
Model Generation to support Model-based Testing

Applied on NASA DAT
--an Experience Report

Christoph Schulze, Mikael Lindvall,

Sigurthor Bjorgvinsson

Fraunhofer Center for Experimental Software Engineering

College Park, Maryland, USA

{cschulze, mlindvall, sbjorgvinsson }@fc-md.umd.edu

Robert Wiegand

NASA Goddard Space Flight Center

Greenbelt, Maryland, USA

robert.e.wiegand@nasa.gov

Abstract— Model-based Testing (MBT), where a model of the

system under test’s (SUT) behavior is used to automatically

generate executable test cases, is a promising and versatile testing

technology. Nevertheless, adoption of MBT technologies in

industry is slow and many testing tasks are performed via

manually created executable test cases (i.e. test programs such as

JUnit). In order to adopt MBT, testers must learn how to construct

models and use these models to generate test cases, which might be

a hurdle. An interesting observation in our previous work is that

the existing manually created test cases often provided invaluable

insights for the manual creation of the testing models of the

system. In this paper we present an approach that allows the tester

to first create and debug a set of test cases. When the tester is

happy with the test cases, the next step is to automatically generate

a model from the test cases. The generated model is derived from

the test cases, which are actions that the system can perform (e.g.

a button clicks) and their expected outputs in form of assert

statements (e.g. assert data entered). The model is a Finite State

Machine (FSM) model that can be employed with little or no

manual changes to generate additional test cases for the SUT. We

successfully applied the approach in a feasibility study to the

NASA Data Access Toolkit (DAT), which is a web-based GUI. One

compelling finding is that the test cases that were generated from

the automatically generated models were able to detect issues that

were not detected by the original set of manually created test cases.

We present the findings from the case study and discuss best

practices for incorporating model generation techniques into an

existing testing process.

Keywords— Model-based Testing, Model Generation, State

Machines

I. INTRODUCTION

Software testing is an essential task to ensure that the quality
of the system under test (SUT) meets the stakeholders’
requirements. However, testing is also one of the most time
consuming and therefore probably the most expensive aspect of
software development [1].In current practice, testers construct
test cases manually. Please note that wherever we use the term
“test case” in this paper, we refer to executable test cases such
as JUnit test programs.

These test cases provide inputs to the SUT while checking
that the corresponding outputs provided by the SUT are correct.
What exactly constitute input and output varies depending on

the nature of the SUT. For GUI testing, the inputs are values
entered into input fields, clicks on buttons etc. and the outputs
are the displayed values, or the screen that is visible. For non-
GUI testing the inputs are typically function calls and the outputs
are values returned from these function calls etc. Test cases can
either pass or fail. If the test case passes, then the actual output
matches the expected. If a test case fails, then the actual output
doesn’t match the expected. The reason for failing must be
investigated to determine if it is due to an issue with the SUT.
This testing is functional (a.k.a. behavioral), and thus detect
mismatches between actual and expected behavior, but can also
detect issues related to performance and capacity.

Model-based Testing (MBT) is a valuable and versatile
testing approach for a wide range of software systems. There are
many variants of MBT [2]. The variant discussed in this paper
uses state machine models to describe the behavior of the SUT.
These models are typically created after the system was built and
are only used for testing. The main idea is to use these models
to automatically generate test cases. Thus instead of manually
creating and maintaining a set of test cases, one test case at a
time, the tester creates and maintains one or more models and
generates test cases from each model. The test cases that are
automatically generated can often not be distinguished from the
ones that are manually created, since they contain the same
actions and asserts. However, the generated test cases are
typically longer than the manually created ones.

One advantage this Model Based Test Case Generation
(MBTCG) has over manual test case creation is the ability to
automatically generate large sets of different test cases. In
addition, these models help stakeholders understand the scope
of the testing, what is being tested, and what is not being tested.
Since these models capture the desired behavior of the SUT they
can be used as system documentation. Furthermore the models
can be used to generate test cases for other testing tasks, such as
stress testing.

In spite of the benefits of MBTCG, the rate of adaption of
MBT in industry, especially in non-safety critical applications,
is still slow [3]. One obstacle that stands in the way of a more
rapid adaption is that testers and software engineers often are not
used to creating models. However, they do know how to
manually create test cases [4]. In our previous work on MBT

https://ntrs.nasa.gov/search.jsp?R=20180004562 2019-08-31T15:33:29+00:00Z

[5][6], we took advantage of these test cases by first manually
analyzing them. This analysis provided invaluable insights into
how the SUT is supposed to be used, which cannot always be
easily determined from documentation. Based on the analysis of
the existing test cases we created a model that initially contained
exactly the same information as the set of existing test cases.
This initial model was then used to automatically generate new
test cases. In case the existing test cases did not test all possible
combinations of a certain situation, the model was elaborated
until it was complete in relation to the particular testing goal.

In this paper we present an industrial case study of a new
approach that addresses several problems related to manually
creating models. The new approach automatically analyzes
existing test cases and automatically transforms the extracted
test case information into an initial behavioral model. The model
generation algorithm is based on a heuristic state merging
approach that is intended to generate an initial model based on a
set of test cases. Due to the heuristic nature this model is not
always a perfect match of the SUT and requires inspection and
sometimes some manual rework. The model is a finite state
machine (FSM) where states and transitions represent the
assertions and actions in the test cases.

The approach addresses two of the most time consuming
tasks of MBT: the model creation and the creation of the
mapping between the abstract model actions and the concrete
actions that execute against the SUT. In a previous study these
tasks consumed roughly 84% of the overall effort [7].

In this case study we show that the new approach is feasible
to use on industrial systems because with reasonable effort (48
hours including learning the new approach) a tester was able to
generate models from various sets of test cases, which he then
used to generate additional test cases from the model. In
addition, these new test cases were able to find defects in the
system that the original set were not able to.

As part of the case study the tester created several test suites
consisting of manually recorded Selenium test cases for three
different features of the web interface of NASA’s Data Access
Toolkit (DAT) system. For each of these test suites the tester
automatically generated one or more testing models.

II. BACKGROUND

A. Model Based Testing

MBT employs models to describe the SUT and derives test
cases from those models. There are a variety of MBT approaches
that usually differ in the modeling notation and the level of tool
support. The general structure of the approaches for test case
generation from models is typically similar to each other.

In this work we employ finite state machines (FSMs) to
describe the expected behavior of the SUT. FSM based testing
models describe inputs or stimuli of the system and contains the
expected behavior to these stimuli. Figure 1 shows a simplified
example model that is used to enter to and remove data from a
web system. FSMs consists of transitions that represent stimuli
to the SUT (e.g. enter data to the system) and states, which are
abstract representations of the state of the SUT (e.g. the data was
entered successfully).

An abstract test case is a traversal by an MBT tool through
the FSM from the start state until a chosen stopping criteria is
met. The MBT tool used in this study is based on Graphwalker
[8]. Graphwalker offers several stopping criteria. For example
the number of steps to take (e.g. the test case is completely
generated when 100 steps – actions and asserts – have been
added to the generated test case) or the state/transition coverage
to reach (e.g. the test case is completely generated when 80% of
the states or transitions have been visited). An abstract test case,
is a list of the state and transitions that were encountered during
the traversal. A concrete (a.k.a. executable) test case is produced
by replacing all state and transitions names in the abstract test
case for the matching concrete executable code snippets for the
action or asserts. Assigning executable code snippets to each
action and assert used in the model is called mapping.

B. The System Under Test

The Data Access Toolkit (DAT) is an archive, access and
analysis system for NASA mission data. DAT provides an
advanced query interface for mission analysts, mission
managers, and the flight operation team to search and mine the
available data. Users can query the system using a web-based
query interface based on representational state transfer (REST)
or through a web-based graphical user interface (GUI) to query
the underlying PostgreSQL database, which stores metadata.

In our previous work [9] we described how we tested the
REST interface of DAT using metamorphic testing [10]. We
refer to our previous work for additional details about the SUT.
It is important to mention that the version of the DAT system
that we tested has relatively high quality both due the fact that it
has been around for some time (the first build was produced in
2012) and because of the DAT team’s testing efforts. The testing
Fraunhofer conducted as a basis for this paper was regression
testing and therefore a limited number of detected issues are
expected. Specifically we discuss how a Fraunhofer tester tested
DAT through the GUI. The features that were tested are:
“Request Data”, “Manage Repository” and “Manage
Templates”. The tester used a set of DAT use cases provided by
the DAT team to understand the workflow and planned the
manual test cases accordingly.

The “Request Data” page is the data access page of DAT.
This page allows the user to insert values into input fields that
together form a query for data. When this query is submitted, the
DAT system responds with the resulting data. The request data
page implements a rich query language and offers several
options and components for formulating queries. Testing that all

Figure 1: Test Model Example to add data into a web system

possible request queries return correct data is therefore a
daunting task that require a large set of test cases.

The “Manage Repository” page allows the user can navigate
a tree-like structure of the DAT repository. The tree-like
structure of DAT consists of Repositories, Missions,
Namespaces and Archives listed in the highest to lowest in the
hierarchy. Thus, an instance of DAT can have many repositories
where each repository can have several missions. Each mission
can have several namespaces, and each namespace can have
several archives.

Using the manage repository feature, repositories, missions,
namespaces and archives can be created, edited and deleted. The
data itself is stored in archives and can be configured to handle
many different data types.

The “Manage Templates” page manages the templates of the
system. Templates are used when requesting data and specify
how the user wants the output to be reported and formatted. On
this page the user can create, edit and delete templates. A
template has a name, type, folder and a body encoded as XML.
The name is the name of the template, the type declares how the
data will be represented, a report or plot. The folder says what
folder the templates should be saved in and the body is the
declaration of the template in XML format.

It should be mentioned that the DAT team uses an agile
software development approach. This development approach
requires a testing approach that supports frequent changes and
delivers testing results within short time. Therefore it was
important to develop a testing approach that supports such short
turn arounds.

C. Selenium

Selenium [11] is a browser automation tool that is often used
as a testing framework for web applications. Selenium IDE is a
Firefox extension that allows recording, execution and editing
of selenium scripts. Selenium scripts are stored in the XML-
based Selenese language. Selenium scripts contain high level
actions such as clicking on an element present on the web page,
or asserting the existence of an element on the web page.

Selenium scripts use Java Script to navigate and manipulate
the Document Object Model (DOM) of the web application. A
Selenium script can be used to simulate how a user uses the
system to carry out a certain task. Through the use of various
assertions, the script can automatically determine if the expected
output is provided by the SUT. Thus such a script is a test case
that can be used to automate testing of the GUI of a web-based
system.

A Selenese command is a triple: <command, target,
arguments>. The first element contains the name of the
command (e.g. type), the second element contains the target of
the command (e.g. an input field), and the last element contains
the arguments for the command (e.g. the text that should be
entered into the input field). Java script commands can be added
to the test scripts, e.g. to create random names for input fields.

III. MODEL GENERATION FROM TEST CASES

We developed two software tools related to MBT: one tool
that allows the tester to generate models from Selenese test cases
(The Fraunhofer Model Generation Tool), and one tool that
generates test cases from such a model (the Fraunhofer MBTCG
Tool). The MBTCG tool provides a GUI to the Graphwalker
Model Based Testing tool, and adds visual debugging
capabilities that help the user to identify issues in the models.

The models can be visualized and edited using the Yed graph
editor [12]. In this section we will describe the algorithm that
transforms test cases to FSM models. We will also describe the
workflow of the overall approach: 1) creating the manual test
cases, 2) automatically creating models from those test cases, 3)
automatically generate test cases from the models, and 4)
automatically executing large sets of generated test cases.

A. Model Generation Algorithm

The algorithm transforms a set of Selenese test cases into a
FSM testing model by employing a set of heuristic
transformation rules, based on observations of our manually
created testing models and test cases. Our FSM testing model is
a quintuple (∑, S, s0, δ, F), where:

 ∑ is the input alphabet. The input alphabet is determined
by all non-assert actions in a test case. Two Selenese
actions are considered equal if their command, target
and arguments are equal.

 S is a finite, non-empty set of states. The states are
determined by the assert statements. Two states are
considered equal if their corresponding assert
statements are equal. The algorithm adds helper states
in case of two or more consecutive non-assert actions.

 s0 is the initial state of the FSM and an element of S. The
label of the initial state is Start.

 δ is a state-transition function: δ: S ×∑→S

 F is a (possibly empty) set of final states. In the case of
our testing models final states are states that do not have
any outgoing transitions.

We created a set of rules that transform selenium actions into
transitions and states. The rules determine when to merge states
and when to add helper states in case of two or more consecutive
non-assert statements. The transformation rules are encoded as
follows (see Figure 2).

The merging approach is implemented as a two-pass
algorithm. In the first pass (lines 1 to 6) it traverses each test case
and merges consecutive assert statements together (line 4). In
case of consecutive non-asserts helper states are interleaved into
the test case (line 6).

In the second pass the state machine is constructed from the
modified test cases. The algorithm starts by creating the state
machine and the start state s0 (lines 7-8) and then iterates
through each test case in the test suite. It then resets the
lastVisited helper variable to the start state (line 10) and then
iterates through the actions of the modified test case. In lines 12-
13, the algorithm checks if the action is an assert-action (future

state) and if that state already exists in the state machine. If it
does not exists it will be created in the next line.

Lines 14-26 handle the non-assert actions (future
transitions). It first checks if the action already exists as a
transition in the current state (line 15). If it does it checks if the
target of the transition is the same as the next state in the test
case (line 16). If it is then the lastVisited state will be set to this
next state and the algorithm continues with the next action in the
test case (lines 17-18).

If the target state of the existing transaction and the current
test case action are not the same the algorithm will throw an error
message to the user (line 20). In this case the approach would
produce a non-deterministic state machine. This is an indication
of an error in the test cases that can appear through manual
modification of the recorded selenium test case. This case has
been introduced into the algorithm as a sanity check for the test
cases.

In case that no correspondent transition exist in the current state,
a new transition will be created from the current action and
connected to the lastVisited state and the next state in the test
case. The lastVisited state will be modified to reflect the new
state.

B. Workflow Overview

In this section we will describe the workflow of our approach,
from the creation of manual test cases to model generation to
test case generation. Instead of manually creating a model,
which is the common manner to conduct MBT, the new
approach starts with constructions of example system usages.
That is, the tester creates a set of Selenese test cases by using the
record feature in the Selenium IDE. Each test case can be
replayed in the Selenium IDE and potential defects in the test
case can be addressed. Then the tester automatically generates a

model from these test cases, which is used to generate more test
cases. The workflow is supported by the two tools described
above. The tools manages the model generation, model creation
and test generation. The workflow of the approach is as follows:

1. The tester analyzes the features of the website and
decides which test cases to create. The division is either
done by web-page or by use-case or a mix of both.

2. The tester records a set of test cases for each feature
using the Selenium IDE.

3. Once the tester debugged the test cases, the tester uses
the tool to generate a model for each feature.

4. The tester visually inspects the model and fixes issues,
or adds missing behaviors.

5. The tester generates test cases from each model.

6. The tester executes the test suite and analyzes the
results of the execution. Failed test cases are especially
analyzed.

After finishing the separate features of the system, the tester
now combines all test cases into a larger model of the system by
repeating steps 3-5 for all test cases to generate system level test
cases.

The tester can use different test generation strategies and
block out parts of the model in order to guide the test generation
into specific parts of the model. This can be useful for stress
testing the system by creating certain objects over and over. E.g.
in the example the tester could block off the set template type
report transition in order to make sure that only templates of the
type plot are created.

IV. CASE STUDY

The tester applied the approach described in the previous
section to test the features of the DAT web-interface which
consist of the web pages Request Data, Manage Templates and
Manage Repository. This section will describe the features that
we tested, the manually created test cases and the models
generated from these test cases. Furthermore we will provide
effort data for applying the approach

A. The Tester

A student intern at Fraunhofer created the test cases
manually, generated the model, generated test cases, executed
the test cases and analyzed the test results. Before starting his
internship, he had no background in Selenium IDE or Selenese,
or MBT. Thanks to his internship at Fraunhofer, he had about 2
months of experience with modeling and model based testing.

B. An example of applying the approach

In this example we explain steps 1-5 from the overview in
the previous section with a simplified example. This will help
understanding the algorithm, the workflow and the benefits of
the approach. As an example we chose the Manage Template
feature from the DAT system. The full description and size of
the test cases the corresponding models and generated tests for
the feature can be found in the case study section. We use a
simplified example due to size constraints. In the case of the
DAT system dividing up the features was straight forward since

//First Pass
1 for each TestCase in TestSuite
2 for each action in TestCase
3 if consecutive-assert-actions
4 merge assert-actions
5 if consecutive-non-assert-actions
6 insert helper state between non-assert-actions

//Second Pass, on transformed test cases
7 create state-machine
8 create state s0
9 for each TestCase in TestSuite
10 lastVisited = s0 //always start in start state
11 for each action in TestCase
12 if action is assert-action and not in state machine
13 create state (action)
14 if action is non-assert-action
15 if action already exists in lastVisited state
16 if existing.target equals action.target
17 lastVisited = existingAction.target
18 continue
19 else
20 Error: Indication of possible non-determinism
21 continue
22 else
23 create transition(action)
24 transition.source = lastVisited
25 transition.target = State(nextAssertAction)
26 lastVisited = transition.target

Figure 2: Pseudo Code of the two pass model generation

approach

each feature had its own web page and the features are relatively
independent of each other.

For this example, the tester recorded three test cases (see
Figure 3) that test different variations of the possible inputs and
options for creating a template. The tester replayed them using
the Selenium IDE to detect and remove any potential issues. In
some cases the tester also manually modified the test cases by
adding commands that were not automatically inserted during
the Selenium recording. For example, storing a value from the
website in a variable that will be used in a later assertion on other
pages. Adding such a command is supported by Selenium IDE
and requires a right-click on the value to store in addition to the
variable name.

When the manual test cases have been debugged, they are
loaded into the model generation tool. In this example, the
model in Figure 4 was created. The three test cases are merged
in three merging points namely: the Assert manage template
header, Assert template name and Assert template type action.
Thanks to the merging, the behaviors can now be interleaved to
create 6 instead of three different inputs and can be repeated over
and over again, thereby adding many more potential behaviors.

Before generating test cases from the generated model the
tester first inspects it. Since the recording of test cases is a
manual task there is the potential for errors. An example of an
issue caused by such an error is a wrongly recorded assert
statement, which can manifest in unwanted paths or states in the
model, or states that are not fully connected with the rest of the
model. The model can be modified directly by adding, removing
or modifying states and transitions. However, we have found
that the best way is to instead edit the test case accordingly and
regenerate the model. In this way, the model is never manually
edited. The tester can also add, modify or remove test cases and
quickly regenerate the model.

The tester who was studied in the case study explained that
after some practice he developed a habit to plan the test cases
based on the model he wanted to generate. Thus, he from the
beginning had an image in his head about what the model should
look like, which paths would be logical and what states should
be created. He further explained that when he sees a path that he

does not expect or a state that leads nowhere the tester knows
that there is an issue with the model.

After the tester has verified the model he generates
additional test cases from it and executes them against the
system. He then inspects failing test cases. A test case can fail
because of two reasons. Either the error is a true positive, which
means that the test case failed because of a bug in the SUT, or
the error is a false positive which means that the test case failed
because of an issue in the model or in the manual test cases. The
tester must inspect the generated test cases that failed and their
execution in order to determine the nature of the issue. If the
model or test case is incorrect, then the tester corrects them. If
the test case failed because of an issue in the system, then the
tester documents the detected issue including how to reproduce
it, and reports it to the DAT development team. We will now
describe how we tested the features of DAT using this approach.

C. The Request Data Feature

On the Request Data page the user inputs the parameters for
a request to the DAT system. The page offers many different
options and input fields. The user can enter a start date and time
and then has the option to choose either an end date and time or
to enter a duration (in days, hours, minutes, or seconds).
Additionally the user can choose the different datasets to be
searched. Testing this feature manually is difficult because of
the many ways a query can be formulated and thus a large
number of manual test cases would be needed to cover all
possible options.

In the next step the user can add mnemonics. The
mnemonics are the identifiers for the different sensory data that
are stored in the system. In order to pick a mnemonic the user
has to choose the mission to select mnemonics from. In the next
step the user has to decide which properties (there are 14
different properties to select from) the user wants the system to
return for each mnemonic. There is no known limit to the
number of mnemonics that can be added.

To test this feature, the tester created 19 manual Selenese test
cases with an average length of 15 instructions and generated a
model from them. The generated model has 55 states and 66
transitions. 32 of the states were based on assertions while the
other 23 states were helper states introduced by the model

Figure 4: The Model of the combined simplified test cases

Figure 3: Three simplified test cases for the manage template feature

generation algorithm. From this model, the tester created 100
test cases using a random traversal strategy. The generated tests
had an average of 39 selenium commands. As indicated above,
these test cases are executable and require no editing. The tester
therefore immediately loaded the entire test suite into Selenium
IDE, which executed the test cases automatically.

D. The Manage Templates Feature

The Manage Templates page allows the user to manage
reporting and plotting templates. On this page the user can
create, edit and delete templates. When creating new templates
there are 2 input boxes and 2 dropdown menus (with two and 5
options to choose from in the dropdown menus respectively).0

The tester created 5 manual test cases for the manage
templates feature with an average length of 38 instructions. The
generated model has 22 states and 27 transitions. 12 of the states
are based on assertions and 10 are helper states. From the
generated model the tester created 100 test cases using a random
traversal strategy. The generated tests had an average of 35
selenium commands.

E. The Manage Repository Feature

On the Manage Repositories page the user can manage
repositories, missions, namespaces and archives. Each of these
items has a name and a description. The user can create, edit and
delete repositories, missions, namespaces and archives.

The tester created 5 manual test cases for the Manage
Repository feature that had an average of 27 instructions. The
generated model had 28 states and 32 transitions. 6 of the states
were based on asserts the other 22 states were helper states. For
the test generation of this feature the tester used the blocking
property of the MBT approach. This allowed the tester to focus
the test generation on certain parts of the model without directly
editing the model (i.e. deletion and rerouting of transitions was
not necessary thanks to blocking). He did this by blocking
certain transitions, which means that during test case generation,
these transitions were not available. By blocking certain
transitions the tester made sure that for example only archives
could be created to study how the system handles the creation of
a large number of archives.

The tester generated the following test cases from this
model:

 A set of 10 test cases that cover the whole model and
create repositories, missions, namespaces and archives.
The test cases had an average lengths of 377
commands.

 Two test cases that only create one repository, but
several missions, namespaces and archives. The test
cases had an average of 1867 commands.

 One test case that creates one repository and one
mission but several namespaces archives. The test case
had a length of 1397 commands.

 One test case that creates one repository, one mission
and one namespace but several archives. The test case
had a length of 1864 commands.

 One test case that only create repositories. The test case
had 1399 commands and created a large number of
repositories.

 One test case that creates one repository and several
missions. The test case had 1608 commands.

 One test case that creates one repository, one mission
and several namespaces. The test case contained 1556
commands.

When the tester was creating the repository model he wanted
to be able to create many entries in the same test case but was
running into issues with naming because all names were static.
The tester was able to find a way around that by using JavaScript
code in the manual test case where he used the StoreEval to store
a function in a variable. The tester stored a pseudo random
JavaScript function that the test case always calls when creating
a new template. The function creates a unique string throughout
the run of the test case thus avoiding potential name conflicts.
The function needed to be a pseudo random function because if
a generated test case would fail, the tester needed to be able to
run the exact same test case to be able to properly debug the
issue.

Figure 5: Generated Model for the Manage Repository Feature.

The model has 28 states and 32 transitions.

F. Effort

The effort for the tester to learn how to create the test cases
and transform them into models was about 8 hours. The effort
for the tester to create the three suites of test cases that were input
to model generation was 4 hours (manage repository), 6 hours
(manage templates) and 12 hours (request data) depending on
the model. The effort seems to be proportional to the complexity
of the feature.

Executing 100 test cases with an average of 39 command
each takes about 50 minutes. Each command takes about 0.77
seconds but this can be controlled via the speed setting in the
Selenium IDE. The maximum speed is however often not
feasible to use since the highest speeds often cause test cases to
fail due to page loading issues.

It took about 12 hours to debug and run samples of the test
cases. It takes about 16 hours to run all test cases, however, it
should be noted that this is computer time so the effort for the
tester is negligible.

The analysis of the failed test cases took the tester about 6
hours. This includes inspection of the failed tests and
documenting them for the DAT team. In total, creating the test
cases, generating models and test cases, running the test cases,
and analyzing the failed test cases took about a week plus one
day for learning (i.e. 48 hours).

G. Issues applying the approach

The tester observed two false positives in the generated test
cases and investigated their causes. The first issue appeared in
test cases that were generated from the Manage Repository
model. The reason was that the manual test cases included a wait
action after the creation of each repository, mission, namespace,
or archive. This was done since the website reloads after the
submit button is pressed and the tester has to wait since
otherwise the next assert statement would try to assert for
elements that have not been loaded yet. The wait time in the
manual test cases was set to 1500ms, but after creation of several
entries in the system the reloading took more and more time and
the test cases started failing. The tester increased the wait time
in the manual test cases and recreated the model, which fixed
this issue.

The second issue the tester encountered was caused by a
dynamic identifier of an element that would change due to
reloading the page. As mentioned in the previous section,
Selenium tries to choose the best locator for an object but
sometimes the best locator turns out to be a dynamic identifier,
which changes between runs or by refresh of the web page. We
also encountered such behavior in a previous case study [7] and
therefore the test cases fail at that point. To address this issue the
tester had to change the type of locator of the recorded manual
test. The tester had to choose a higher element in the DOM that
was static and then used the xpath (i.e. a Selenium feature used
to locate elements in an HTML document) to find the correct
element in relation to the static element. In addition the tester
also used the “contains” function and the “last” function in the
xpath to navigate to the correct element.

H. Detected Issues in the System Under Test

All three models generated test cases that detected issues that
were previously unknown by the DAT team. These issues were
not detected when the manually created test cases were
executed. These issues are:

1) Performance issue with representing large amount of
data in the browser when requesting a table of data.

This issue was detected on the “Request Data” page, which
occurred when the tester was running test cases from the
Request Data Model. The reason was that a generated test case
had a large time range. The test cases included a large number
of data points because of the large time range, which led to
degraded performance of the GUI. Eventually, this made the test
case fail. DAT (the browser actually) then returned a non-user
friendly message that the script was “no longer responsive”.

2) Data is retained in fields when creating multiple
templates but not in other cases.

This issue was detected when a test case attempted to assert
a dropdown menu on the “Manage Template” page with test
cases generated by Manage Template Model. The reason was
that when a template is created and the type is set, the type was
always identical to the previously created template. Upon further
investigation the tester noticed that values were retained in an
inconsistent way. The issue was that when the site was reloaded,
the information of the last created template was not retained, but
when two consecutive templates are created the information was
retained. Thus, this behavior is inconsistent as to whether the
data is supposed to be retained or not.

3) Templates are overwritten without any warning.

This issue was detected on the “Manage Templates” page
with tests generated from the Manage Template Model. When
the test case asserts that the correct type of the template has been
created, the type was sometimes incorrect. This was because
only the XML of the template was being overwritten but not the
type of the template. Let us assume there is an existing template
with the name “tempTemplate”, with the type “report” and the
xml “first xml”. If the test case creates another template with the
same name “tempTemplate”, but with the type “plot” and the
xml “second xml”, an inconsistency will occur. The reason is
that this will lead to the template having the same name
“tempTemplate”, the type “report” and the xml “second xml”.
Using the updated “tempTemplate” will return an error due to
this issue. This issue was noticed before the tester created a
pseudo random function to create different named templates.

4) Hidden view limit of archives.

This issue was detected on the “Manage Repository” page
with test cases generated from the Manage Repository model
where test case created a large number of archives. The issue is
that there is an undisclosed limit on how many archives the
system can display in the hierarchy. The limit turned out to be
100 visible archives. If there are more than 100 archives in the
system, they are not displayed and the hidden archives are
impossible to reach. However, the user can still continue
creating more archives although this limit has been reached.
This issue was detected because the generated tests failed at
exactly 100 archives.

V. DISCUSSION

We have presented an approach where models are generated
from test cases instead of being manually created. We will now
discuss strengths and limitations of the approach as well as some
other topics related to using it.

A. Strenghts of the Approach

Automated model generation – Since the new approach can
generate a model from existing test cases, it overcomes the
hurdles related to creating models for MBT.

Automated mapping - Since the model contains all
information provided in the Selenese test case, the mapping
problem is also addressed. The mapping problem means that for
each transition and state in the model, the tester must assign
executable statements in the form of selenium commands and
assertions, which can be both tedious and error prone. The new
approach automatically copies all executable statements into the
model and thus minimizes the need for manual mapping.

Reduces the necessary skill level and facilitates learning
MBT – Since the new approach reduces the need for mapping,
which typically is somewhat difficult as well as time consuming,
the necessary skill level is reduced. Since the new approach is
based on test cases, which testers know how to create, and these
test cases represent examples of how the SUT it used (test cases),
and since the tool shows what the corresponding model looks
like, it is easier to understand and learn MBT.

Well prepared for regression testing of the next version of
DAT – Since the DAT team uses an agile development approach
it is important that the testing approach can support quick
turnarounds. With this approach we believe that this is the case
and that a new DAT version of the GUI can be tested within one
day since it takes 16 hours of unsupervised computer time to run
all test cases. In case the GUI has changed significantly, we
expect that creating new test cases and corresponding models
will add between 8 and 16 hours to the effort.

B. Limitations of the Approach

Some limitations are due to the fact that we use MBT for test
case generation, which has some well-known limitations. E.g.
sometimes it was difficult to identify the root cause of an issue
due to the fact that the generated test cases were long and are
therefore difficult to comprehend. Also since there can be
similarities in the generated test cases the same issue can often
manifest itself in several test cases. E.g. 10 failing test cases can
have the same root cause but this is usually only clear after they
have all been inspected. Just because MBT can generate a large
number of test cases does not mean that it is always helpful to
do so. It is often better to guide the test generation using blocked
commands and test different scenarios, which the tester did in a
few instances.

Another limitation with the approach is that we have
experienced that more advanced testing requires extended FSMs
(EFSM), which allows guards and state variables, but the tool
currently generates FSMs. The Fraunhofer Test Case Generation
tool supports EFSM, thus a manual step is required to turn the
initial models into EFSMs as necessary.

C. Does this testing approach replace regular MBT?

We think this approach complements regular MBT because
it provides a quick way to create initial models. In addition, it
provides an excellent way of teaching MBT to testers who are
unfamiliar with MBT. For example, the authors have already
successfully used this approach in a graduate testing class to
teach MBT to software engineering students.

D. Does practice matter?

Practice has a large influence on the approach, as expected,
since the quality of the manually recorded test cases directly
impacts the generated models. Furthermore, the tester
mentioned that after some practice he already “knew” what the
resulting model would look like when he recorded the test cases
for it. This probably improved his ability to create test cases that
would result in correct model and to inspect and debug the
generated models. Thus practice made him more efficient.

E. Does this approach apply to non-web-based system?

In its current state the approach is tied to Selenium and
therefore to testing of web-based systems. However, web-based
systems are very similar to other GUI based systems and we see
no reason why the approach could not be extended to other GUI
based systems. The one restriction we place here is that for the
approach to work well for testing GUIs of non-web-based
system, a tool similar to Selenium IDE should be available for
that GUI.

F. Comparing the models to manual MBT

We compared the generated models in this cases study to the
manually created models in our previous case study [7]. One
observation is that the generated models are on a lower level of
abstraction. The manually created model in previous studies
have no direct reference to the SUT and instead used abstract
actions. The manually created model used for example an
abstract command called submitdata to enter data into the
system, whereas the automatically generated model is more
concrete and for example has a reference to the id of the button
directly in its label. The effect is that the generated models are
slightly more difficult to understand due to the fact that they
contain more details.

Another observation is that the labels in generated models
are much longer than the labels in the manually created models.
The reason is that the generated labels contain nearly all the
information from the Selenese commands. The effect is that the
readability of the generated labels is less than the manually
created labels.

Another observed difference is the lack of sub models in the
generated models. In the manually created models, the tester
typically groups similar actions into sub models, which
introduces a hierarchy to the model that is helpful for model
comprehension. Currently the generated models are flat. The
effect is that larger models are more difficult to navigate and to
understand.

G. Proposed Improvements

It is important that the generated models are easy to
understand and maintain, which is something that can be
improved. We were able to group certain commands together.
E.g. selecting the frame of a web page was always grouped

together with the next action in the test case, which is usually a
click action. This made the models smaller and easier to manage
and understand, but in order to be more similar to the manually
created models we want to evaluate ways to automatically
introduce abstractions.

We are especially researching ways to make labels of states
and transitions more concise. Furthermore, we want to find ways
to automatically create sub models during the model generation
process. We believe that one way to achieve this is by rerunning
the test cases and automatically collecting additional execution
data (e.g. DOM models like in [13], page names). This data
could then be used to automatically refine and validate the
model. One strategy is to automatically group all states and
transitions that reside at a specific URL or all states and
transactions that belong to a certain a page with a specific title.

Analyzing the test failures is a time consuming task since at
the moment it involves rerunning the failed test to observe the
test failure. In order to reduce the debugging and test case
analysis time we will automatically add Selenese code to each
generated state that will take a screenshot of the webpage and
log the state name and time.

VI. THREATS TO VALIDITY

The threats to validity discussion is based on the model by
Wohlin et al [14]. They define four classes of threats to validity,
namely threats to internal, external, construct, and conclusion
validity.

A. Threats to internal validity

Threats to internal validity are caused by factors that were
not considered but might have influenced the results of the case
study.

The results of this study show that the presented model
generation approach was able to detect defects in the SUT.
However, we have to consider the possibility that the tester who
conducted the case study knew the issues before conducting the
study and he could have therefore tailored the test cases and
resulting models in a way that would make sure that the defects
get detected. If that is the case the results could not be attributed
to the approach but to the knowledge of the test engineer.

We believe this risk to be absent from our case study for the
following reasons. Three of the identified defects were not
known to the tester when this study started. The tester had
encountered an issue similar to the fourth detected issue
(retained template values). However, this issue (or none of the
other issues) was not detected by the manually created test cases.

B. Threats to external validity

Threats to external validity are concerned with whether we
can generalize the results outside the scope of our study.

We have to address different threats here. The first one is that
the study was only performed by one tester and secondly the
tester only tested one system. We are aware of this limitation.
This is an initial feasibility study for our new approach and we
plan to compare the results from this study with follow up
studies that will have more testers, different systems and also
different versions of systems.

Another threat is concerned with the knowledge of the tester.
It is possible that another tester might not have been able to use
the approach as effectively and therefore would have taken more
time and/or might not have detected the same issues. And
although it is easy to generate a large number of test cases with
MBTCG in some cases the tester has to block certain parts of the
model in order to generate test cases for a specific scenario. This
requires intuition and training. We addressed this threat by
compiling a comprehensive tutorial for our test engineers that
covers regular manual MBT (e.g. how to construct models for a
system and how to generate effective test cases for different
testing goals). We believe that this tutorial will lessen the
variance between different testers. However, a natural variance
between individuals is always given in these types of studies, no
matter what kind of training is given to them.

The approach was designed specifically for Selenese and
therefore only for web-based system. However, if there are
similar record playback tools with a similar feature set for other
types of GUI systems, we believe this approach would be
applicable to them as well.

C. Threats to construct validity

Threats to construct validity assess if the correct
measurements were used in the case study.

For this study we used direct measures such as the effort in
terms of the number of hours spent on a certain task, the number
of issues detected, and the size of the test cases and the generated
models. We did not use derived or subjective measurements.
The measures are therefore good indicators for comparison with
other approaches and future case studies. The tester was given
instructions to log the time that he worked on the different tasks
so that the effort would be reasonably accurate.

D. Threats to conclusion validity

Threats to conclusion validity cover issues that affect the
ability to draw the right conclusions from a case study.

Our conclusions are that the approach is feasible to use on
industrial systems similar to NASA DAT in the described
context. We currently do not see threats to that conclusion,
mainly due to the nature of a case study like this one where no
comparison to a control group is done. For such comparisons,
controlled experiments are required.

VII. RELATED WORK

Torens et al [15] present an approach that generates models
from existing test cases of a train control system. The approach
employs pre/post condition in the test cases that are written in
the Object Constraint Language (OCL) to generate models. The
usage of pre/post conditions is similar to our usage of assert
statements to create the models. The paper was a feasibility
study of the model generation approach and describes the steps
to obtain a model but they offer no effort data nor do they discuss
its application to test a real system.

There are three other techniques that are frequently used for
model generation. One type of techniques are based on
Angluin’s L*algorithm [16]. These approaches use a learner
that knows all possible input and output actions of the system
and a teacher that can for a given sequence of input actions

provide the correct output action. In our context the teacher
would be the SUT and the learner would create model
hypothesis and compare them to the SUT until it has found a
model that corresponds to the behaviors of the SUT. Tretmans
[1] discusses how learning algorithms can be applied in the
context of MBT. In our approach we do not learn a model of the
system but construct one from a set of test cases with heuristic
rules.

Another frequently used approach for model inference is
based on the k-tail algorithm [17]. The k-tail algorithm creates
candidate models by observing execution traces and employing
heuristics to merge different executions together. Although k-
tail based algorithms can be applied on test case sequences often
there are not enough manual test cases to create an accurate
model and often system logs are analyzed since they offer more
example behaviors.

Lastly another common approach to generate models are
based on observing the state of the system, or an abstract
representation thereof. Marchetto et al [13] present an approach
that abstracts the DOM model of a web application into a state
model and then generates additional test cases. They applied it
on an open source to-do list manager application with seeded
defects. We applied our approach on an industrial web based
system. The techniques in these three categories are very
powerful and can test many behaviors of the system. However,
oracles often have to be added manually after the fact, which is
not always trivial due to the size of the models. Our approach
leverages the oracles from the test cases and encodes them into
the generated model automatically.

VIII. CONCLUSION AND FUTURE WORK

We presented a new approach where some of the hurdles
related to adopting MBT were addressed. In earlier studies, we
have observed that testers are not used to creating models, but
they are used to creating executable test cases such as JUnit test
programs and Selenium test scripts. The new approach avoids
some of the hurdles related to manually creating models for
testing by instead analyzing existing test cases and automatically
generating models from those test cases.

There are many advantages with such an approach. For
example, the tester can focus on creating test cases using tools
like Selenium IDE where each test case can be automatically
recorded by providing inputs to input fields, clicking on buttons,
and adding assertions in proper places. Once the test case is
created, the tester can ensure that it works properly by playing it
again.

By generating a model from a set of such test cases, we
showed how new test cases can be automatically generated. This
also addresses the problem that testers typically do not have the
time to create enough test cases. Since the model contains all
information provided in the Selenese test case, the mapping
problem is also addressed. The new approach automatically
copies all executable statements into the model and thus
minimizes the need for manual mapping.

Maybe the most important points are that the case study
shows that this approach is feasible since the case study was
conducted in very reasonable effort, and that new defects were

detected by the generated test cases – defects that were not
detected by the manually created test cases.

The approach was applied using Selenium on a web based
system, namely NASA’s DAT system. In the future we will
evaluate if the approach can be extended to non-GUI systems
and JUnit test cases to determine the wider applicability of the
approach. We will also improve the model generation tool and
plan to conduct a controlled class room experiment in order to
further evaluate the costs and benefits of the new approach.

ACKNOWLEDGMENT

This work was conducted as part of a NASA supported
SARP project. The authors wish to acknowledge support from
SARP as well as from the DAT team.

REFERENCES

[1] J. Tretmans, “Model-Based Testing and Some Steps towards Test-

Based Modelling,” in Formal Methods for Eternal Networked

Software Systems, Springer Berlin Heidelberg, 2011, p. pp 297–326.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach. Morgan Kaufmann, 2010.

[3] A. Hartman, M. Katara, and S. Olvovsky, “Choosing a test

modeling language: a survey,” pp. 204–218, Oct. 2006.

[4] D. Ganesan, M. Lindvall, D. McComas, M. Bartholomew, S. Slegel,

B. Medina, R. Krikhaar, C. Verhoef, and L. P. Montgomery, “An
analysis of unit tests of a flight software product line,” Sci. Comput.

Program., vol. March 2012, Mar. 2012.

[5] C. Schulze, D. Ganesan, M. Lindvall, D. Mcf Omas, and A.

Cudmore, “Model-based testing of NASA’s OSAL API — An

experience report,” in 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE), 2013, pp. 300–309.

[6] V. Gudmundsson, C. Schulze, D. Ganesan, M. Lindvall, and R.
Wiegand, “An Initial Evaluation of Model-Based Testing,” in IEEE

24th International Symposium on Software Reliability Engineering

(ISSRE), 2013.

[7] C. Schulze, D. Ganesan, M. Lindvall, R. Cleaveland, and D.

Goldman, “Assessing model-based testing: an empirical study
conducted in industry,” in Companion Proceedings of the 36th

International Conference on Software Engineering - ICSE

Companion 2014, 2014, pp. 135–144.

[8] “GraphWalker: The Open Source Model-Based Testing Tool.”

[Online]. Available: http://graphwalker.org/. [Accessed: 06-Jun-
2015].

[9] and R. E. W. Mikael Lindvall, Dharmalingam Ganesan, Ragnar
Ardal, “Metamorphic Model-based Testing Applied on NASA

DAT,” in ICSE SEIP, 2015.

[10] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How Effectively

Does Metamorphic Testing Alleviate the Oracle Problem?,” IEEE

Trans. Softw. Eng., vol. 40, no. 1, pp. 4–22, Jan. 2014.

[11] “Selenium - Web Browser Automation.” [Online]. Available:

http://www.seleniumhq.org/. [Accessed: 06-Jun-2015].

[12] “yEd - Graph Editor.” [Online]. Available:

http://www.yworks.com/en/products/yfiles/yed/. [Accessed: 06-Jun-
2015].

[13] A. Marchetto, P. Tonella, and F. Ricca, “State-Based Testing of
Ajax Web Applications,” in 2008 International Conference on

Software Testing, Verification, and Validation, 2008, pp. 121–130.

[14] C. Wohlin, P. Runeson, M. Höst, M. C Ohlsson, B. Regnell, and A.

Wesslén, “Experimentation in software engineering: an

introduction,” Springer Netherlands, vol. 15, no. 1, 2000.

[15] C. Torens, L. Ebrecht, and K. Lemmer, “Starting Model-Based

Testing Based on Existing Test Cases Used for Model Creation,” in

2011 IEEE 11th International Conference on Computer and

Information Technology, 2011, pp. 320–327.

[16] D. Angluin, “Learning regular sets from queries and

counterexamples,” Inf. Comput., vol. 75, no. 2, pp. 87–106, Nov.
1987.

[17] A. W. Biermann and J. A. Feldman, “On the Synthesis of Finite-
State Machines from Samples of Their Behavior,” IEEE Trans.

Comput., vol. C–21, no. 6, pp. 592–597, Jun. 1972.

