

# Knowledge Base for Distributed Spacecraft Mission Design Using the Trade-space Analysis Tool for Constellations (TAT-C)

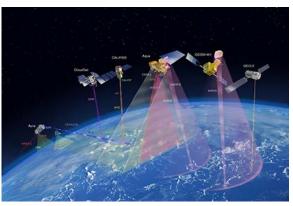
Paul T. Grogan<sup>1</sup>, Philip Dabney<sup>2</sup>, Olivier de Weck<sup>3</sup>, Veronica Foreman<sup>3</sup>, Sigfried Hache<sup>1</sup>, Matthew Holland<sup>2</sup>, Steven Hughes<sup>2</sup>, Jacqueline Le Moigne<sup>2</sup>, Sreeja Nag<sup>2,4</sup>, Afreen Siddiqi<sup>3</sup>

### AIST-14-0053 – ESTF 2017 – June 13, 2017

- 1. Stevens Institute of Technology, Hoboken NJ
- 2. Goddard Space Flight Center, Greenbelt MD
- 3. Massachusetts Institute of Technology, Cambridge MA
- 4. Bay Area Environmental Research Institute, Petaluma CA






## **NASA Earth Science Challenges**



Landsat 8 (Source)

#### **Traditional EO Mission:**

- Monolithic platform
- Direct value from collected data:
  - Operational Land Imager
  - Thermal Infrared Sensor



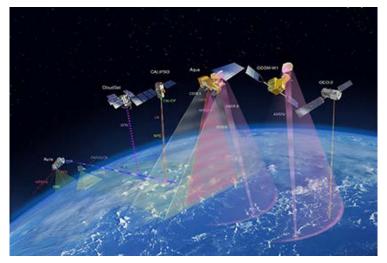
Afternoon Constellation (Source)

#### Novel EO "Mission":

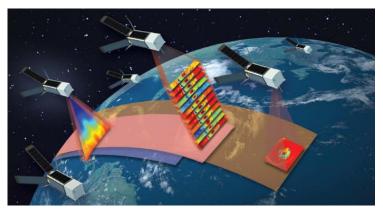
- Coordinated platform
- Emergent value from correlated data
  - 10+ instruments
  - Spatial/temporal correlation



TROPICS (Source)


#### Future EO Mission:

- Distributed platform
- Emergent value from composed data
  - Control member spacecraft






- DSMs leverage multiple spacecraft to achieve one or more common goals
- Potential benefits:
  - Multiple measurements in spatial, spectral, temporal, and angular dimensions
  - Mission flexibility & robustness
  - Cost effectiveness
- Potential risks:
  - New technology & operations
  - Emergent system performance
  - "Robust-yet-fragile" behaviors

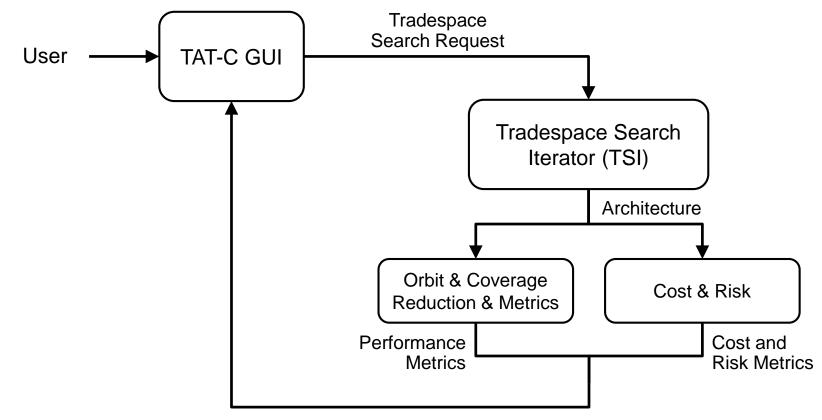


Afternoon Constellation (Source)



TROPICS Mission Concept (Source)






- Assess anticipated performance, costs, and risks of alternative DSM concepts in pre-Phase A analysis
  - Tradespace Analysis Tool for Constellations (TAT-C)
  - Combinatorial DSM tradespaces are cognitively and computationally difficult to search effectively
- Represent and ultimately reason on accumulated knowledge from tradespace analyses
  - Knowledge Base for TAT-C
  - How can knowledge base services augment DSM tradespace search activities in TAT-C?



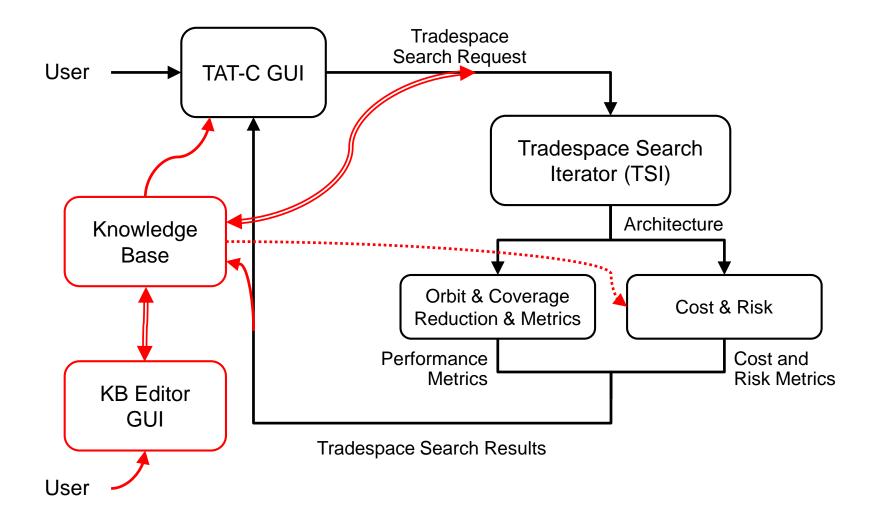


### **TAT-C** Architecture



**Tradespace Search Results** 

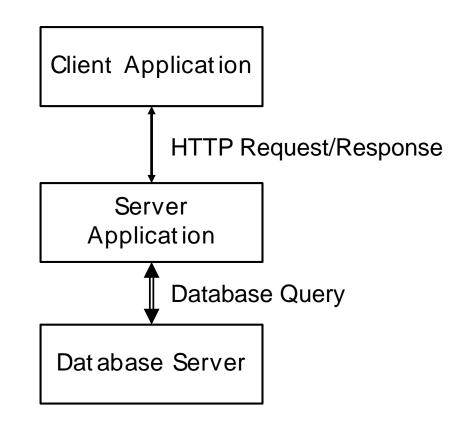





- Cumulative, common repository of information and meta-information about DSMs
  - Knowledge representation goes beyond data structure and syntax to also incorporate semantics and meaning
  - Loosely coupled with TAT-C, generally applicable to DSMs
- Preliminary services and features:
  - Store and retrieve tradespace search requests
  - RESTful application programming interface (API)
  - Browser-based graphical user interface (GUI)



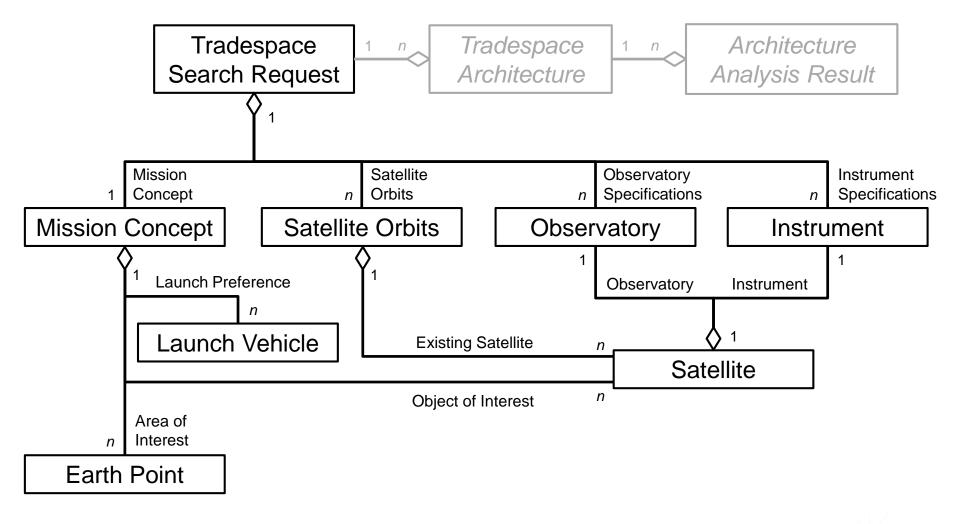



### **TAT-C Architecture with KB**



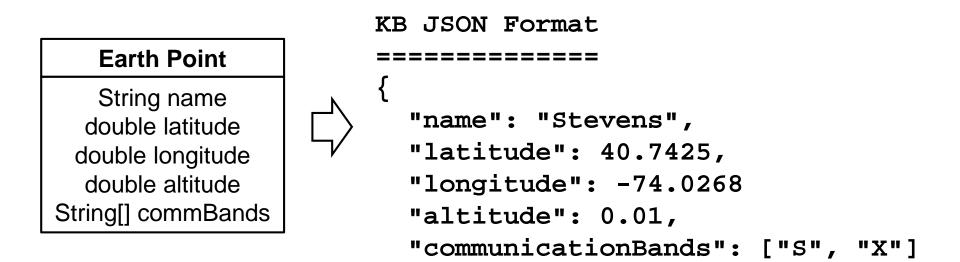





- Layered architecture: each component can be hosted independently
- Client: request KB services
  - TAT-C, KB editor, or other
- Server: provide KB services
  - Store/retrieve data via queries
  - Reason/infer based on rules
- Simple HTTP API
  - Universal transport protocol
  - RESTful: stateless requests



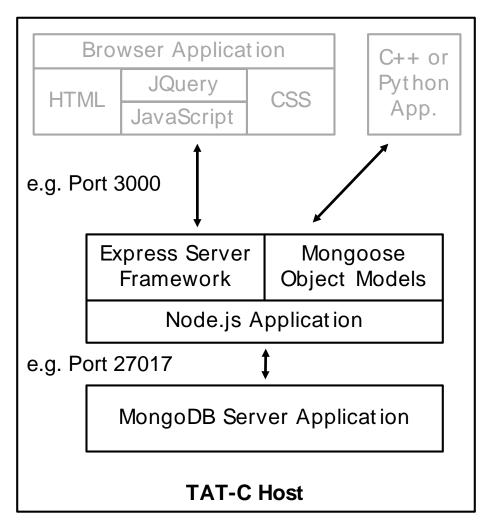





## **TAT-C Object Models / Collections**














## **Prototype KB Implementation**



- Modified "MEAN" stack:
  - MongoDB database
  - Express web server
  - Node.js application platform
- Leverage common syntax for major components
  - JavaScript language
  - JavaScript Object Model (JSON) serialization
- Limiting to single (local) host addresses challenges to manage access control





| Service | <b>Met hod</b> | API Route               | <b>Descript ion</b>                                                                            |
|---------|----------------|-------------------------|------------------------------------------------------------------------------------------------|
| List    | GET            | / api/ collect ion      | Lists all models in a collection<br>Optional: selection/filter criteria                        |
| Create  | POST           | / api/ collect ion      | Creates a new model in a collection                                                            |
| Read    | GET            | / api/ collect ion/ :id | Reads a model in a collection<br>specified by a unique identifier<br>Optional: output in TAT-C |
| Update  | PATCH          | / api/ collect ion/ :id | Updates an existing model in a collection specified by a unique identifier                     |
| Delete  | DELETE         | / api/ collect ion/ :id | Deletes an existing model in a collection specified by a unique identifier                     |





• Request:

GET http://localhost:3000/api/earthPoints

• Response:

{"\_id":"59270b73ccb6af081f728cf1","name":"Stevens"},
{"\_id":"59271344ccb6af081f728cf2","name":"Goddard"},
{"\_id":"59271349ccb6af081f728cf3","name":"MIT"},
{"\_id":"5927134fccb6af081f728cf4","name":"BAERI"}



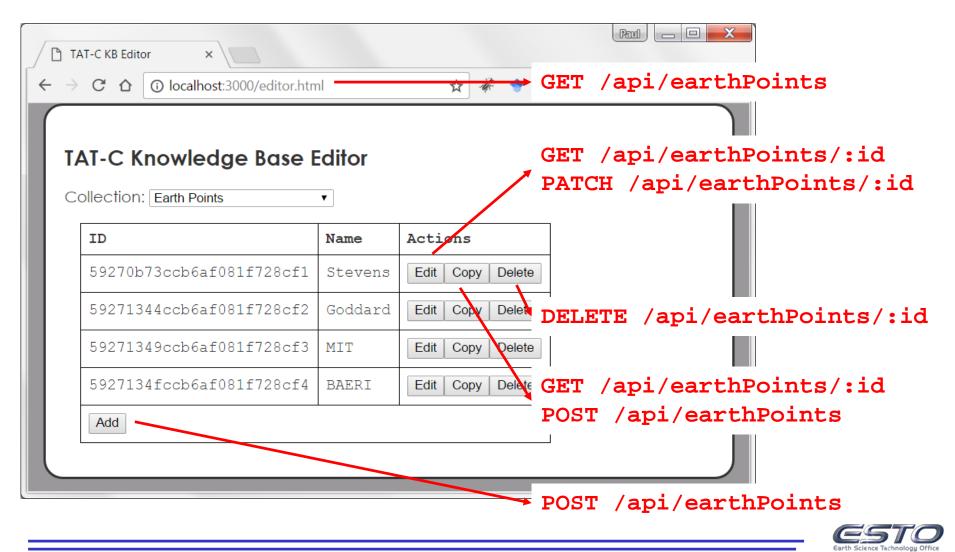


• Request:

GET http://localhost:3000 /api/earthPoints/592...cf1 • Request:

GET http://localhost:3000
/api/earthPoints/592...cf1
?format=tatc

• Response:


```
"_id":"592...cf1",
"longitude":-74.0268,
"latitude":40.7425,
"altitude":0.01,
"name":"Stevens",
"commBands":["S","X"]
```

Response:

40.7425 -74.0268 0.01 S X









# Prototype KB Editor

| _/ | TAT-C KB Editor   | × /                     |                          | 📕 GI     | ET /a | api/earthPoints/:id  |
|----|-------------------|-------------------------|--------------------------|----------|-------|----------------------|
| ←  |                   | alhost:3000/editor.html | ¥                        | ¥ 🕤      | ABP 🕒 | ¥ 🖬 🕺 📟 🗁 :          |
|    |                   | Edit Earth Point        |                          |          | ×     |                      |
|    | TAT-C Know        | ID:                     | 59270b73ccb6af081        | lf728cf1 |       |                      |
|    | Collection: Earth | Name:                   | Stevens                  |          |       |                      |
|    | ID                | Longitude:              | -74.0268                 | 0        | deg   |                      |
|    |                   | Latitude:               | 40.7425                  | 0        | deg   |                      |
|    | 59270b73cck       | Altitude:               | 0.01                     | 0        | km    |                      |
|    | 59271344cck       | Communication<br>Bands: | S-band                   |          |       |                      |
|    | 59271349cck       |                         | ✓ X-band ■ Amateur Radio |          |       |                      |
|    | 5927134fcck       | _                       | ■ Ka-band ■ Ku-band      |          |       |                      |
|    | 5927154100        | -                       | Laser                    |          |       |                      |
|    | Add               |                         |                          |          |       |                      |
| l  |                   |                         | OK Reset                 | Can      | cel   |                      |
|    |                   |                         |                          | ➡ P2     | ATCH  | /api/earthPoints/:io |





- DSMs have significant potential to improve and enable future Earth Science objectives
  - Need to assess anticipated performance, cost, and risk
  - Tradespace Analysis Tool for Constellations (TAT-C)
- The TAT-C knowledge base is a cumulative store of structured information about DSMs to inform analyses
- Prototype work on a KB for TAT-C demonstrates:
  - Storing/retrieving tradespace search requests
  - RESTful application programming interface (API)
  - Browser-based graphical user interface (GUI)





- Develop formal DSM ontological models
  - Merge with existing knowledge bases, e.g. Wikidata
  - Import/link to unstructured data from other public sources
- Closer integration with specific TAT-C modules to dynamically adapt to new information availability
- Open platform to wider collaborative use:
  - Authentication and authorization
  - Data access control and version control
- Close design feedback loops with automation:
  - Build new search requests using existing object models
  - Find desirable architectures via inference on prior results





# **Questions**?

# Paul T. Grogan

pgrogan@stevens.edu

