
nodes and the LocalTimer may be used to filter out inherent
deviation in the StateTimer during a resynchronization pro-
cess by providing a jitter-free clock to higher level protocols.
The LocalTimer may also be used in assessing the state of
the system from an external perspective.

Regarding the oscillator, an oscillator tick or a clock tick
is a discrete event and a basic unit of time in the network.

US 10,025,344 B2

7

An ideal oscillator may be defined as having a zero drift rate
with respect to real time, thus perfectly marking the passage
of time, however, real oscillators may be characterized by
non-zero drift rates with respect to real time. The oscillators
of'the nodes may be assumed to have a known bounded drift
rate, p, where p is a constant, unitless, non-negative real
value and is constrained to 0=p<<1. The maximum drift of
the fastest clock of a good node over a time interval oft is
given by (1+p)t. The maximum drift of the slowest clock of
a good node over a time interval oft is given by (1/(1+p))t.
Therefore, the relative drift of the fastest and slowest good
nodes may be defined as (1+p)t—(1/(1+p))t.

In simulation and model checking, time may typically be
modeled to reflect real time with a certain accuracy, and the
drift of a node may be measured with respect to that model
of time. In a distributed system, addressing clock accuracy
may be orthogonal to achieving and maintaining synchrony
which is a measure of the relative precision of the good
nodes. Thus, in the context of a correctness proof of a
distributed protocol, only the relative drift of the good nodes
may be considered.

FIG. 1 schematically depicts an example activity
sequence of the StateTimer 110 and LocalTimer 120 of a
node during steady state in accordance with one embodi-
ment. StateTimer 110 may take on discrete values and may
have a monotonic linear function increasing from an initial
value 111 to a maximum value 112. The synchronization
period during steady state (“P;’) may be defined as a
largest time interval between any two consecutive resets of
StateTimer 110 by a good node. As shown in FIG. 1, if
uninterrupted, StateTimer 110 may periodically take on all
discrete values from a zero initial value 111 to P, maximum
value 112, linearly increasing within each period and
bounded by O=StateTimer=P.

LocalTimer 120 may also be driven by the local physical
oscillator, and may take on discrete values and locally track
passage of time. LocalTimer 120 may be a monotonic linear
function increasing from an initial value 121 to a maximum
value 122. The synchronization period during steady state
(P, ;) may be defined as a largest time interval between any
two consecutive resets of LocalTimer 120 by a good node.
As shown in FIG. 1 1, if uninterrupted, Local Timer 120 may
periodically take on all discrete values from a zero initial
value 121 to P; » maximum value, linearly increasing within
each period and bounded by O=<LocalTimer<P, .

These logical clocks 110, 120 may need to be periodically
synchronized due to the inherent drift in their local physical
oscillators. In order to achieve synchronization, the nodes
may communicate by exchanging Sync messages. The peri-
odic synchronization during steady state, i.e., the resynchro-
nization process, may start when a first good node begins to
transmit a burst of consecutive Sync messages and may end
after a last occurrence of a consequent accept event at a good
node. An accept event occurs when a good node receives a
sufficient number of Sync messages from as many good
nodes. The sufficiency of Sync messages may be a function
of the type and number of faults being tolerated.

LocalTimer 120 may be intended to be used by higher
level protocols, and may be managed to provide the desired
monotonically increasing value between adjustments and
despite inherent deviation in StateTimer 110. LocalTimer
120 may be incremented once every local clock tick and may
be reset either when upon reaching maximum allowed value
122, P, ,, or when StateTimer 110 of the node has reached
a reset threshold. An example reset threshold may be vari-

20

25

35

40

45

55

8

ously referred herein as “ResetlocalTimerAt”, where Reset-
LocalTimerAt is constrained by the following inequality:

[7;,;]<ResetLocal Timer At<Pg,—[n],

Where [] is the ceiling function, =,,,,, is the initial network
precision after a resynchronization process, and w is the
upper bound on the guaranteed precision.

The guaranteed synchronization precision, 7, is the guar-
anteed upper bound on the maximum separation between
LocalTimers of any two good nodes. The initial precision,
T, 18 the maximum difference between StateTimers of any
two good nodes upon completion of the resynchronization
process. ResetlocalTimerAt can be given any value in the
range specified in the above inequality. However, the value
must be the same at all good nodes. In this inequality, the
lower bound indicates when all good nodes have reset their
StateTimers and the upper bound indicates when the first
good node might time out and begin the next round of
resynchronization process. The earliest such value may be
selected at ResetlLocalTimerAt=[m,,, |, to reset the Local-
Timer of all good nodes. Any value greater than [x,,,,| may
prolong the convergence time. The convergence time (“C”)
may be defined as the bound on the maximum time the
network takes to achieve the guaranteed precision 7.

A communication delay between directly connected (ad-
jacent) nodes may be expressed in terms of the minimum
event-response delay, “D”, and network imprecision, “d”.
FIG. 2 schematically illustrates such communication delay
parameters in one example implementation. As shown in the
example of FIG. 2, a message 220A transmitted by node
210A at real time “t,” may be expected to arrive at its
directly connected adjacent nodes 210B, 210C, and be
processed. Subsequent message 220B may be generated by
node 210B within the time interval t,+D, and subsequent
message 220C may be generated by node 210C within the
time interval ty+D+d. Communication between indepen-
dently-clocked nodes is inherently imprecise. The network
imprecision, d, is the maximum time difference among all
receivers of a message from a transmitting node with respect
to real time. The imprecision may be due to many factors
including, but not limited to, the drift of the oscillators with
respect to real time, jitter, discretization error, temperature
effects and differences in the lengths of the physical com-
munication media. In accordance with certain embodiments,
these two parameters (D and d) may be assumed to be
bounded such that D>0 and d=0 and both D and d have units
of real-time clock ticks. Communication delay, y, may be
defined as y=D+d, and may have units of real-time clock
ticks. Therefore, the communication delay between any two
directly connected adjacent nodes may be bounded by [D, y].
Although from an external perspective, the value of D and
d, and hence vy, are real numbers, locally and at the node
level, they are treated as discrete values. In other words,
from the local perspective of a node, D=[D], d=[d], and
y=D+d.

In order to achieve synchronization, nodes may commu-
nicate by exchanging Sync messages. Nodes may periodi-
cally undergo a new round of the resynchronization process.
For example, when a node’s StateTimer times out, the node
may initiate a new round of a resynchronization process by
broadcasting a continual burst (e.g., once per y) of Sync
messages to all other nodes that are directly connected to it.
During this process, the StateTimer may be at a maximum
and may remain constant, i.e., the node neither increments
nor resets its StateTimer. This process may continue until all
good nodes participate in the resynchronization process and
converge to guaranteed precision . A good node may use its
own message. An accept event may occur when a good node
receives a sufficient number of Sync messages from good

US 10,025,344 B2

9

nodes. The sufficiency of Sync messages may be a function
of the type and number of faults being tolerated. When an
accept event occurs, the node may end its continual broad-
cast and conclude the resynchronization process by resetting
its StateTimer. In some aspects, consecutive accept events
may occur during a resynchronization process.

The duration of the resynchronization process may poten-
tially be more than vy due to drift. During the resynchroni-
zation process, the StateTimer may hold a constant value (a
maximum) and thus not be a reliable clock source for higher
level protocols. To provide the desired monotonically
increasing clock source for higher-level protocols, the
LocalTimer may be reset when the StateTimer has reached
a predefined value greater than or equal to a guaranteed
initial network precision, m,,,,.

As described herein, synchrony may be a measure of the
relative precision of good nodes. In order to achieve and
maintain desired synchrony, the nodes may communicate by
exchanging Sync messages. I[f only one message type is used
for the operation of this protocol, the exchanged Sync
messages may comprises a single bit. Assuming physical-
layer error detection is dealt with separately, the reception of
a Sync message may be indicative of validity in the value
domain. Upon starting a new round of the resynchronization
process, the node may continually send out Sync messages,
once per y, to other nodes that are connected thereto.
Therefore, a Sync message may have a life-span, and the
life-span of the Sync message at the receiving nodes may be
limited to y. A Sync message from a given source may be
considered valid if the message arrives at or after one-D of
an immediately preceding Sync message from that source.
In other words, a valid message in the value domain, i.e.,
valid Sync messages, may be rate-constrained. Assuming
physical-layer error detection is dealt with separately, the
reception of a Sync message may be indicative of validity in
the value and time domains. Since a good node uses its own
message, and there is no physical self-loop link from the
node back to itself, the message may become valid only after
vy, giving the own message the longest (worst case) trans-
mission delay time. A valid Sync message may become
invalid after its life-span expires. However, while valid, the
Sync message may be used multiple times and result in
multiple accept events.

A node may include a synchronizer and a set of monitors.
To assess the behavior of other nodes, a node may employ
as many monitors as the number of nodes that are directly
connected to thereto, with one monitor for each source of
incoming message. A node may use, but not necessarily
monitor, its own message. The message may be kept within
the node such that there is no physical self-loop link back to
the node. A monitor may keep track of the activities of its
corresponding source node. Specifically, a monitor may
read, evaluate, validate, and store the last valid message
received from that node. A valid Sync message may be then
conveyed to the local synchronizer. The assessment results
of the monitored nodes may then be utilized by the syn-
chronizer in the synchronization process. A monitor may
dispose of valid message after expiration of the life-span.

FIG. 3 shows protocol functions including example func-
tion ValidateMessage() 310, that may be used by monitors
to determine whether a received Sync message meets a
minimum timing requirement, and thus be valid in both
value and time domains, and whether a stored valid Sync
message has reached its lifespan and expired. The function
Accept() 320 may be used by the synchronizer to examine
availability of sufficient valid Sync messages. The suffi-
ciency of available, valid messages (denoted by T) may be

10

15

20

25

30

35

40

45

50

55

60

65

10

a function of the type and number of faults to be tolerated,
represented by the equations T ,=F,+1 and T =F.+1. For
tolerating benign and symmetric faults, respectively, the
following relations may hold: T ,=F,+F+1 for tolerating
F,+F simultaneous faults. When a sufficient number of
messages have been received, the Accept() function 320
may return a Boolean value of true.

Protocols as described herein may include one or more of
the following assumptions: (1) the topology is a fully
connected graph; (2) the number of nodes constituting the
network is K, where K=2F +F ,+1, and F is the maximum
number of symmetrically bad nodes; (3) Nodes either cor-
rectly execute the protocol and are good, are symmetrically
bad F; or are detectably bad F,; (4) links are bidirectional
and correctly transmit data from their sources to their
destinations; (5) the bound on the oscillator drift rate is p,
where 0=p<<1, (6) a message sent by a node will be received
and processed by its directly-connected, adjacent nodes
within y, where y=(D+d); and (7) physical-layer error detec-
tion is dealt with separately and the reception of a Sync
message is indicative of its validity in the value and time
domains.

Aspects of the present disclosure may include solutions
for a self-stabilizing distributed clock synchronization prob-
lem. Time references may be assumed with respect to an
initial real time t,, where t,=0. For all t=t, the system may
operate within the above protocol assumptions. A maximum
difference in the value of LocalTimer for all pairs of nodes
at time t, A, (1), may be determined by the following
equation that accounts for the variations in the values of the
LocalTimer across all good nodes.

r=[m(1+p)] is a time interval encompassing r,

LocalTimer,,,,,(t)=min (N,LocalTimer(t)), for all i, and

LocalTimer,,, (t)=max (N,LocalTimer(t), for all i.

Ay (O=min ((LocalTimer,,, (t)-LocalTimer,,,, (1)),

(LocalTimer,,,, (t-r)-LocalTimer,,,,,(t-1))).

The synchronization precision, 7, may be a guaranteed
upper bound on A, (t) for all t=C, O=n<<P, ;. P, - may have
units of real time clock ticks and may be defined as an upper
bound on the time interval between any two consecutive
resets of the LocalTimer by a node and P, />0. A,,(1), for
real time t, may be the maximum difference of values of the
Local Timers of any two nodes (i.e., the relative clock skew)
for t=t,. C, the convergence time, may be defined as a bound
on the maximum time for the network to achieve the
guaranteed precision 7.

To prove that a protocol is self-stabilizing, C and &t values
may exist such that the following self-stabilization proper-
ties hold.

1. Convergence: A, (C)=x, O=n<<P, .

2. Closure: For all t=C, A, (t)=m.

3. Congruence: For all nodes N,, for all t=C, (N,Local-

Timer(t)=[r]=Ax,(t)=m.

4. Liveness: For all t=C, LocalTimer of every node
sequentially takes on at least all discrete values in [0,
Pgz—m-v].

The above-described convergence and closure properties
address achieving and maintaining network synchrony,
respectively. As described herein, given sufficient time, C,
the convergence property examines whether or not the
system has reached a point where all nodes are within a
specified precision. The closure property, on the other hand,
examines whether or not the system starting within the
specified precision will remain within that precision there-
after. As such, the convergence and closure properties pro-

US 10,025,344 B2

11

vide an external view of the system, whereby the external
viewer can examine whether or not the system has self-
stabilized.

In safety-critical architectures, e.g., TDMA (Time Divi-
sion Multiple Access) architectures, synchronization may be
one of the most crucial elements—or even the most critical
element. More precisely, TDMA-type applications may be
based on the fundamental assumption of the existence of
initial synchrony. Synchronization protocols in accordance
with the present disclosure may provide this fundamental
assumption of TDMA-type applications to higher-level pro-
tocols. However, one of the challenges in employing mul-
tiple protocols in distributed system has been the integration
of'these protocols operating at different levels of application.
In other known systems, the integration of a lower-level
protocol with higher-level protocols either has not been
addressed or had simply been overlooked. The above-
described congruence property addresses this integration.
Unlike the convergence and closure properties that provide
a system view from the perspective of an external viewer,
the congruence property provides a local view from the
perspective of a node by providing the necessary and
sufficient conditions for the node to locally determine
whether or not the system has converged. Thus, according to
aspects of the present disclosure, the congruence property
may be used for the integration of the underlying self-
stabilization protocol with higher-level protocols in the
system.

The liveness property examines whether or not a node
takes on all possible discrete values within an expected
range. In other words, a system may be considered to be
“alive” where the good nodes execute the protocol properly
and time advances within each node.

According to some aspects of the present disclosure, a
self-stabilizing, symmetric-fault tolerant synchronization
protocol is based on a message symmetry assumption. As
described herein, in order to achieve and maintain syn-
chrony, the nodes may communicate by exchanging Sync
messages. Assuming physical-layer error detection may be
dealt with separately, the reception of a Sync message may
be indicative of validity in the value domain. Upon start of
a new round of a resynchronization process, a node may
continually send out Sync messages, once per v, to other
nodes that are connected thereto. Consequently, the life-span
of a Sync message at the receiving nodes is set to be v.
Additionally for tolerating symmetric faults, sufficiency for
the Accept() function may be determined by T =F, +F+1.

FIG. 4 depicts a symmetric-fault protocol executed by all
good nodes of a distributed system. The symmetric-fault
protocol may include a synchronizer 410 and a set of
monitors 420 which execute once every local clock tick.
Four concurrent if statements may collectively describe the
synchronizer 410. These statements are labeled ST (State
Timer) 411, LT (LocalTimer) 412, TS (Transmit Sync) 413,
and TT (TransmitTimer) 414. The function ValidateMes-
sage() 421 may describe the monitor.

The following is a list of pertinent protocol measures:

K=2F +1, where F is the maximum number of simulta-
neous symmetrically faulty nodes;

d(Ps,) denotes the maximum drift for the duration of Py,
3(P4)=0;

O=p<<l;

0<D<y<<Pgsr<Prz;

O=StateTimer=P .

O<LocalTimer=P, ;;

Ty Ay +0(d+y);

T=n,,,,+20(Ps;)=0, for all t=C, and so, O=n<<P

25

30

40

45

50

65

12

t,,=7+2y+m,,;,, Where t,, denotes duration of the resyn-
chronization process during steady state;

Pp 2P syt =Potma2y+m,,; and

C=P, ;+ResetLocal TimerAt+2 vy.

Since 0<y<<P.;<P;,, and the LocalTimer is reset after
reaching P, , (worst-case wraparound), a trivial solution is
not possible.

FIG. 7 depicts an example of a protocol in table format in
accordance with the present disclosure having a fully con-
nected graph consisting of five (5) nodes, where F=2. In
particular, FIG. 7 shows an execution trace of a system and
has eight (8) columns; one for time reference 710, two for
each good node listing values for the StateTimer 720, 730,
740 and LocalTimer 750, 760, 780, and the last column is for
network precision, 780. Each of the rows 790 depicts
activities of all good nodes at a corresponding time shown
in the time reference column 710. Cell contents for the node
columns may include a number corresponding to the value
of the StateTimer of the node in conjunction with an activity
selected from: (1) Sync if the node transmits the message,
and (2) Accept if the node received TA messages. The
received messages at a node are depicted in superscripts, one
position for each corresponding node, where a ‘—" means no
messages from that node and an ‘X’ means a Sync message
was received.

FIG. 7 depicts activities of the network during a resyn-
chronization process when the network is in steady state.
Even though good nodes start the cycle in synchrony, they
may gradually drift apart. The table of FIG. 7 shows a
scenario where node 1 (StateTimer 720, LocalTimer 750) is
the fastest and node 3 (StateTimer 740, LocalTimer 770) the
slowest of the good nodes. By the end of the synchronization
period node 1 and node 3 have drifted part by as much as 12
clock ticks from an external perspective. Since the faulty
nodes can transmit messages at any time, their activities are
not listed in the table of FIG. 7. However, their messages
may be recorded at the receiving good nodes. For instance,
at (t+8) a message from node 5 (a faulty node) is received
by nodes 1 and 2 and d ticks later node 3 records receiving
the same message. The 7t column 780 shows that although
the instantaneous differences between the Local Timers
spike up to a value of 999 at (t+17), the precision & remains
within the theoretical predicted value of 16.

The parameters p, d, D, K, T, and P, may be referred to
as fundamental protocol parameters and remaining param-
eters may be referred to as the derived parameters. Derived
protocol parameters may be computed according to the
following computations.

Initial precision, m,,,, may be defined as a maximum
difference between State Timers of any two good nodes
during steady state, for all t=C, and upon completion of a
resynchronization process. A time graph of network preci-
sion for two nodes, N1 and N2 is shown in FIG. 5.
Transmitted Sync messages 510A, 515A, 510B are shown
using an up arrow (‘1’), received Sync messages 520A,
530A, 540A, 550A, 520B, 530B, 540B, 550B are shown
using a down arrow (“|’), and accept events for received
Sync messages 520A, 530A, 540A, 550A, 5308, 540B are
marked by a dot (“*’) on the time axis. Thus, as shown in
FIG. 5, m,,,=d+y+3(d+y).

From the definition of the network precision, m, it follows
that, for all t=C, = is the sum of initial precision and the
maximum drift among the good nodes after P, from the
completion of the resynchronization process. As depicted in
FIG. 6, the slowest node 610 and the fastest node 620 start
with an initial precision 630 of =,,;,=0. After Py, from the

completion of the resynchronization process, the network

US 10,025,344 B2

13

precision 640, =, is the sum of initial precision 630 and the
maximum drift between nodes 610, 620. As shown in FIG.
6B, even when the nodes start in perfect synchrony at 680,
the slowest node 660 and the fastest node 670 begin in sync
with real time 650. Thus, assuming a symmetric drift & for
the duration of Py, the precision may be computed as
1=28(P,). Further, even in the worst case the nodes start
within m,,,,, and the precision may still be computed to be
n=mn,,,+20(PST).

From the definition of the resynchronization process, it
follows that during steady state the system may take = ticks
for all good nodes to time out and to begin transmitting Sync
messages. Similarly, the system may take y ticks for trans-
mitted messages to reach other good nodes and result in
subsequent accept events at all good nodes. Since a Sync
message has a life-span of one vy, subsequent accept events
occur within the next y. At the end of the resynchronization
process, the good nodes are within m,,,, ticks of each other.
Thus, a duration of the resynchronization process during
steady state may be computed as t,,=m+2y+17,,,,,.

The value of P, . may be derived from the behavior of the
network during steady state and be a measure of the worst
case scenario between two consecutive resets of the Local-
Timer of a good node. Thus, P, ;2P g +t,, =P o +m42y4,,,,.

The convergence time, C, may be measured from t,. The
value of C may be computed as the sum of one y, due to
randomness in the initial value of the Message Timer in the
good nodes, plus the worst case scenario for the good nodes
undergoing a resynchronization process, i.e., Py, and finally
converging to the predicted precision z. Therefore, C=y+
Pg+t,,ResetLocalTimerAt, and so, C=y+Pg;+t,,+7,,;,.

A mechanical verification of the protocol may use a model
checking approach for ease, feasibility, and quick examina-
tion of the problem space, while later attempting a more
comprehensive proof via theorem proving. A Symbolic
Model Verifier (SMV) may be used in the modeling of
protocols in accordance with the present disclosure. The
language description and modeling capability of SMV pro-
vide relatively easy translation from pseudo-code. Further,
SMV semantics are synchronous compositions, where all
assignments are executed in parallel and synchronously.
Thus, a single step of the resulting model may correspond to
a step in each of the components.

The protocol described in accordance with the present
disclosure may be fairly subtle and cope with many kinds of
timing behaviors. Model checking has been used to explore
and verify distributed algorithms but may also face certain
difficulties. One challenge may be a realistic representation
of time as a continuous variable. However, although the
network level measurements may be real values, locally and
at the node level, all parameters may be discrete. The
discretization may be used for practical purposes in imple-
menting and model checking the protocol.

Computational tree logic (CTL), a temporal logic, may be
used to express properties of a system. In CTL, formulas
may be composed of path quantifiers and temporal opera-
tors. Claims of convergence, closure, congruence, and live-
ness properties as well as the claims of maximum conver-
gence time and determinism of the protocol may be
examined using the verification methods described herein.
Although in the description of the protocol convergence and
closure properties are stated separately, they may examined
via a single CTL proposition. This proposition may also
express the claims of determinism and linear convergence.
Validation of the general CTL proposition may require
examination of a number of underlying propositions. In
particular, since A;,_.;zime-(t) 1s defined in terms of the

10

15

20

25

30

35

40

45

50

55

60

65

14

LocalTimer of the nodes, examination of the properties that
describe proper behavior of the LocalTimer may take pre-
cedence. The variable Elapsedlime may be defined as:
ElapsedTime=(GlobalClock=ConvergenceTime).

The variable GlobalClock may be a measure of elapsed
time from the beginning of the operation with respect to the
real time, i.e., external view. The variable ElapsedTime may
be indicative of the GlobalClock reaching its target maxi-
mum value of ConvergenceTime.

The property of Systemliveness may address the liveness
property of the system by examining whether or not time
advances and whether the amount of time elapsed, Elapsed-
Time, has advanced beyond the predicted convergence time,
ConvergenceTime.

The property ConvergenceAndClosure may encompass
the criteria for the convergence and the closure properties as
well as the claims of maximum convergence time and
determinism. In particular, ConvergenceAndClosure may
specify whether or not the system will converge to the
predicted precision after the time elapsed, ElapsedTime, and
whether or not the system will remain within that precision
thereafter. This property are expected to hold for additional
elapsed time.

The value of the AllWithinPrecision property may be
determined by measuring the difference between the maxi-
mum and minimum values of the Local Timers of all nodes
for the current tick, in conjunction with the result from the
previous r=[m (1+p)] ticks. The expected difference of
LocalTimers may be the predicted precision bound. To
eliminate trivial results and false positives, the AllWithin-
Precision property may be examined, and the expected result
may a value of false. This property specifies that after the
elapse of convergence time, ElapsedTime, whether or not
the system will not converge and, if it converges, whether or
not it drifts apart beyond the expected precision bound.

The property Congruence may specify criteria for the
congruence property of the protocol. Unlike the conver-
gence and closure properties that provide system views from
the perspective of an external viewer, the congruence prop-
erty may provide a local view from the perspective of a node
by providing necessary and sufficient conditions for the node
to locally determine whether or not the system has con-
verged. Thus, the congruence property may be essential in
the integration of the underlying self-stabilization protocol
with higher level protocols in the system. The congruence
property may be described with respect to only one node,
namely Node_1. Since all nodes are symmetric, the result of
the proposition may equally apply to other nodes.

The property ProtocolLiveness may specity criteria for
the liveness property of the protocol. In particular, the
property may examine whether or not a node takes on all
discrete values within an expected range. Again, since all
nodes are symmetric, this property may be described with
respect to only one node, namely Node_1.

The model checking results of the bounded model of the
protocol may verify the correctness of the protocol for fully
connected networks with K=2F +1 nodes, starting from an
arbitrary state, and for the following scenarios: F¢=0, 1, 2, 3,
simultaneous symmetric faults, O<p<<1, D=1 and d=0; and
F =2 simultaneous symmetric faults, O=p<<1, D=2, 3, and
d=0, 1. In addition, the results may confirm determinism and
linear convergence.

As described herein, distributed systems have become an
integral part of safety-critical computing applications,
necessitating system designs that incorporate complex fault-
tolerant, resource-management functions to provide globally
coordinated operations with ultra-reliability. As a result,

US 10,025,344 B2

15

there is a need for fault-tolerant system to have clock
synchronization algorithms that tolerate imprecise local
clocks and faulty behavior by some processes. According to
the systems and methods described herein, synchronization
of distributed systems in the presence of various faults,
including any number of arbitrary (Byzantine) faults, is
provided. One issue in solving the self-stabilization problem
is a lack of a symmetric view in the system by the partici-
pating good nodes. However, according to systems and
methods of the present disclosure, any messages may be first
converted to symmetric messages. Then a verified protocol,
based on message symmetry assumption, may be applied to
solve the synchronization problem.

As described herein, there are several ways of achieving
message symmetry across the system, and then presenting a
new protocol based on a message symmetry assumption.
Mechanical verification of the protocol for up to three
simultaneous, symmetric faults is also described herein. The
model-checking effort may be focused on verifying the
correctness of a bounded model of the protocol as well as
confirming claims of determinism and linear convergence
with respect to the self-stabilization period. Accordingly,
protocol systems and methods as described herein may solve
the general case for fully connected graphs. Further aspects
may be applicable to other topologies, such as an arbitrary
graph that meets the minimum requirements of number of
nodes and connectivity.

According to aspects of the present disclosure, a network
system may include at least one node configured to
exchange messages through a set of communication links.
Each node may include a synchronizer, a set of monitors in
communication with the synchronizer, a physical oscillator,
a state timer clock and a local timer clock. The quantity of
monitors may be equal to one less than a quantity of nodes,
and each monitor in the set of monitors may be configured
to receive the messages. Fach of the clocks may be driven
by the physical oscillator and have a variable clock value
that locally tracks passage of clock time for the node. The
network system may be configured to execute a synchroni-
zation process by causing a first node to transmit a burst of
consecutive Sync messages to other nodes. Upon receiving
a Sync message, each of the nodes may be configured to
determine whether a local timer clock value associated with
an incoming Sync message meets a minimum event
response delay value and store the incoming Sync message
upon determining the local timer clock value associated with
the incoming Sync message meets the minimum event
response delay value. Each of the nodes may also be
configured to determine whether the local clock timer value
associated with the incoming Sync message is less than a
Sync message lifespan, increment the local timer clock
value upon determining the message is less than the Sync
message lifespan, and ignore the Sync message otherwise,
and upon determining a number of stored Sync messages is
at least equal to a fault function, indicate an accept event and
set a state timer clock value to zero.

During the synchronization process, each node may be
further configured to set the state timer clock value is to zero
if the state timer clock value is less than zero, and increment
the state timer clock value by one if a state timer clock value
is less than a state timer synchronization period. In some
examples, during the synchronization process, each node is
further configured to set a transmit timer value to zero if the
transmit timer value is less than zero, set the transmit timer
value to zero if the transmit timer value is at least equal to
a rate at which the burst of consecutive Sync messages are
sent and if the state timer clock value is at least equal to the

20

25

30

35

40

45

16

state timer synchronization period, increment the transmit
timer value by one if the transmit timer value is less than the
rate at which the burst of consecutive Sync messages are
sent, and execute a new synchronization process if a state
timer clock value at least equal to the state timer synchro-
nization period and if the transmit timer value is at least
equal to the rate at which the burst of consecutive Sync
messages are sent and if the accept event is not indicated.
During the synchronization process, each node may further
be configured to set the local timer clock value to zero if at
least one of: the local timer clock value is less than zero, the
local timer clock value is greater than local timer synchro-
nization period; and the state timer clock value equals a
ceiling function of an initial network precision, and incre-
ment the local timer clock value by one otherwise.

In some aspects, the network may be an arbitrary, fully-
connected self-stabilizing, via execution of the synchroni-
zation process, from any initial state, and the synchronizer of
the first node may transmit the Sync message to as many
other nodes in the network as are directly connected to the
first node. Each node may be categorized from one of: a
good node, a symmetrically bad node, a detectably bad node
and an arbitrary bad node. In some examples, a number of
arbitrary bad nodes may be no more than a third of a total
number of nodes. The fault function may be based on
considered faulty node types, and the faulty node types may
include symmetrically bad nodes, detectably bad nodes and
arbitrary bad nodes. Exchange of messages of each node
with other nodes may be restricted to defined communica-
tion links. In some examples, at least one of the nodes may
be anonymous. In some examples, each of the burst of
consecutive Sync messages may include a 1-bit message. In
some examples, the communication links may be bidirec-
tional.

According to some aspects of the present disclosure,
self-stabilizing network includes a plurality of nodes (“K”)
in communication with each other. Each of the nodes may
include a synchronizer, a set of monitors, a physical oscil-
lator, a state timer clock and a local timer clock. The set of
monitors may include no more than K-1 monitors in com-
munication with the synchronizer. Each monitor in the set of
monitors may be configured to receive transmitted Sync
messages and to locally keep track of time for a Sync
message in complying with a Sync message lifespan. Each
of the clocks may be driven by the physical oscillator. Each
of the monitors may be in communication with the synchro-
nizer. Hach clock may locally keep track of passage of time
in a node of the synchronizer as a variable integer clock
value. The synchronizer may be further configured to
execute a synchronization process upon the state timer clock
reaching a maximum value of Pg;. For each Sync message
received, the synchronizer may further be configured to
increment a stored Sync message count when a local timer
clock value is at least equal to a minimum event response
delay value. The local timer clock value may be incremented
when the local timer clock value is less than a Sync message
lifespan value, ignore the Sync message when the local timer
clock value is at least equal to the Sync message lifespan. An
accept event may be indicated when the stored Sync mes-
sage count is at least equal to a fault function value.

In some aspects the synchronizer may execute the syn-
chronization process without using a central clock or a
centrally-generated signal, centrally-generated pulse, or cen-
trally-generated message of any kind for self-stabilization
and without relying on an initial state of the network. The
fault function value may be computed based on a type and
number of tolerated faults in the plurality of nodes and may

US 10,025,344 B2

17

equal one plus the number of tolerated faults. A state timer
clock value may be set to zero upon indicating the accept
event. Each monitor may dispose of all previously stored
Sync messages and the stored Sync message count may be
set to zero upon indicating the accept event. The variable K
may be at least equal a sum of two times a number of
symmetrically faulty nodes plus a number of detectably
faulty nodes plus one.

In some aspects, the synchronizer may further configured
to determine a network precision based on a sum of an initial
precision of the network and a maximum drift among good
nodes after a state timer synchronization period. The syn-
chronizer may be further configured to mechanically verify
the synchronization process based on convergence, congru-
ence and liveness properties.

Systems and methods for self-stabilizing protocols in
accordance with the present disclosure may have many
practical applications as well as many theoretical implica-
tions, including but not limited to: GPS (Global Positioning
System) denied environments or environments where GPS is
non-existent (e.g., Mars mission), embedded systems, power
grid, distributed process control, synchronization, computer
networks, the Internet, Internet applications, security, safety,
automotive, aircraft, distributed air traffic management sys-
tems, swarm systems, wired and wireless telecommunica-
tions, graph theoretic problems, leader election, TDMA
(time division multiple access), and banking and commerce
are a few examples. The above applications encompass
some of the many areas of distributed systems that can use
synchronization in order to design more robust distributed
systems.

While preferred embodiments and example configura-
tions of the invention have been herein illustrated, shown
and described, it is to be appreciated that various changes,
rearrangements and modifications may be made therein,
without departing from the scope of the invention as defined
by the claims. It is intended that specific embodiments and
configurations disclosed are illustrative of the preferred and
best modes for practicing the invention, and should not be
interpreted as limitations on the scope of the invention as
defined by the appended claims and it is to be appreciated
that various changes, rearrangements and modifications may
be made therein, without departing from the scope of the
invention.

While the invention has been described with respect to
specific examples including presently preferred modes of
carrying out the invention, those skilled in the art will
appreciate that there are numerous variations, combinations,
and permutations of the above described systems and meth-
ods. Those skilled in the art will understand that various
specific features may be omitted and/or modified in without
departing from the invention. Thus, the reader should under-
stand that the spirit and scope of the invention should be
construed broadly as set forth in the appended claims.

What is claimed is:

1. A network system comprising at least one node con-
figured to exchange messages through a set of communica-
tion links, wherein each node includes:

a synchronizer;

a set of monitors in communication with the synchronizer,

a quantity of monitors being equal to one less than a
quantity of one or more nodes, wherein each monitor in
the set of monitors is configured to receive the mes-
sages;

a physical oscillator; and

a state timer clock and a local timer clock, each clock

being driven by the physical oscillator and having a

10

15

20

25

30

35

40

45

50

55

60

65

18

variable clock value that locally tracks passage of clock
time for the respective node;
wherein the network system is configured to execute a
synchronization process by causing a first node to
transmit a burst of consecutive Sync messages to other
nodes, and
wherein, upon receiving a Sync message, each of the
nodes is configured to:
determine whether a local timer clock value associated
with an incoming Sync message meets a minimum
event response delay value;
store the incoming Sync message upon determining the
local timer clock value associated with the incoming
Sync message meets the minimum event response
delay value;
determine whether the local clock timer value associ-
ated with the incoming Sync message is less than a
Sync message lifespan;
increment the local timer clock value upon determin-
ing, the message is less than the Sync message
lifespan, and ignore the Sync message otherwise;
and
upon determining a number of stored Sync messages is
at least equal to a fault function, indicate an accept
event and set a stare timer clock value to zero.
2. The network system of claim 1, wherein during the
synchronization process, each node is further configured to:
set the state timer clock value to zero if the state timer
clock value is less than zero; and
increment the state timer clock value by one if a state
timer clock value is less than a state timer synchroni-
zation period.
3. The network system of claim 2, wherein during the
synchronization process, each node is further configured to:
set a transmit timer value to zero if the transmit timer
value is less than zero;
set the transmit timer value to zero if the transmit timer
value is at least equal to a rate at which the burst of
consecutive Sync messages are sent and if the state
timer clock value is at least equal to the state timer
synchronization period;
increment the transmit timer value by one if the transmit
timer value is less than the rate at which the burst of
consecutive Sync messages are sent; and
execute a new synchronization process if a state timer
clock value is at least equal to the state timer synchro-
nization period and if the transmit timer value is at least
equal to the rate at which the burst of consecutive Sync
messages are sent and if the accept event is not indi-
cated.
4. The network system of claim 1, wherein during the
synchronization process, each node is further configured to;
set the local timer clock value to zero if at least one of: the
local timer clock value is less than zero, the local timer
clock value is greater than a local timer synchronization
period, and the state timer clock value equals a ceiling
function of an initial network precision; and
increment the local timer clock value by one otherwise.
5. The network system of claim 1, wherein the network is
an arbitrary, fully connected self-stabilizing, via execution
of the synchronization process, from any initial state, and
wherein the synchronizer of the first node transmits the Sync
message to as many other nodes in the network as are
directly connected to the first node.
6. The network system of claim 1, wherein each node is
categorized from one of: a good node or a faulty node.

US 10,025,344 B2

19

7. The network system of claim 6, wherein a number of
arbitrary faulty nodes is no more than a third of a total
number of nodes.

8. The network system of claim 6, wherein the fault
function is based on considered faulty node types.

9. The network system of claim 1, wherein exchange of
messages of each node with other nodes is restricted to
defined communication links.

10. The network system of claim 1, wherein at least one
of the nodes is anonymous.

11. The network system of claim 1, wherein each of the
burst of consecutive Sync messages comprises a 1-bit mes-
sage.

12. The network system of claim 1, wherein the commu-
nication links are bidirectional.

13. A self-stabilizing network comprising a plurality of
nodes (“K”) in communication with each other, wherein
each of the nodes includes:

a synchronizer;

a set of no more than K-1 monitors in communication
with the synchronizer and with other nodes, wherein
each monitor in the set of monitors is configured to
receive transmitted Sync messages from another node,
and locally keep track of time of a Sync message in
complying with a Sync message lifespan;

a physical oscillator; and

a state timer clock and a local timer clock, wherein each
of the clocks are in communication with the synchro-
nizer and driven by the physical oscillator, and each
clock locally keeps track of passage of time in a node
of the synchronizer as a variable integer clock value;

wherein the synchronizer is configured to execute a
synchronization process upon the state timer clock
reaching a maximum value, and for each Sync message
received, the synchronizer is further configured to:

10

15

20

30

20

increment a stored Sync message count when a local
timer clock value is at least equal to a minimum
event response delay value; and

indicate an accept event when the stored Sync message
count is at least equal to a fault function value.

14. The self-stabilizing, network of claim 13, wherein the
synchronizer executes the synchronization process without
using a central clock or a centrally-generated signal, cen-
trally-generated pulse, or centrally-generated message of
any kind for self-stabilization and without relying on an
initial state of the network.

15. The self-stabilizing network of claim 13, wherein the
fault function value is computed based on a type and number
of tolerated faults in the plurality of nodes and equals one
plus the number of tolerated faults.

16. The self-stabilizing network of claim 13, wherein a
state timer clock value is set to zero upon indicating the
accept event.

17. The self-stabilizing network of claim 13, wherein each
monitor disposes of all previously stored Sync messages and
the stored Sync message count is set to zero upon indicating
the accept event.

18. The self-stabilizing network of claim 13, wherein K is
at least equal to a sum of two times a number of symmetri-
cally faulty nodes plus a number of delectably faulty nodes
plus one.

19. The self-stabilizing network of claim 13, wherein the
synchronizer is further configured to:

determine a network precision based on a sum of an initial

precision of the network and a maximum drift among
good nodes after a state timer synchronization period.

20. The self-stabilizing network of claim 13, wherein the
synchronizer is further configured to:

mechanically verify the synchronization process based on

convergence, congruence and liveness properties.

#* #* #* #* #*

	10025344-p0001.pdf
	10025344-p0002.pdf
	10025344-p0003.pdf
	10025344-p0004.pdf
	10025344-p0005.pdf
	10025344-p0006.pdf
	10025344-p0007.pdf
	10025344-p0008.pdf
	10025344-p0009.pdf
	10025344-p0010.pdf
	10025344-p0011.pdf
	10025344-p0012.pdf
	10025344-p0013.pdf
	10025344-p0014.pdf
	10025344-p0015.pdf
	10025344-p0016.pdf
	10025344-p0017.pdf
	10025344-p0018.pdf
	10025344-p0019.pdf

