brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

NASA/TM-2018-219837

The Simple Assurance Argument
Interchange Format (SAAIF) Manual

Patrick J. Graydon
Langley Research Center, Hampton, VA

|
June 2018

https://core.ac.uk/display/161999725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program ...

Since its founding, NASA has been
dedicated to the advancement of

aeronautics and space science. The NASA

scientific and technical information (STI)

program plays a key part in helping NASA

maintain this important role.

The NASA STI Program operates under
the auspices of the Agency Chief

Information Officer. It collects, organizes,

provides for archiving, and disseminates
NASA’s STI. The NASA STI Program
provides access to the NTRS Registered
and its public interface, the NASA
Technical Reports Server, thus providing
one of the largest collections of
aeronautical and space science STI in the
world. Results are published in both
non-NASA channels and by NASA in the
NASA STI Report Series, which includes
the following report types:

e TECHNICAL PUBLICATION. Reports

of completed research or a major

significant phase of research that present

the results of NASA Programs and
include extensive data or theoretical
analysis. Includes compilations of
significant scientific and technical data
and information deemed to be of
continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

e TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

e CONTRACTOR REPORT. Scientific
and technical findings by
NASA-sponsored contractors and
grantees.

in Profile

CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored
or co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material
pertinent to NASA’s mission.

Specialized services also include
organizing and publishing research results,
distributing specialized research
announcements and feeds, providing
information desk and personal search
support, and enabling data exchange
services.

For more information about the NASA STI
Program, see the following:

Access the NASA STI program home
page at http://www.sti.nasa.gov

E-mail your question to
help@sti.nasa.gov

Phone the NASA STI Information Desk
at 757-864-9658

Write to:

NASA STI Information Desk
Mail Stop 148

NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM-2018-219837

The Simple Assurance Argument
Interchange Format (SAAIF) Manual

Patrick J. Graydon
Langley Research Center, Hampton, VA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

]
June 2018

Acknowledgments

We thank the branch and directorate reviewers for their feedback on this work.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by
the National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199
Fax: 757-864-6500

Abstract

This document describes the Simple Assurance Argument Interchange Format,
a proposed meta-model for describing structured assurance arguments. We
describe the syntax and semantics of the model elements, compare the meta-
model to existing argument formats, and give an example to illustrate its use.

1 Introduction

Assurance cases are variously defined. One prototypical definition of a safety
case—an assurance case specifically focused on safety—states that a “Safety
Case consists of a structured argument, supported by a body of evidence that
provides a compelling, comprehensible and valid' case that a system is safe
for a given application in a given environment” [1]. Writers have recorded
assurance arguments in a number of different formats:

o Structured and freeform prose text [2,3]
« Tables [3]

« Graphical argument formats such as Goal Structuring Notation (GSN)
and Claims-Argument-Evidence models (CAE) [4, 5]

« Combinations of symbolic and natural-language logic [6-8]

The related philosophy literature includes yet more formats, including Toul-
min structures and Wigmore diagrams among many others [9—11].

In 2013, the Object Management Group (OMG) published the first ver-
sion of the Structured Assurance Case Metamodel (SACM) [12]. Some ob-
servers cited the metamodel’s complexity as a hindrance to widespread adop-
tion. Work then began on a replacement version that was meant to be simpler.
A beta of SACM version 2.0 was released in 2016 and later refined [13]. The
final version of SACM version 2.0 was released in March 2018 [14].

Taking inspiration from automobile designer Colin Chapman’s exhorta-
tion to “simplify, then add lightness,” we wondered whether a metamodel
could be simpler than the SACM vyet still serve the purposes of assurance
argumentation. This document presents a candidate answer inspired by the
SACM and, to a lesser degree, by GSN and Toulmin’s model [5,9, 14]. We call
our metamodel the Simple Assurance Argument Interchange Format (SAAIF).

1.1 Design goals

Our design goals for the SAAIF are that it should:

1. Serve the purposes to which assurance arguments are typically put
2. Be simple enough that a class diagram fits legibly on one sheet of paper

3. Have semantics described well enough to permit argument analysis

! This restrictive clause yields unexpected effects. For example, C. M. Holloway observes
that if an assurance case is reviewed and found not compelling, it ceases to qualify as a case.

It is worth noting with respect to the first of these that there appears to
be several different assurance argument schools of thought [15]. We are con-
cerned here primarily with purposes that involve communication from the
writer to many safety stakeholders, such as telling the story of how a system
or service achieves the properties to be assured. As one regulator put it,

A safety case is a logical and hierarchical set of documents that
describes risk in terms of the hazards presented by the facility,
site and the modes of operation, including potential faults and
accidents, and those reasonably practicable measures that need
to be implemented to prevent or minimise harm. It takes account
of experience from the past, is written in the present, and sets
expectations and guidance for the processes that should operate
in the future if the hazards are to be controlled successfully. The
safety case clearly sets out the trail from safety claims through
arguments to evidence [16].

Achieving this purpose requires clear and preferably precise communication
to human readers, who might have different backgrounds and different tech-
nical capabilities. Again, quoting the same regulator:

The primary purpose of a safety case is to provide the licensee
with the information required to enable safe management of the
facility or activity in question. Therefore it should be under-
standable to and useable by those with direct responsibility for
safety [17].

Accordingly, in reducing the SACM to create the SAAIF we have favored clear,
human-readable expression over other considerations that other researchers
have addressed, such as deductive validity or computable confidence [8,18].

Whether the SAAIF meets the goals identified above or not is not a matter
we have addressed in depth. We present no concrete efficacy hypotheses here,
much less valid empirical evidence of efficacy. The purpose of this document
is merely to present the SAAIF for further discussion and study, not to present
an assessment of it.

1.2 Document conventions

Sections 2 and 3 present a definition of the SAAIF. All subsections are norma-
tive unless otherwise marked. Appendices A-C present mappings between
the SAAIF and GSN, Toulmin’s model, and confidence maps. Appendix D
presents an example argument taken from NASA’s Explicate 78 work in or-
der to illustrate how the SAAIF might be used.

Where terms from the model are used in the text, they are typeset 1ike
this and hyperlinked to their definitions where possible.

2 Model

Figure 1 depicts a UML model of the Simple Assurance Argument Interchange
Format. Briefly:

- Each instance of the assurancecase class (Section 2.16) represents an
assurance case. Each assurance case comprises an arbitrary number of
Glossary, Argument, and Inventory ObjeCtS.

« Each instance of the Glossary class (Section 2.7) represents a set of
term definitions to be used within the assurance case. Each definition is
represented by an instance of the efinition class (Section 2.6). These
definitions can be cited in a machine-readable manner from within the
Escapedstring fields used to specify the text of the argument.

» Each instance of the Argument class (Section 2.15) represents a self-
contained fragment of argument. Arguments comprise an arbitrary
number and mix OfClaim, EvidenceReference, and Inference ObjeCtS.

— Each c1aim object (Section 2.12) represents a single claim.

— Each EvidenceReference object (Section 2.13) represents a cita-
tion of evidence.

— Each Inference object (Section 2.14) describes how a set of claims
or evidence references serves as premises to show the truth of one
or more claims or inferences.

The abstract ArgumentElement class (Section 2.11) provides a common
base class for claims, evidence references, and inferences.

» Each instance of the Inventory class (Section 2.10) represents a col-
lection of named entities that can be discussed within the argument
(e.g., cited as evidence). The inventory comprises an arbitrary num-
ber of artifact objects (Section 2.8). Relationships between artifacts—
e.g., cases where one artifact is derived, at least in part, from another,
or when one artifact comprises others—may be documented using in-
stances of the ArtifactRelationship class (Section 2.9).

« The ModelElement class (Section 2.5) provides a common abstract base
class for most SAAIF classes.

« The Escapedstring class (Section 2.2) encodes text that might reference
other model elements in a machine-readable manner.

o Instances of the T1dentifier class (Section 2.1) serve to identify model
elements.

« Instances of the KeyvaluePair class (Section 2.4) are used to anno-
tate model elements. Each pair’s value comprises a set of objects de-
rived from the abstract value class (Section 2.3). The SAAIF metamodel
defines the Escapedstringvalue (Section 2.3.1), (plain) stringvalue
(Section 2.3.2), and Booleanvalue (Section 2.3.3) types. Users may de-
fine other value types as needed.

The following sections explain each of the model’s classes in turn.

as[e} = ues|oog : 1surebe +

Joluap| : 8ouUBISaI +

wie;p

aoualdju|

ERIEI D ENERTET]

"0 punoiByoeq +

« 0 « 0
10b.e) + 90IN0S +
VYV

as|e} = ueajoog : papoddngegoy +
as|e} = Uea|00g : palipoNago} +

Juawa|gyuswnbiy |

Alojuanul +
0
diysuonejas +
diysuonejayioepy
« 0] « 0 7|
1oBHME + 10b.e) + L\ \y @ounos +

Bbuigpadeos] : aoualsel +
Pejiuy

:

"0 JUBOD +
@ 1wuswnbuy
uomuyeq 0
wawnbie +
L0 Aue +
Aiesson (

; L0 Atessolb +

buiig:eseq : ojedo| +
[."0] Jeynuap] : uoisuaixe +

asedadueinssy

Buispadedsy : anjea +

ues|oog : enjeA +

Buigeseg : enjea +

anjepbulispadeasy

anjepueajoog

Buigeseqg : eweu +
Bulyg::eseq : urewop +

Bulgpadeosy

anjepbuLils

Januap|

|
v

A4

.0 uoneloUUe +

Jayiuap| 1 AsY +

Buus
;:oseg

buig:ieseg : sweu +
Jaynuspl : pr+

omEn]+ 0°neA+
anjep <

lledanjepAay

g Bulgpadeosy : uonduosap +

juawid|3g1apon

UML model of the Simple Assurance Argument Interchange Format.

Figure 1

2.1 The Identifier class

An Identifier is a human-readable identifier for Assurancecase extensions
and objects of the pefinition, KeyvaluePair, ModelElement, and derived
classes.

Derivation. The Identifier class is not derived from any other classes. No
classes derive from Identifier.

Fields and relationships. This class’s fields and relationships are:

e domain : Base::String — An optional qualifier for identifiers that
permits disambiguating between two identifiers with equal name fields.
The domain string comprises a string of arbitrary length. The domain
‘sAATF’ is reserved.

e name : Base::String — A human-readable name for an identified ob-
ject comprising a string of arbitrary length.

Semantics. An Identifier and any ModelElement Or KeyValuePair itiden-
tifies is said to be anonymous if the name field of the 1dentifier is empty. An
Identifier is said to be unqualified if its domain is empty but its name is not.
A reference 1dentifier ig matches an identified object’s Tdentifier iy iff
both their name and domain fields are equal.

Invariants. All instances must satisfy the following invariants:

1. The domain and name strings must comprise only characters from the

[P S

3 b ¢ LY b 3 Y b
Set{a,...,z,A,...,Z,O,...,9,_
(See Section 3.1 for invariants related to the strict extension.)

Remarks (non-normative). For compactness, some user agents might choose
to display name fields but not domain fields, especially for objects with a name
field is unique in the model.

2.2 The EscapedString class

An EscapedsString is a string in which special character sequences represent
machine-readable references to instances in a model of classes derived from
ModelElement (e.g., Definition).

Derivation. The Escapedstring class is a special form of a plain Unicode
string (represented as Base::String in this document). No classes derive

from EscapedString.

Fields and relationships. None.

Semantics. String values should be interpreted literally with the exceptions
given in Table 1. Machine-readable references to objects of types derived
from ModelElement are given by specifying their identifiers enclosed within
dollar signs (‘s’). User agents might render these as hyperlinks to the ref-
erenced ModelElement. If the reference includes specific display text, user
agents should render a reference as that display text. Otherwise, user agents
should render references as though they had been replaced by the name of the
matching ModelElement.

Table 1: Escape sequences for EscapedSt ring objects.

String Interpretation
< \ \ b ¢ \ b
3 \ $ b 3 $ b

‘s(domain) . (name)s’ | The name of the ModelElement with the matching
id. User agents might hyperlink this text.
‘s(domain) . (name) : “(display)’. Useful where it is necessary to
(display)s’ change the referenced text’s number, tense, etc.
User agents might hyperlink this text.

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). None.

2.3 The Value class and its subclasses

An object of a type derived from the abstract value class represents a specified
value—e.g., the value of an annotation to a model element represented by a
KeyValuePair.

Derivation. The value type is not derived from any other classes. The SAAIF
metamodel defines three sub-classes of value: StringvValue, EscapedString—

Value, and Booleanvalue. Users may derive other classes as needed.

Fields and relationships. The value class’s fields are:

» value — All subclasses of value have a value field of the appropriate
type to specify their value.

Semantics. Represents the given value.
Invariants. None.

Remarks (non-normative). None.

2.3.1 The EscapedStringValue class

The Escapedstringvalue class embodies a value in the specific case where
its value field is a EscapedString.

2.3.2 The StringValue class

The stringvalue class embodies a value in the specific case where its value
field is a simple Unicode string.

2.3.3 The BooleanValue class

The Booleanvalue class embodies a value in the specific case where its value
field is a Boolean.

2.4 The KeyValuePair class

Instances of the KeyvaluePair class represent named sets of objects derived
from value. KeyvaluePair objects are used to annotate objects of types de-
rived from ModelElement.

Derivation. The KeyvaluePair type is not derived from any other classes.
No other classes are derived from KeyvaluePair.

Fields and relationships. This class’s fields and relationships are:

e key : Identifier — Identifies the KeyvaluePair.

o value : Value — Gives the Keyvalueprair’s values (if any).

Semantics. The presence of a KeyvaluePair a in the annotation set of a
ModelElement e indicates that e has a property with a name given by a’s key
and a value given by a’s value. Some extensions may define special meanings
for given key identifiers (see Section 3). Table 2 defines the pre-defined key
values for KeyvaluePair objects and the corresponding meanings.

Invariants. All instances must satisfy the following invariants:
1. The key’s name must not be empty.

(See Section 3.1 for invariants related to the strict extension.)

Remarks (non-normative). The IntantiationNote key might seem duplica-
tive of the Note key since both permit decorating Mode1Elements with arbi-
trary human-readable text notes. The purpose of distinguishing the former
from the latter is to allow a form of remove-before-operation checking for pat-
tern instantiation. See the description of the strict extension in Section 3.1.

Table 2: Pre-defined kinds of KeyValuePair instances.

key (domain.name)

value type

Description

SAATIF.Instanti-

ationNote

EscapedString-—
Value [0..%*]

Arbitrary human-readable text
comments about how to
instantiate an argument pattern.

Value [0..+%*]

SAAIF.IsPattern BooleanValue If t rue, indicates that the
[1] decorated Argument or
Glossary 18 or is associated
with a pattern.
SAAIF .Note EscapedString- Arbitrary human-readable text

comments about the
ModelElement.

2.5 The ModelElement class

The abstract Mode1E1ement classis a base class providing common features for
most of the classes used to model assurance arguments and assurance cases.

Derivation. The ModelElement class is not derived from any other classes.
Several classes derive from Mode1Element: Argument, ArgumentElement (and,
indirectly, its derived classes claim, EvidenceReference, and Inference),

Artifact, ArtifactRelationship, AssuranceCase, Definition, Glossary,

and Inventory.

Fields and relationships. This class’s fields and relationships are:

e annotation

KeyValuePair [0..x] — A set of a KeyValuePair ob-

jects that provide more information about the Mode1E1ement. For exam-
ple, writers might attach freeform comments to a ModelElement using
a KeyValuePair with key=SAATF.Note (see Section 2.4).

o description : EscapedString— A human-readable description of the
ModelElement. Given as a EscapedString so as to encode machine-
readable references to objects of the Definition class or a class derived

from ModelElement. May be empty unless prohibited by the subclass.
e id : Identifier — A machine-readable 1dentifier for the Model-
Element. May be anonymous (see Section 2.1) unless prohibited by the
subclass.
Base::String — A human-readable identifier for the Model-
Element. May be blank unless prohibited by the subclass.

® name

Semantics. None.

Invariants. All instances must satisfy the following invariants:

1. The name and description fields may not contain whitespace other
than space characters and may not begin or end with whitespace.

2. The name field may not contain two or more adjacent space characters.

(See Section 3.1 for invariants related to the strict extension.)

Remarks (non-normative). A ModelElement’s name is typically short: a few
words at most. It’s description may be longer: a phrase or sentence. Narra-
tive text explanations are typically relegated to notes attached as an annota-
tion (see Section 2.4).

2.6 The Definition class

A pefinition defines a term of art for an assurance case.

Derivation. The pefinition class is derived from the ModelElement class.
No classes are derived from the befinition class.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inheritedfrom ModelElement)
— See Section 2.5.

o description: EscapedString (inherited from ModelElement) — The
definition of the term.

e id : Identifier (inherited from ModelElement) — An identifier for
the pefinition. This can be used to refer unambiguously to the pefi-
nition from within an Escapedstring.

e name : Base::String (inherited from ModelElement) — The term to
be defined.

Semantics. Definitions have scope throughout the Assurancecase they are
defined in. Wherever it is used, the defined term (and derivatives such as plu-
ral forms) should be read as though it had the meaning specified by in the
description (mutatis mutandis). While definitions may be explicitly refer-
enced in any Escapedstring (including the description of a term), the def-
initions in an AssuranceCase apply to all uses of defined terms whether or
not they are referenced explicitly.

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). None.

2.7 The Glossary class

A Glossary defines a set of terms of art for an assurance case.

Derivation. The Glossary class is derived from the ModelElement class. No
classes are derived from the Glossary class.

Fields and relationships. This class’s fields and relationships are:

o annotation : KeyValuePair [0..x] (inherited from ModelElement)
— See Section 2.5.

o description : EscapedString (inherited from ModelElement) — See
Section 2.5.

e entry : Definition [0..x] — The setof entries within the Glossary.
e i : Identifier (inherited from ModelElement) — See Section 2.5.

e name : Base::String (inherited fromModelElement)— See Section 2.5.
Semantics. Defines a set of terms.

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). None.

2.8 The Artifact class

An Artifact object identifies an artifact of significance to the assurance ar-
gument.

Derivation. The artifact classis derived from the ModelElement class. No
classes are derived from the artifact class.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inheritedfrom ModelElement)
— See Section 2.5.

o description : EscapedString (inherited from ModelElement) — De-
scribes the artifact, answering the question, What kind of thing is it?

e id : Identifier (inherited from ModelElement) — See Section 2.5.

e name : Base::String (inherited from ModelElement) — Identifies the
artifact, answering the question, What is it called?

o reference : EscapedString — Identifies the artifact, answering the
question, Which instance of < kind of thing > is it? Might be empty.

Semantics. An Artifact object identifies a thing. Two or more Artifact
objects might identify the same thing or parts of the same thing. (A writer

might model such relationships using the ArtifactRelationship class.)

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). None.

10

2.9 The ArtifactRelationship class

An ArtifactRelationship asserts a relationship between artifacts.

Derivation. The ArtifactRelationship classis derived from the Mode1E1-
ement class. No classes are derived from the ArtifactRelationship class.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inheritedfrom ModelElement)
— See Section 2.5.

o description : EscapedString (inherited from ModelElement) — A
description the relationship between the artifacts identified by source
and the artifacts identified by target.

e id : Identifier (inherited from ModelElement) — See Section 2.5.
e name : Base::String(inherited fromModelElement)— See Section 2.5.

o source : Artifact [0..x] (reference) — The Artifact objects on
one side of the relationship.

e target : Artifact [0..+] (reference) —Theartifact objectson the
other side of the relationship.

Semantics. Each source is related to each target as specified by the de-

scription.

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). The source and target sets are not required to
be disjoint. This because some relationships are bi-directional. For example,
a writer might document the fact that a set of artifacts were all produced by
the same developer(s) using an ArtifactRelationship with source=target
and a description reading, “Produced by same developer as.”

We considered adding additional inventory-related classes to record, e.g.,
the provenance of artifacts. But these relationships can be described to human
readers using ArtifactRelationship objects. For example, one might model
a process description as an Artifact and use an ArtifactRelationship to
record that another artifact was “produced using the process described in” the
former artifact. If a user wishes to automate support for re-examining artifacts
that might have been impacted by a change, the extension and annotation
mechanisms could be used to indicate which ArtifactRelationship objects
signify dependence between Artifact objects.

2.10 The Inventory class

An Inventory defines a set of Artifacts and their ArtifactRelationships

(if any).

11

Derivation. The Inventory classis derived from the Mode1Element class. No
classes are derived from the Inventory class.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inheritedfromModelElement) —
See Section 2.5.

e artifact : Artifact [0..x] — Defines the set of artifact objects
in this Inventory.

o description : EscapedString (inherited from ModelElement) — See
Section 2.5.

o id : Identifier (inherited from ModelElement) — See Section 2.5.
e name : Base::String (inherited fromModelElement)— See Section 2.5.

e relationship : ArtifactRelationship [0..+] — Defines the set of
relationships amongst the invetory’s artifacts.

Semantics. An Inventory isacontainer of Artifact objects and artifact-
Relationship objects documenting the relationships amongst them. No uni-
versal meaning applies to the separation of Artifact objectss into separate
Inventory containers, but those containers’ description fields might indi-
cate such a purpose.

Invariants. All instances must satisfy the following invariants:

1. If an Inventory i’s relationship set contains an ArtifactRelation-
ship r with a source or target containing Artifact a, I’s artifact
set must also contain a.

(See Section 3.1 for invariants related to the strict extension.)

Remarks (non-normative). None.

2.11 The ArgumentElement class

ArgumentElement serves as a common base class for the classes used to model
the contents of an Argument.

Derivation. The ArgumentElement class is derived from the ModelElement
class. ArgumentElement is the abstract base class from which the c1aim, Ev-
idenceReference, and Inference classes are derived.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inheritedfrom ModelElement)
— See Section 2.5.

12

o description : EscapedString (inherited from ModelElement) — A
description of the ArgumentElement. User agents might display this as
the element’s text content.

e id : Identifier (inherited from ModelElement) — See Section 2.5.

e name : Base::String (inherited from ModelElement) — The name of
the ArgumentElement. User agents might display this as an identifier.

o toBeModified : Boolean = false — Indicates that the element re-
quires further modification. For example, a pattern might set this field
to true in one of its c1aim objects to indicate that the user should mod-
ify the description to suit the application. A writer producing a draft
assurance case might set this field to t rue to indicate that an Argument -
Element might require revisiting later.

e toBeSupported : Boolean = false — Indicates that the element re-
quires further support. For example, a pattern might set this field to
true in one of its c1aim objects to indicate that the user instantiating the
element should supply premises that are appropriate for the application
and link these via one or more Inference objects. A writer producing
a draft assurance case might mark an Inference this way to indicate
an intent to later supply a warrant and backing.

Semantics. The semantics of an ArgumentElement vary according to whether

it is an Inference, EvidenceReference, Or Claim.

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). None.

2.12 The Claim class

A claim represents a proposition that the argument writer asserts is true. A
claim might be assumed (i.e., deliberately not supported by evidence either
directly or indirectly), a conclusion, or a premise.

Derivation. The claim class is derived from the ArgumentElement class. No
classes are derived from the claim class.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inheritedfrom ModelElement
via ArgumentElement) — See Section 2.5.

o description : EscapedString (inherited fromModelElement via Ar—
gumentElement) — Specifies the proposition to be asserted.

e id : Identifier (inherited fromModelElement Vid ArgumentElement)
— See Section 2.5.

13

e name : Base::String (inherited fromModelElement Vid ArgumentEl-
ement) — See Section 2.5.

+ toBeModified : Boolean = false (inherited from ArgumentElement)
— See Section 2.11.

¢ toBeSupported : Boolean = false (inheritedﬁ’omArgumentElement)
— See Section 2.11.

Semantics. The existence of a Claim in an Argument indicates the writer’s
contention that the proposition recorded in the description field of that
Claim is true. A Claim is assumed (at least for the moment) if it does not
appear in the target of at least one Inference with against=false.

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). None.

2.13 The EvidenceReference class

An EvidenceReference represents the citation of an evidence-related item as
a premise.

Derivation. The EvidenceReference class is derived from the Argument-—
Element class. No classes are derived from the EvidenceReference class.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inheritedfrom ModelElement
via ArgumentElement) — See Section 2.5.

o description : EscapedString (inherited fromModelElement via Ar—
gumentElement) — A description of the evidence-related item. If this is
blank and re ference matches the id of an Mode1Element, the descrip-
tion of that Mode1Element can be taken as the item’s description.

e id : Identifier (inherited fromModelElement viaArgumentElement)
— See Section 2.5.

o reference : Identifier — The (optional) id of the evidence-related
item in question—e.g., an Artifact or another Argument (if the item is
represented in the model). Empty name and domain fields signify that
referenced item is not modeled.

e name : Base::String (inherited fromModelElement Via ArgumentEl-
ement) — See Section 2.5.

¢ toBeModified : Boolean = false (inherited from ArgumentElement)
— See Section 2.11.

o toBeSupported : Boolean = false (inherited fromArgumentElement)
— See Section 2.11.

14

Semantics. Identifies an evidence-related item. The Inference in which the
EvidenceReference appears as a source defines how the item serves as evi-
dence [19].

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). It is tempting to require that if reference is
empty, toBesupported must be true. We deliberately do not make this re-
striction. Writers are free to simply describe the evidence item using the de-
scription field. Writers are also free to use the description field in addition
to the reference relationship in order to cite only part of a modeled item.
We considered allowing EvidenceReference objects to refer to specific el-
ements contained by other Argument objects. This is disallowed in the strict
extension (see Section 3.1) so as to force readers to consider the context of both
arguments when determining whether one supports a claim made in the other.

2.14 The Inference class

An Inference represents an inference from premises, which might comprise
evidence, assumptions, or claims backed by further argument.

Fields and relationships. This class’s fields and relationships are:

e against : Boolean = false — Indicates thatthe premisestend to show
that all claims in the target set are false and any inferences in the
target set do not hold.

e annotation : KeyValuePair [0..x] (inheritedfrom ModelElement
via ArgumentElement) — See Section 2.5.

o description : EscapedString (inherited fromModelElement via Ar—
gumentElement) — Describes the nature of the inference (i.e., how the
premises support the claims and inferences identified by target. For
example, in an inference from one or more EvidenceReference objects
to a Claim, the description might identify or describe an evidence
scheme [19].

o id : Identifier (inherited fromModelElement via ArgumentElement)
— See Section 2.5.

e name : Base::String (inherited fromModelElement Vid ArgumentEl-
ement) — See Section 2.5.

e toBeModified : Boolean = false (inherited from ArgumentElement)
— See Section 2.11.

o toBeSupported : Boolean = false (inherited fromArgumentElement)
— See Section 2.11.

15

Semantics. The assertion of an Inference from the elements in source to
the elements in target indicates the writer’s contention that the sources col-
laboratively support (or weigh against) each target in the same way. Premises
that support a target or targets in similar fashion should do so through sepa-
rate Inference objectss, even if the support is not fully independent. That is,
the removal of a premise from the source set should change what is known
about the nature of the inference, not merely alter the confidence it lends (or
takes from) the targets. For a comparison to Toulmin’s model of argumenta-
tion, see Appendix B.

Invariants. All instances must satisfy the following invariants:

1. The source set must not contain any Inferences.
2. The target set must not contain any EvidenceReferences.
3. If source is empty, toBeSupported must be true.

4. If target is empty, toBeModified must be true.

(See Section 3.1 for invariants related to the strict extension.)

Remarks (non-normative). It is tempting to assert that the source set and
target set should be homogenous (e.g., contain only claim objects) on the
grounds that inference from or two a heterogeneous set seems likely to be the
result of an error or misuse. We make no such prohibition. However, readers
and reviewers are reminded that Tnference objects are meant to record co-
herent, collaborative support (or challenge). We cannot conclude that there
are no inferences from mixed sources that would qualify, but if there are, we
would not preclude recording them.

2.15 The Argument class

The Argument class represents a self-contained argument or argument pat-
tern. Argument objects may reference artifacts and terms defined in the same

AssuranceCase.

Derivation. The Argument class is derived from the ModelElement class. No
classes derive from the Argument class.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inheritedfrom ModelElement)
— See Section 2.5.

« background : Claim [0..«x] (reference) — The set of claims—assumed
or supported—to be taken as true throughout the argument.

e content : ArgumentElement [0..x] — The set of Claims, evidence
references, and instances that the argument comprises.

o description : EscapedString (inherited from ModelElement) — A
description of the argument or argument pattern.

16

e id : Identifier (inherited from ModelElement) — See Section 2.5.

e name : Base::String(inherited fromModelElement)— See Section 2.5.

Semantics. The argument should be interpreted as if the background claims
were true. If the assumed claims—either in the background or asserted in
the argument—are true, the Argument should be taken as support for its non-
assumed claims. The nature and degree of the support for a given claim de-
pends on the truth or assumptions and the strength of the evidence and infer-
ences that directly or indirectly support that claim.

Invariants. All instances must satisfy the following invariants:

1. background must be a subset of content.

Remarks (non-normative). The Argument class lacks identification for ‘top-
level’ c1aim objects. If it is important to identify a particular c1aim as having
particular significance within a system safety assurance or certification effort,
this can be done with its id or description or a Note annotation (if present).

The argument class also lacks any means of distinguishing between ‘pub-
lic’ (i.e., can be referenced from other arguments) and ‘private’ (i.e., cannot be
referenced) elements. This distinction is not meaningful since arguments can
only cite other arguments in toto.

2.16 The AssuranceCase class

AssuranceCase is the main container of the Simple Assurance Argument In-
terchange Format. Each Assurancecase represents a collection of arguments
and evidence.

Derivation. The assurancecCase classis derived from the Mode1Element class.
No classes derive from the Assurancecase class.

Fields and relationships. This class’s fields and relationships are:

e annotation : KeyValuePair [0..x] (inherited from ModelElement)
— See Section 2.5.

o description : EscapedString (inherited from ModelElement) — See
Section 2.5.

o extension : Identifier [0..x] — Identifies any extensions that the
model implements. See Section 3 for the definition of extensions.

e glossary : Glossary [0..» — The glossary or glossaries for terms
used in the assurance case. When multiple glossaries are supplied, all
definitions are available for use in all arguments within the case.

e id : Identifier (inherited fromModelElement) — An optional Tden-
tifier for the assurance case as a whole. Used to refer to cases defined
in other models. May have empty domain and name fields.

17

e inventory : Inventory [0..«] — The collection(s) of Artifact ob-
jects that may be referred to by the case’s argument(s). Where multiple
inventories are supplied, all artifacts are available for reference from all
arguments within the case.

e locale : Base::String— TheISO 15897 locale for the assurance case
(e.g., “en_us”). May not be empty.

e name : Base::String (inherited fromModelElement)— See Section 2.5.

Semantics. Each assuranceCase represents an assurance case, complete with
definitions of any terms of art and references to any cited evidence. The scope
of an assurance case is not limited to any particular stakeholder’s perspective,
the whole or part of any system or service, or any particular dependability
properties. The description and any notes (see Section 2.5) may be used to
describe the scope of the assurance case for the reader’s benefit.

Invariants. None. (But see Section 3.1 for invariants related to the strict
extension.)

Remarks (non-normative). Having only one locale for the entire assurance
case implies that all text within it is treated by the rules of a single language.
This does not preclude including content from other languages. For example,
an argument written in English might include German artifact names.

This restriction effectively precludes including translations of a single case
within the same model. This is by design. Were cases to include content in
multiple languages, the cost would be at least two forms of additional com-
plexity: First, the model elements themselves would require locale fields. Sec-
ond, and more importantly, the model would require a mechanism for guid-
ing arbitration of meaning by identifying which version of the content was
canonical and which versions are translations of that canonical content.

3 Extensions

Extensions are declarations that the writer can add to a model to indicate the
adoption of additional invariants or model elements. Coupled with the ability
to define arbitrary keyvaluePair annotations, extensions allow users to cus-
tomize and extend the format. For example, one could define an extension for
argument reviewing that used annotations to record which argument steps
had been reviewed and record any issues noted during review. The SAAIF
has one built-in extension: SAATF.Strict.

3.1 SAAIFE.Strict

The SAAIF model described in Section 2 deliberately permits models with
detectable structural flaws such as circular arguments. This permissiveness
serves an important design aim, namely allowing the writer to record work

18

in progress. The sAATF.strict extension includes additional invariants that
preclude these structural flaws.

An assuranceCase whose extension set includes an Tdentifier match-
ing sAATF.strict must satisfy the following additional invariants:

1. The AssuranceCase must have at least one Argument, at least one Glos-
sary, and at least one Inventory, but each of these may be empty.

2. The 1dentifier of each identified object must be unique. That is, no
two identifiers used as (i) a Definition’s key or (ii) a ModelElement’s
id may match.

3. Term definitions must be unique and well-defined. That is:

(a) Apefinition object’s name and description fields must not be
empty.

(b) No two Definition objects in the same Glossary may have the
same name.

(c) Apefinitionobject’sdescription may notrefer toanother term
that is directly or indirectly defined in terms of that definition.
(Mechanical checking of strict conformance should interpret the
appearance of an Tdentifier matching term a in term b’s Defi-
nition as b being defined in terms of a.)

4. Inferences must be valid. That is:

(a) An Inference object’s source set must not be empty.

(b) An Inference object’s target set must not be empty.

(c) Notwo ArgumentElement objects may participate in a circular ref-
erence. More formally, —supports(a,a) where supports(a,b) indi-
cates that either (a) there exists an Inference witha € source, b €
target, and against=false, or (b) there exists a ¢y..c, (forn > 1)
such that supports(a,cy) A supports(ci,civ1) A ... A supports(c,,b).

5. Concrete, specific evidence references must identify specific, real arti-
fact objects or Argument objects for support. That is, if an Evidence-
Reference is not toBeSupported and has a non-empty reference, its
reference must match the id of an Artifact or Argument.

6. Artifact relationships must be well-specified. That is, an ArtifactRe-
lationship object’s source and target sets must not be empty.

7. All patterns must be fully instantiated. That is:

(a) The sAAIF.IsPattern annotation may only be attached to argu-
ment and Glossary objects.

(b) No ModelElement may have an annotation with a key matching
SAAIF.InstantiationNote unless one of the following is true:

i. The ModelElement isa Glossary and it is also annotated with

SAAIF.IsPattern = {true}.
ii. The ModelElement is a Definition and its Glossary is also

annotated with SAATF. IsPattern = {true}.

19

iii. The ModelElement is an Argument and it is also annotated

with saATF. 1sPattern = {true}.
iv. The ModelElement is an ArgumentElement and its Argument

is also annotated with sAATF.IsPattern = {true}.

8. The value fields of keyvaluepPair objects with pre-defined keys should
have the correct types. That is:

(a) The value field ofany KeyValuePair with a key matching SAATF.
InstantiationNote mustnot contain nothing other than Escape-
StringValue ObjeCtS.

(b) The value field of any KeyvaluePair with a key matching saatr.
IsPattern must contain exactly one Booleanvalue.

(c) The value field of any KeyvaluePair with a key matching saaTF.
Note must not contain nothing other than Escapestringvalue
objects.

Ifan AssuranceCase object’s extension setincludes an Tdent i fier match-
ing sSAATF.strict, it should also meet the following goals where practicable:

1. Define terms of art clearly. In addition to avoiding circular definitions,
writers should (a) avoid defining words in terms of words the reader
is even less likely to understand, (b) refrain from using non-predictive
constructions such as defining terms using examples or using hedges
such as ‘usually’ or ‘generally’ [20].

2. Avoid the use of loaded language [21]. That is, writers should not use
defined terms in such a way that knowledge of their plain-language
meaning is likely to mislead readers.

3. Where practical®, an argument’s references to propositions and artifacts

should be recorded using Inference objects and EvidenceReference
objects rather than through the Escapedstring mechanism.

4 Encoding

The SAATF model presented in Section 2 might be encoded in stream or file
formats not specified in this document. For the purpose of facilitating in-
terchange, we define one standard encoding, saa1r_TEXT. This encoding is
defined in Appendix E.

2 There are some instances where it might be desirable to use an EscapedString refer-
ence rather than an Inference or EvidenceReference. For example, one might use a
Note to observe that one Claim is analogous to another Claim in the same argument or in
another argument.

20

References

10.

11.

. Defence Standard o0o-56, Issue 6: Safety Management Requirements for De-

fence Systems — Part 1: Requirements and Guidance. (U.K.) Ministry of De-
fence, Glasgow, UK, Apr. 2015.

. Holloway, C. M.: Safety Case Notations: Alternatives for the Non-

Graphically Inclined? Proceedings of the 3rd IET International Conference
on System Safety (ICSS), Birmingham, UK, Oct. 2008.

. Kelly, T. P.: Arguing Safety — A Systematic Approach to Managing Safety

Cases. Ph.D. Thesis, University of York, York, UK, Sept. 1998. URL http:
//www—users.cs.york.ac.uk/~tpk/tpkthesis.pdf.

. Adelard: ASCAD: Adelard Safety Case Development Manual. Electonic

document, London, UK, 1988.

. Attwood, K.; et al: GSN Community Standard Version 1. Ori-

gin Consulting Limited, York, UK, Nov. 2011. URL http:
//www.goalstructuringnotation.info/documents/
GSN_Standard.pdf.

. Rushby, J; Xidong, X.; Murali, R;; and Weaver, T. L.: Understand-

ing and Evaluating Assurance Cases. Contractor Report NASA/CR-2015-
218802, National Aeronautics and Space Administration, Hampton, VA,
USA, Sept. 2015.URL https://ntrs.nasa.gov/archive/nasa/
casi.ntrs.nasa.gov/20160000772.pdf.

. Haley, C. B.; Moffett, J. D.; Laney, R.; and Nuseibeh, B.: Arguing secu-

rity: Validating security requirements using structured argumentation.
Proceedings of the Third Symposium on Requirements Engineering for In-
formation Security (SREIS’05) held in conjunction with the 13th Interna-
tional Requirements Engineering Conference (RE’05), Paris, France, Aug.
2005. URL http://oro.open.ac.uk/2488/1/.

. Graydon, P. J.: Formal Assurance Arguments: A Solution In Search of a

Problem? Proceedings of the 45th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), Rio de Janeiro, Brasil,
June 2015. URL http://hdl.handle.net/2060/20160006364.

. Toulmin, S. E.: The Uses of Argument. Cambridge University Press, New

York, NY, USA, updated ed., 2003.

Schum, D. A.: The Evidential Foundations of Probabilistic Reasoning. Wiley,
New York, NY, USA, 1994.

Modgil, S.; and Prakken, H.: The ASPIC+ Framework for Structured Ar-
gumentation: A Tutorial. Argument & Computation, vol. 5, no. 1, 2014,
pp- 31-62. URL http://www.cs.uu.nl/groups/IS/archive/
henry/ASPICtutorial.pdf.

21

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

OMG: Structured Assurance Case Metamodel (SACM), Version 1.0. Object
Management Group (OMG), Feb. 2013. URL http://www.omg.org/
spec/SACM.

OMG: Structured Assurance Case Metamodel (SACM), Version 2.0, Beta 1.
Object Management Group (OMG), July 2016. URL http://www.omg.
org/spec/SACM/2.0/Betal/.

OMG: Structured Assurance Case Metamodel (SACM), Version z.0. Object
Management Group (OMG), Mar. 2018. URL http://www.omg.org/
spec/SACM/2.0/PDF.

Graydon, P. J.: The Many Conflicting Visions of ‘Safety Case’. Proceed-
ings of the IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2017. Fast abstract.

Office for Nuclear Regulation: Safety Assessment Principles for Nu-
clear Facilities. , Health and Safety Executive, Bootle, UK, Nov. 2014.
URL http://www.onr.org.uk/saps/saps2014.pdf, 2014 Edi-
tion, Revision o.

Office for Nuclear Regulation: The Purpose, Scope, and Con-
tent of Safety Cases. ONR Nuclear Safety Technical Assessment
Guide NS-TAST-GD-o51 Revision 4, Health and Safety Executive,
July 2016. URL http://www.onr.org.uk/operational/tech_
asst_guides/ns-tast-gd-051.pdf.

Graydon, P. J.; and Holloway, C. M.: An Investigation of Proposed Tech-
niques for Quantifying Confidence in Assurance Arguments. Safety Sci-
ence, vol. 92, Feb. 2017, pp. 53-65.

Graydon, P. J.; and Holloway, C. M.: “Evidence” Under a Magnifying
Glass: Thoughts on Safety Argument Epistemology. Proceedings of the IET
System Safety and Cyber Security Conference, Bristol, UK, Oct. 2015, pp.
6-11. URL http://www.researchgate.net/publication/
280247123_Evidence_Under_a_Magnifying_Glass_
Thoughts_on_Safety_Argument_Epistemology.

Wasson, K. S.: CLEAR Requirements: Improving Validity Us-
ing Cognitive Linguistic Elicitation and Representation. Ph.D.
Thesis, University of Virginia, Charlottesville, VA, USA, May
2006, URL http://www.cs.virginia.edu/~ksh4dq/pubs/
KWassonDissertationSingleSpaced.pdf.

Graydon, P.J.: Towards a Clearer Understanding of Context and Its Role in
Assurance Argument Confidence. Proceedings of the International Confer-
ence on Computer Safety, Reliability and Security (SAFECOMP), Springer,
Florence, Italy, Sept. 2014, pp. 139-154. URL http://dx.doi.org/
10.1007/978-3-319-10506-2_10.

22

22.

23.

24.

25.

Goodenough, J. B.; Weinstock, C. B; and Klein, A. Z.: Elimina-
tive Argumentation: A Basis for Arguing Confidence in Sys-
tem Properties. Technical Report CMU/SEI-2015-TR-005, Soft-
ware Engineering Institute, Pittsburgh, PA, USA, Feb. 2015.
URL http://resources.sei.cmu.edu/asset_files/
TechnicalReport/2015_005_001_434813.pdf.

Holloway, C. M.: Explicate ’78: Uncovering the Implicit Assurance Case
in DO-178C. Engineering Systems for Safety: Proceedings of the 23rd Safety-
Critical Systems Symposium (SSS), M. Parsons and T. Anderson, eds., Bris-
tol, UK, Feb. 2015. URL http://www.cs.virginia.edu/~cmh7p/
e78sss2015.pdf.

Holloway, C. M.; and Graydon, P. J.: Explicate "78: Assurance Case Appli-
cability to Digital Systems. Final report, Federal Aviation Administration,
Dec. 2016. In Press.

Aiello, M. A.; Hocking, A. B.; Knight, J.; and Rowanhill, J.: SCT: A Safety
Case Toolkit. Proceedings of the znd International Workshop on Assurance
Cases for Software-Intensive Systems (ASSURE), 2014, pp. 216—219.

23

Appendix A

Mapping to the Goal Structuring Notation

The Goal Structuring Notation (GSN) is a popular graphical notation for
recording assurance arguments [5]. While it is not possible to convert argu-
ments between SAAIF and GSN without some loss of information or refactor-
ing, it is useful for pedagogical purposes to explain which concepts in GSN
align with which concepts in the SAAIF and vice-versa. Table A1 sketches

such a mapping.

Table Al: Mapping between the GSN and the SAAIF.

definition [21])

GSN SAAIF Note
Goal Claim Claim supported by Inferences.
Strategy description of
Inference
Solution Evidence-
Reference
Context (as Definition Definitions apply case-wide.

Context (as

background)

Claim in the
background of
an Argument

Context (as
artifact)

?

Depends on the purpose of
asserting the artifact [21].

Justification as

Inference from

The c1aim gives the justification

context for Claim to text; the target Inference

strategy Inference represents the strategy.

Assumption Claim Claim without support.

Undeveloped toBeSupported

entity

SupportedBy Inference Except that the goal-supported-
by-strategy-supported-by-goal
construct is represented as a
described Inference from the
first c1aim to the second.

InContextOf No direct See mappings for Context and

equivalent Away Goals.

Uninstantiated toBeModified

entity

Number/choice Instantiation- | (See Section 2.4.)

decorations Note

24

Table Al: Mapping between the GSN and the SAAIF (continued).

GSN SAAIF Note
Bracketed text Definition in Placeholder text in patterns can
Glossary that refer to associated definitions.
IsPattern
Away goal Inference from | Claims in other arguments can’t
other Argument be referenced directly; the reader
to claim must determine whether and
how the referenced Argument
supports the claim.
Module Evidence-
reference Reference to
Argument
Away solution Evidence-

Reference to
same Artifact

Away context No direct Can be duplicated depending on
equivalent how the context is being used.

Public entity No direct A claimin one Argument cannot
equivalent be directly referenced from

another Argument.

25

Appendix B

Mapping to Toulmin’s model

Toulmin’s classic text defines a model for informal argumentation that is still
used as a model today [9]. Figure B1 depicts Toulmin’s model. While it is not
possible to convert arguments between SAAIF and Toulmin’s model without
some loss of information or refactoring, it is useful for pedagogical purposes
to explain which concepts in Toulmin’s model align with which concepts in
the SAAIF and vice-versa. Table B1 sketches such a mapping.

Data (D) —|—> So Qualifier (Q), Claim (C)

Since

Warrant (W) Unless
| Rebuttal (R)

On account of
Backing (B)

Figure B1: Toulmin’s model of informal argumentation.

Table B1: Mapping between Toulmin’s model and the SAAIF.

Toulmin’s model | SAAIF

Data Claim Or EvidenceReference

Warrant Inference from Claim to Inference

Backing Inference to the Cclaim presenting the warrant
Qualifier Text in the description

Rebuttal Inference with against=true to the c1aim
Claim Claim

26

Appendix C

Mapping to Confidence Maps

Some argument notations, including the Goal Structuring Notation (GSN),
lack an explicit mechanism for presenting counterevidence [5]. To address this
lack, Goodenough et al. propose eliminative argumentation in the form of con-
fidence maps [22]. Figure C1 depicts a confidence map, which introduces to
familiar GSN symbols representing inference rules, the rebutting, undercutting,
and undermining defeaters familiar to students of informal argumentation, and
the writer’s assertion that something is either deductively OK or assumed OK.

Table C1 sketches a mapping from confidence maps to the SAAIF.

Table C1: Mapping between confidence maps and the SAAIF.

Confidence map

SAAIF

Inference rule

Inference from Cclaim (expressing the rule) to

Inference

Rebutting defeater

Inference with against=true from claim
expressing the reason to claim expressing the
rebutted claim.

Undercutting Inference with against=true from claim
defeater expressing the reason to the rebutted Inference.
Undermining Either (1) an Inference with against=true
defeater from c1laim expressing the reason to the rebutted

EvidenceReference Or (2) an Inference with
against=true from claim expressing the reason
to the Inference from the rebutted evidence.

Assumed/is OK

No direct equivalent. A writer might mark an
ArgumentElement as toBeSupported to indicate
that it should be revisited. Readers may use their
own annotations to record their acceptance of or
confidence in claims, evidence references, and
inferences.

27

pazAjeue usaaq sey ‘s

9p0J |[B JION "P'9NN

pasn sjo0] sisAleuy “L"9NN

$10448 BWOS 199}9p },Uop

"

"** 9SNeJa(S104I8 8|qrIo8lep Aj[edie]s awos
paX00}1aA0 sisAjeue oiels syl Ing "9 SINN

!

(On) “ye@ Bumnaispun

O
O
(WN) "Je@ Buluiwiepun () (A3) eouspIng ()
()
(4) sere040Q BUmngey ()

(eAnonpap) MO S|
MO pawnssy

(d1) ainy eouaJsu| []
(x0) a0y ()

(Q)wren []
A9y deyy @ouapyuo)

sJouia Buipoo a|qejoslep Ajleonels ou
Buimoys synsau sisAjeue onels "gyA3

?

* SUOIINJBXa 1S9} Wopuel SuoIINJBXd

Ajjeuonelado jeuonippe wopuel Ajjeuoneiado

1SIX® SI0LId 1s1x8 s10418 Buipod €06 Jo sousnbes e 001 ‘¢ J0 @ouanbas e ul
JO spupy J8y1o a|gelo91ap Ajleonels Ul PaAJISSQO S| 8.n|ie} sUo paAIaSqo S| ain|ie} U0
Ise9| e ssejun ‘¢'ed Ises| e ssejun “L'ed

O SS9un "G'ed ss9jun “y'ed O

a|qeljal Algeidaooe
S| WwajsAs

8y} usyj ‘1sIxe
slolid ou J| “predl

wa)sAs ayy ul
SISIX® JoJio ue
sse|un "g'cHd

a|qeljal Algeidaode si wislsAs ayl uay)
‘suonnoaxa 1se} wopuel Ajreuonelado
10 (09‘y7) @ousnbas abue| Ajjuaions
B Ul paAIaSqo aJe sainjie) ou §| "L gdl

SU0I}NOBXa }S8] Wopuel
Ajreuoneiado go9‘y Jo @ouanbas
B Ul PaAIBSqO S| ain|ie}

auo 1se9| 1e ssa|un “L'2d

(Arenso [eonsels %66 Yim) 1000 > 4d §l a|qeljal Ajqeideooe
a|qela) Algeidaooe si walsAs ayl "ep 1x) st waisAs a8yl "1'1LD

Example “multi-legged confidence map” adapted from [22].

Figure C1

28

Appendix D

Example: Explicate ’78 revisited

Researchers have developed an assurance case representing the logic of RTCA’s
DO-178C standard for airborne software [23,24]. In this section, we present a
re-imagining of part of that argument in SAAIF as an example of how SAAIF
might be used.

Figure D1 reproduces Figure 3 (“Level D primary argument in GSN”) from
a paper reporting a draft of that argument [23]. The figure is presented in a
variant of the Goal Structuring Notation used by a specific argument editing
tool [5,25]. The argument is not a traditional safety argument, but rather an
attempt to capture a standard’s logic, and so it differs from traditional soft-
ware safety arguments in, e.g., referring to requirements and evidence in the
abstract.

Figures D2-Dy4 give the argument as modeled using the SAAIF. Because
SAAIF does not have a canonical graphical form, we illustrate the SAAIF
model using a UML instance diagram. While this graphical form is somewhat
bulky and impenetrable, we use it here to directly illustrate how the SAAIF’s
fields and relationships might be used in modeling.

Figures D2-D4 are not a direct translation of Figure D1. Several differ-
ences are worthy of special mention:

« The GSN argument uses context elements to define terms of art. The
SAAIF argument uses explicitly modeled definitions instead (permitting
a user agent to render the defined terms as, e.g., hyperlinks).

+ The GSN argument records as contextual information the assertion that
“the software has been assigned to level D.” The SAAIF argument in-
stead records this as a background assumption. If this assumption is
not true, the argument becomes irrelevant.

« The (modified) GSN argument uses an assurance claim point (rendered
as a box decorating the strategy) to link to a confidence argument (not
shown). The SAAIF argument instead introduces the confidence claim
as background supported by the confidence argument. This background
knowledge should shape the reader’s interpretation of this argument,
including the strength of inferences from evidence.

« The GSN argument renders objectives requiring the development of ar-
tifacts such as the high-level requirements as contextual information.
The SAATF argument records these objectives instead as inferences to
the argument’s main inference. If high-level requirements do not exist,
the main inference makes no sense.

29

+'G'G O8Y2-0a
‘A1eSSOID 1'2'L'G “U'g’L'G SOIMAIOY ‘q'|'L'G
SaouUBI9yeY :Z2'e

1'G'S
08Ye ‘Aessolp 'eg'g ‘fg'1'G ‘62 L'S y2L'G ‘0T LS
‘PTLGOTLGATLG LG SOAOY BT LG

S92UBI9Y9Y 'S

Y ER

9 191N ¥°G O8%¢-0d

.SisAleue A1ajes [eulblio 8y} Ul pauoISIAUS Jou
SeM ey} (syuswaiinbal paALIap ‘s Jey)) Joineysq
MU JO UOI}ONPOJIUl BY} JO sjuswaiinbal paje|as
-Ayayes Jo uolrejuswa|dwi sadosdwi sy} Jayyue
Aq pasiwoidwod jou [sl] sishjeue Ajojes ay} 1eys
ainsua 0} paulep [s1] sseooid Ajeyes sy} 0} sseoo.ud
juswdojenap sjuswalinbal ayy jo diysuoleal ay],,

SoouaIRYRY L°E

e)

(60| "d ‘Aresso|n) siuswalinbai payoads yum
JUS1SISUODU] S| Jey} JOIABYSY :10IABYSQ SNOJBWOUY,,
yagwouybulues|y 112

o)

(Pre°€°2) . WBJOIIB BY} JO} DIN|IE} JOUIW B

ul Burynsas uonouNy WaYSAS JO ain|le} e 0} 8}NCLIUO0D
JO ©SEO P|NOM ‘sS800.1d JUSLLISSOSSE WalSAS

a3 Ag UMOUS SE “I0IABLSQ SNO[BLLIOUE 9SOUM
2IBM)OS,, "d [9A9] Jo Buluesw ayy jo uonduoseq

a |enebuluesy 12

sjuswalinbal

19A8]-ybiy 8y} Jo JusWaulal
(@ 19n8] J0y) Aioyoeysiies

e sl 9p0) 109[qQ 9|genoexy
are1esO0d SINPON :G°€

sjuswaiinbai weysAs
pa1eo0||e 8y} JO Juswaulel
(@ 19n9] J0y) Aiojoeysies e
aJle sjuswalinbal [ans|-ybiH

AAeTESHTH SINPON v'€

(2'2-V) Sseo04d Juswssosse Ajojes wolsAs

oy} Buipnjoul ‘sasseooid walsAs ay} 03 papinoid
pue paulep aJe sjuswaiinbai [aAs|-ybly panue(q,,
A0IdTHIRQ ST

(1'2-V) padojenap ase sjuswalinbal |ans)-ybiH,,
ASQYTH 6T

Koyes Jo [an9| o|qe}deooe ainsus pue uolouny papuaiul
auljep 01 JUSIOIYNS PUB PIEA 8l sjuswalinbai palep Aue
AQ pajuswbne aiemyos 0] pajeoo|e sjuswalinbal waisAg

#mspliepd0]ivbay g

sjuswaiinbal paALBp
pue sjuswsalinbai
wieysAs payeoo|e

0} 9AIje|aJ 9/BMYOS BY}
10 ss8U081100 Aq anbiy
ssaujoal09Aghiy g2

@ [9A8] 01 paubisse usa(Sey a/emyos ay |
ubissyqlona 'L

suole|nBal SSBUIYLOMIIE WOy
Kyayes Jo [ons) 8|qeideooe Jo uoniuleq

Baymyyeq 'L

2JBM}OS 8U]} JO UOJOUN} papusiUl Jo uonduoseq
undjuj :ig°L

a |ons| oy Aejes

JO |on8| 9|qe1deooe Je uolouny
papuslul s} swiopad a/emyos
aneo|qerdaooyms 1L

dified GSN.

in mo

Reproduction of “Level D primary argument” from [23]

Figure D1

30

Explicate 78 :

AssuranceCase

+ extension :={ SAAIF.Strict }
+ locale :=“en_US”

{ 2K 2

DO178_Glossary : Glossary

+ description := “The $D0178.D0178C$ Glossary”
+ annotation :={ < SAAIF.IsPattern, {true} >}

—1 + name := “Software”
+ description := “Computer programs ..."

| DO178_Software : Definition

DO178_Intended_Function : Definition

+ description =

—@ -+ annotation := { < SAAIF.Instantiation-Note, {“Replace with

reference to a description of the $D0178.Software:software’s$
defined intended function.”} > }

| DO178 Level D : Definition

+ name := “Level D”
+ description := “6D0O178.Software$ whose $D0178.Anom-

olous_Bevhaior$, as shown by the system assessment ...”

—

AWR_Glossary : Glossary

+ description : EscapedString := “Terms from
the applicable airworthiness regulations”

Level D_Primary : Argument

I| + description := “Primary argument for $DO178.Level_D$ $D0O178.Software$”

(2

Lev_D_Assigned : Claim

+ description := “The $D0O178.Software$
has been assigned to $D0O178.Level_D$” + background

Justified_Confidence Lev D : Claim

e

+ description := “The evidence provided is adequate | . hackground
for justifying confidence that the correctness of the
$D0178.Software$ has been demonstrated to the + target
extent needed for $D0O178.Level_D$”

Justified_Confidence Lev D _I : Inference

4

+ description := *”

Jus_Conf Lev_D ER : EvidenceReference

4

+ description := “$JusConfLevD.Argument$” + source

—0

Note: Relationship labels and some fields have been omitted to reduce clutter.
Set-type fields (e.g., annotation) are empty unless shown. Values of the id and
name fields should be appropriate variants of object names (e.g., Explicate_78
might have id=<“Explicate78”, “Explicate_78"> and name="Explicate '78”).

Figure D2: Adaptation of “Level D primary argument” from [23] (part I of 3).

31

Level D _Primary : Argument

+ description := “Primary argument for $D0178.Level_D$ $D0O178.Software$”

| SwAcceptableLevD : Claim

$DO0178.Intended_Func-tion:intended function$ at an

1 + description := “$D0O178.Software$ performs its
$AWR.ALo_Safety$ for $DO178.Level_D$”

+ target

| SwALD : Inference

+ description := “Argue by correctness of the $D0178.Software$ relative to
$D0O178.Allocated_System_Regs$ and $DO178.Derived_Requirements$”

| HLRSatLevD : Claim

satisfactory (for $DO178.Level_D$) refinement of the

.I + description := “$DO178.High_Level_Reqgs$ are a
$D0O178.Allocated_System_Regs$.”

+ target

| EOCSatLevD : Claim

satisfactory (for $DO178.Level_D$) refinement of the

1 + description := “$DO178.Exec_Obj_Code$ is a
$D0178.High_Level_Regs$.”

+ source

RegAllocValidStuff : Claim

+ description := “6D0178.Sys_Reqs$ allocated to
$D0O178.Software$ augmented by any
$D0O178.Derived_Reqs$ are valid and sufficient to
—@ $DO178.Intended_Function:define intended function$
and ensure an $AWR.ALo_Safety$.”

+ annotation :={ < SAAIF.Note, {“The relationship of
the requirements development process ...", DO-248C
5.4 bullet 67} > }

+ source

+ source

.l SwALD_W : Inference
+ description := "

+ source

| HLR_Dev : Claim

+ annotation = { < SAAIF.Note, {“5.1.a, ..."} >}

—1 + description := “$D0O178.High_Level_Reqgs$ are developed.”

DevHLRProv : Claim

—@ provided to the system processes, including the system
safety assessment process.”
+ annotation = { < SAAIF.Note, {“5.1.1.b, ..."} >}

+ description := “6DO178.Derived_HLRs$ are defined and + source

32

Note: To reduce clutter, some fields are not shown here. E.g., the
—® - - - toBeSupported and toBeModified fields are false unless shown.

Figure D3: Adaptation of “Level D primary argument” from [23] (part 2 of 3).

Level_D_Primary : Argument
+ description := “Primary argument for $D0O178.Level_D$ $D0O178.Software$”

_. P

| HLRSatLevD : Claim rarget
+ description := “$D0O178.High_Level_Reqgs$ are a +large
satisfactory (for $DO178.Level_D$) refinement of the
$D0O178.Allocated_System_Reqs$.”

.| HLRSatLevD I : Inference
+ description := *”

.I HLRSatLevD_ER : EvidenceReference
+ description := “$EOCSatLevD.Argument$” + source

EOCSatLevD : Claim
+ description := “6D0O178.Exec_Obj_Code$ is a + target
satisfactory (for $DO178.Level_D$) refinement of the
$D0O178.High_Level_Reqgs$.”

EOCSatLevD | : Inference

w

+ description :=

PR

EOCSatLevD_ER : EvidenceReference
+ description := “6EOCSatLevD.Argument$ + source
| HLR_Dev : Claim
+ description := “6D0178.High_Level_Reqgs$ are < -
developed.”
+ annotation = { < SAAIF.Note, {*5.1.a, ..."} >} + target
.l HLR_Dev I : Inference
+ description := *”
| SWAS : EvidenceReference
+ description := “6D0O178C.Software_Accomplish-
ment_Summary$” + source
+ toBeSupported = true
.I DevHLRProv_lI : Inference
+ description = *”
DevHLRProv : Claim + target
+ description := “6D0178.Derived_HLRs$ are defined

—@ and provided to the system processes, including the
system safety assessment process.” < -
+ annotation = { < SAAIF.Note, {“5.1.1.b, ...”} >}

Note: Claims HLR_Dev and DevHLRProv were originally rendered as context.
Here, we render them as evidence to show how reference as-yet-undeveloped
evidence. Their appearance in two figures is meant only to permit splitting the
argument over several pages; they would not be duplicated.

Figure D4: Adaptation of “Level D primary argument” from [23] (part 3 of 3).

33

Appendix E

Text-based encoding SAATF_TEXT

It is useful to have at least one canonical file or stream format for encoding
SAAIF arguments. This section presents a text file encoding, SAATF_TEXT.

E.1 Character encoding

The characters that comprise a saa1r_TEXT file shall be encoded in UTF-8.

E.2 Lexical structure
A san1F_TEXT file comprises the following tokens:

Bareword. A sequence of one or more characters from the same set that

Identifiers comprise, namely {‘a’,..., 2" ‘a’ ... ‘2", ‘0",...,°9",
Identifier. An identifier comprises two parts separated by a period (*.°).
Each part might be either a bareword or an asterisk (*«’). The first part is
the domain field. The second part is the name field. An asterisk represents
an empty field.

UID. A sequence of 1—16 uppercase or lowercase hexidecimal digits. UTDs
need not be truly unique. (See Section E.4 for details.)

€5 ¢ 5 ¢

Symbol. Symbols—operators and punctuation—include ‘=’, *;’, “{’, ‘}’,

¢, and ‘+’.

String literal. A string literal begins with a double-quote character (*"’),
contains any characters other than a newline or an unescaped double-
quote, and ends with a double-quote. Escape sequences begin with a pipe
character (“|’):

« ‘| | represents a single pipe character.

« ‘| ™ represents a double-quote character.

« ‘In’ represents a newline character.

« ‘|’ followed by one or more hexadecimal digits represents the uni-

code code point with the given value.

Escaped string literal. A backslash character (“\’) followed immediately
by what would otherwise be a string literal.

)

Comment. A comment is a pair of hyphen characters (“~-") followed by
all non-newline characters up to the next newline.

Whitespace. The whitespace characters are space, horizontal tab, new-
line, and carriage-return appearing outside of a st ring literal or escaped
string literal. Whitespace is ignored.

34

E.3 Grammar

We present the saaTF_TEXT grammar in Backus—Naur Form (BNF) notation
with regular expression extensions. Words appearing in all upper case are
nonterminal names. SAATF_TEXT_FILE represents a complete file. Words ap-
pearing in all lower case are token names. Token literals appear in quotes and
are not case sensitive. IMPORT_STATEMENTS should be treated as though they
were replaced by the contents of the file whose path is given by the string
literal. A single VALUE appearing in a PARAMETER is interpreted identically to
a VALUE_SET with that single value.

SAATIF_TEXT_FILE := ASSURANCE_CASE«x;
ASSURANCE_CASE := ‘AssuranceCase’ identifier
‘is’ PARAMETER+ ‘begin’ AC_CONTENT«* ‘end’ *%‘;’;
AC_CONTENT := IMPORT_STATEMENT | GLOSSARY |
INVENTORY | ARGUMENT;

PARAMETER := (bareword | identifier) ‘=’
(VALUE VALUE_SET) ‘;’;

VALUE_SET := ‘{’ (VALUE (',’” VALUE)=*x)? ’"}';

VALUE := STRING | ESC_STRING | BOOLEAN |
identifier | uid;

STRING := string (‘+’ string) x;

ESC_STRING := escaped_string
(‘+’ escaped_string) x;

BOOLEAN := ‘true’ | ‘false’;

IMPORT_STATEMENT := ‘import’ string ‘;';

GLOSSARY := ‘Glossary’ identifier

‘is’ PARAMETER+ ‘begin’ DEFINITION* ‘end’ *%‘;’;
DEFINITION := ‘Definition’ identifier

‘is’ PARAMETER+ ‘end’ Y;';

INVENTORY := ‘Inventory’ identifier

‘is’ PARAMETER+ ‘begin’ I_CONTENT* ‘end’ *%;’;
I_CONTENT := ARTIFACT | ARTIFACT_RELATIONSHIP;
ARTIFACT := ‘Artifact’ identifier uid

‘is’ PARAMETER+ ‘end’ Y;';
ARTIFACT_RELATIONSHIP := ‘ArtifactRelationship’

identifier ‘is’ PARAMETER+ ‘end’ ‘;’;

ARGUMENT := ‘Argument’ identifier
‘is’ PARAMETER+ ‘begin’ ARGUMENT_ELEMENT
\endl \; 14 ,.

ARGUMENT_ELEMENT := CLAIM | EVIDENCE_REF |
INFERENCE;

CLAIM := ‘Claim’ identifier uid
‘is’ PARAMETER+ ‘end’ Y;';

EVIDENCE_REF := ‘EvidenceReference’ identifier uid

‘is’ PARAMETER+ ‘end’ ‘;';

35

INFERENCE := ‘Inference’ identifier uid
‘is’ PARAMETER+ ‘end’ Y;';

E.4 Semantics

In this section, we describe the relationship between the saa1r_TEXT grammar
and the SAAIF model.

ModelElement. Each ASSURANCE_CASE, GLOSSARY, INVENTORY, ARTIFACT,
ARGUMENT, CLAIM, EVIDENCE_REF, Or INFERENCE nonterminal encodes a Model-
Element of the kind indicated by its initial token. The fields of a Mode1E1ement
are generally given by PARAMETER nonterminals appearing before the next
“pegin” token. The description and name fields of a Mode1E1ement are given
by PARAMETER nonterminals with the bareword tokens “description” and
“name”, respectively. Its id field is given by the identifer immediately fol-
lowing its initial token. Its annotation field is given by the set of PARAMETER
nonterminals beginning with “identifier” tokens. Unless otherwise speci-
fied, the fields of derived classes are given by PARAMETER nonterminals with
corresponding bareword tokens.

AssuranceCase. The part of each AssURANCE_CASE nonterminal appearing
between its first “begin” token and its last “end” token gives its inventory,
argument, and glossary contents in the form of the GLOSSARY, INVENTORY,
and ARGUMENT nonterminals that appear there.

Glossary. The part of each GLoSsaRY appearing between its first “begin” to-
ken and its last “end” token gives the entry field for the Glossary it repre-
sents.

Inventory. The part of each INVENTORY appearing between its first “begin”
token and its last “end” token gives the relationship and artifact fields for
the Inventory.

Artifact. Each ARTIFACT in a given INVENTORY must have a unique uid.

ArtifactRelationship. The source and target fields of each artifactRela-
tionship will be given as PARAMETER nonterminals with the bareword tokens
“source” and “target”. Those PARAMETER nonterminals will have VALUE_SET
nonterminals comprising only uid tokens, each giving the uid of an ARTIFACT
in the same INVENTORY.

Argument. The part of each ARGUMENT appearing between its first “begin” to-
ken and its last “end” token gives the content field for the argument Argument
it represents. The Argument’s background field will be represented by a PARA-
METER with the bareword “background” and a VALUE_SET comprising only
uids, each of which identifies an ARG_CONTENT in the same ARGUMENT.

36

ArgumentElement. Fach ARGUMENT_ELEMENT in a given Argument must have
a unique uid.

Inference. The source and target fields of each Inference will be given as
PARAMETER nonterminals with the bareword tokens “source” and “target”.
Those PARAMETER nontermainls will have vALUE_SET nonterminals compris-
ing only uid tokens, each giving the uid of an ARGUMENT_ELEMENT in the same
ARGUMENT.

E.5 Example

The following example illustrates how one might encode the argument frag-
ment depicted in Figure Da2.

AssuranceCase Explicate_78.Explicate_78 1is
extension = { SAAIF.Strict };

locale = "en_US";
name = "Explicate ’78";
begin

Glossary D0O1788.Glossary 1is
description = \"The $D0178.D0178C$ Glossary";

name = "DO178 Glossary";
SAAIF.IsPattern = true;
begin

Definition DO178.Software is

description = \"Computer programs ...";
name = "Software";
end;

Definition DO178.Intended_Function is

description = \"";
name = "Indended Function";
SAAIF.InstantiationNote = { \"Replace with " +
\"a reference to a description of the " +
\"$D0178.Software:software’s$ defined " +
\"intended function." };
end;

Definition DO178.Level_D is
description = \"$DO178.Software$ whose " +
\"$D01789.Anomolous_Behavior$, as shown " +

\"by the system assessment ...";
name = "Level D";
end;
—— Some definitions elided
end;

37

Glossary AWR.Glossary is
description = \"Terms from the applicable " +
\"airworthiness regulations.";
name = \"AWR Glossary";
begin
—— Definitions elided
end;

Argument Level_D_Primary.Argument is
description = \"Primary argument for " +
\"$D0178.Level_D$ $D0O178.Softwares$";
name = "Level D Primary";
background = { 1, 2 };
begin
Claim Level_D_Primary.Lev_D_Assigned 1 is
description = \"The $D0178.Software$ has " +
\"been assigned to $D0O178.Level_DS$.";

name = "Lev D Assigned";
end;
Claim
Level_D_Primary.Justified_Confidence_Lev_D
2 is
description = \"The evidence provided is " +
\"adequate for justifying confidence " +
\"that the correctness of the $D0178." +
\"Software$ has been demonstrated to " +
\"the extent needed for $D0O178.Level_DS$S.";
name = "Justified Confidence Lev D";
end;
Inference
Level_D_Primary.Justified_Confidence_Lev_D_T
3 1is
description = \"";
name = "Justified Confidence Lev D I";
source = { 4 };
target = { 2 };
end;

EvidenceReference
Level_D_Primary.Jus_Conf_Lev_D_ER 4 is
description = \"$JusConfLevD.Argument";
name = "Jus Conf Lev D ER";

end;

-— Some argument elements elided

—-— Some assurance case elements elided

38

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01-06-2018

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)
June 2017 - May 2018

4. TITLE AND SUBTITLE

The Simple Assurance Argument Interchange Format (SAAIF) Manual

5a. CON

TRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Graydon, Patrick J.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
999182.02.50.07.02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-20931

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TM-2018-219837

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited

Subject Category 03

Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

This document describes the Simple Assurance Argument Interchange Format, a proposed meta-model for describing structured assurance
arguments. We describe the syntax and semantics of the model elements, compare the meta-model to existing argument formats, and give an

example to illustrate its use.

15. SUBJECT TERMS

safety case, assurance case, safety argument, assurance argument, efficacy

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT |c. THIS PAGE ABSTRACT g: cEs STI Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
Uu
U U U 43 (443) 757-5802

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

