https://ntrs.nasa.gov/search.jsp?R=20180004635 2019-08-31T15:30:15+00:00Z

National Aeronautics and Space Administration

Human Mars Lander Design Drivers and Challenges

Tara Polsgrove AIAA Propulsion and Energy Forum July 11, 2018

Space Policy Directive-1

"Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities.

Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations."

The Apollo Program

6 landings between 1969 and 1972

2 people

3 days on the surface

~2,000 m/s down, 8.4t propellant ~2,000 m/s up, 2.5t propellant

Pressure fed hypergolic propellants

Human Mars Mission

2-4 landers per mission

4+ people

>1 year on the surface

~800 m/s down, 15t propellant ~5,300 m/s up, 36t propellant

Cryogenic ISRU-compatible propellants

	Viking 1 & 2	Pathfinder	MER A/B	Phoenix	MSL	Η
				•		S La (Pr
Diameter, m	3.505	2.65	2.65	2.65	4.5	
Entry Mass, kg	930	585	840	602	3151	L
anded Mass, kg	603	360	539	364	1541	3
anding Altitude, km	-3.5	-1.5	-1.3	-3.5	-4.4	
Peak Heat Rate, N/cm ²	24	106	48	56	~120	~1
anding Ellipse, km	280x130	200x70	150x20	100x20	20x6.5	

Steady progression of "in family" EDL

uman Scale ander rojected) 16-19 47-62 t 36-47 t + 2 L20-350 0.1x0.1

> New Approach Needed for Human Class Landers

Mars Ascent Vehicle (MAV) Drives Lander Size

NASA

- MAV's to high orbits are > 40t at liftoff.
- Delivering 40t or more on a lander may be infeasible
- With ISRU generated propellants, MAV's can achieve high orbits with low delivered mass on the lander

Propellant Choice Drivers: Performance

NASA

Ascent Performance

- Highly sensitive to Isp, impacts ripple through lander and transportation stages
- Propellant combinations with higher mixture ratios favored to make greatest benefit of surface LOX

Decreasing Landed Mass Required

Pc 1,000 psia, Nozzl e AR 250:1 Optimum Capability ISP Shown with ERE and Nozzl e Efficiency Applied Descent/Ascent Configurations Are Typically 10-15 Seconds Less Per Cycle & Installation

Propellant Choice Drivers: Thermal Management

NASA

• Long duration storage

- Fuel storage at similar temperature to LOX simplifies CFM design, and enables a nested tank option

Thermal Environment Favors CH4 (methane) as a Cryogenic Fuel for Mars due to Storage Temperature

Propellant Choice Drivers: Packaging

 LOX/LH_2

MMH/NTO (must be landed fully fueled)

Variation in propellant volumes for 1 Sol MAV

- Radiators not shown
- No attempt was made to optimize the configuration

Propellant Bulk Density(lb/ft^3)) for Max ISP O/F Oxidizers NTO 80.0 MON15 LOX LOX 70.0 LOX LOX 60.0 LOX <u>50.0</u> ₹ 40.0 a 30.0 LOX 20.0 10.0 0.0 MMH H2 Methane MMH HYDRAZINE MMH Ethanol Etylene O/F 5.5 (CH4) (CH6N2) (N2H4) (CH6N2) (CH6N2) (C2H6O) (C2H4)

O/F 1.0

FUEL

O/F 1 6

O/F 2.3

O/F 2.5

O/F 2.0

O/F 2.5

ft A3

Ĭ

O/F 3.4

Lander Options & Packaging Challenges

Mars Descent Propulsion System

- Commonality of propulsion components for descent and ascent can maximize the value of development investments
 - We need main engines with throttle capability, thrust level, and Isp that balance descent and ascent performance needs
 - Common 22.5 klb_f O_2/CH_4 engine
 - 3+1 for Ascent, 8 for Descent
 - Active cryogenic fluid management with advanced insulation
 - Integrated reaction control systems
 - Capable of withstanding long duration dormancy with high reliability

Propulsion Challenges: Powered Descent Initiation

Engines Off

- Strong, detached shock near vehicle
- Heatshield is the flow obstruction
- Dominant forces and moments are steady
- Well-defined scaling relationships

Engines On

Source: A. Korzun (NASA LaRC), FUN3D solution, 2018.

- Shock displaced far upstream
- Complex, unsteady plume structure is part of the flow obstruction
- Aerodynamic forces and moments can be unsteady
- Less confidence in scaling relationships

Propulsion Challenges: Plumes Near Landing

Source: F. Canabal (NASA MSFC), LociCHEM solutions, instantaneous Mach number contours, 2018.

At Mach = 0.8 (20t payload): Altitude above surface: 975 m Downrange to target: 1.04 km Flight path angle: -35° Plumes extend ~150 m in front of the vehicle!

- Unsteady aerodynamics in nominal operation
- Transitions through nozzle expansion conditions as the vehicle decelerates
- Throttling introduces asymmetry and can significantly alter the resulting aerodynamics

Propulsion Challenges: Surface Plume Interaction

Mars Science Laboratory 5,600 → 700 lbf of thrust, 60+ft from surface Damaged instrument

Human Mars Lander 180,000 lbf → 36,000 lbf of thrust, 10+ft from surface in proximity to other assets

The total thrust at landing is 50 times more than Curiosity or InSight missions. Landing on bedrock is preferred, but even that may be altered.

Landing Precision

- Landing precision is improving with each Mars mission
- To get to the current state of the art, system changes have been made, along the way:
 - MSL had the first active hypersonic guidance
 - In addition, Mars 2020 employs a range trigger on the parachute, and uses Terrain Relative Navigation
- Human missions will need integrated guidance, improved velocimetry, and hazard detection/ avoidance

NASA LUNAR EXPLORATION

ARTEMIS 22 (2010)

2018

LRO (2009) ORION SPACECRAFT 2019

SMALL COMMERCIAL LANDERS 2019 ONWARD POWER & PROPULSION ELEMENT 2022

ORION CREWED

MID-SIZE ROBOTIC LANDERS 2022

2022

GATEWAY IN LUNAR ORBIT 2024

ADVANCED EXPLORATION LANDER 2026

2026

Name	Shape	Vehicle Dimensions	Launch Mass	Entry Mass	Ballistic Number	L/D
Capsule		10 m (h) x 10 m (w)	68t	63t	500 kg/m ²	0.3
Mid L/D		22m (l) x 7.3m (h) x 8.8m (w)	66t	62t	380 kg/m ²	0.55
ADEPT		4.3m (h) x 18m diameter	60t	55t	155 kg/m²	0.2
HIAD		4.3m (h) x 16m diameter	57t	49t	155 kg/m ²	0.2

ADEPT = Adaptable Deployable Entry & Placement Technology HIAD = Hypersonic Inflatable Aerodynamic Decelerator Mid-L/D = Has a lift-to-drag ratio (L/D) of about 0.55

