Human Mars Lander Design Drivers and Challenges

Tara Polsgrove
AIAA Propulsion and Energy Forum

Space Policy Directive-1

"Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities.

Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations."

The Apollo Program

6 landings between
1969 and 1972

2 people

3 days on the surface
$\sim 2,000 \mathrm{~m} / \mathrm{s}$ down, 8.4 t propellant ~2,000 m/s up, 2.5t propellant

Pressure fed hypergolic propellants

Human Mars Mission

2-4 landers per mission

4+ people
>1 year on the surface
$\sim 800 \mathrm{~m} / \mathrm{s}$ down, 15 t propellant
$\sim 5,300 \mathrm{~m} / \mathrm{s}$ up, 36t propellant

Cryogenic ISRU-compatible propellants

Mars Ascent Vehicle (MAV) Drives Lander Size

- The MAV is the largest indivisible payload that must be delivered
- MAV's to high orbits are > 40t at liftoff.
- Delivering 40t or more on a lander may be infeasible
- With ISRU generated propellants, MAV's can achieve high orbits with low delivered mass on the lander

Earth Return Vehicle will be in a high orbit, 1 Sol to 5 Sol

Propellant Choice Drivers: Performance

- Ascent Performance

- Highly sensitive to Isp, impacts ripple through lander and transportation stages
- Propellant combinations with higher mixture ratios favored to make greatest benefit of surface LOX

Propellant Choice Drivers: Thermal Management

- Long duration storage
- Fuel storage at similar temperature to LOX simplifies CFM design, and enables a nested tank option

Thermal Environment Favors CH4 (methane) as a Cryogenic Fuel for Mars due to Storage Temperature

Propellant Choice Drivers: Packaging

LOX/LH ${ }_{2}$

LOX/CH 4

MMH/NTO (must be landed fully fueled)

Variation in propellant volumes for 1 Sol MAV

- Radiators not shown
- No attempt was made to optimize the configuration

Lander Options \& Packaging Challenges

Mars Descent Propulsion System

- Commonality of propulsion components for descent and ascent can maximize the value of development investments
- We need main engines with throttle capability, thrust level, and Isp that balance descent and ascent performance needs
- Common $22.5 \mathrm{klb}_{\mathrm{f}} \mathrm{O}_{2} / \mathrm{CH}_{4}$ engine
- 3+1 for Ascent, 8 for Descent
- Active cryogenic fluid management with advanced insulation
- Integrated reaction control systems
- Capable of withstanding long duration dormancy with high reliability

Propulsion Challenges: Powered Descent Initiation

Engines Off

- Strong, detached shock near vehicle
- Heatshield is the flow obstruction
- Dominant forces and moments are steady
- Well-defined scaling relationships

Engines On

Source: A. Korzun (NASA LaRC), FUN3D solution, 2018.

- Shock displaced far upstream
- Complex, unsteady plume structure is part of the flow obstruction
- Aerodynamic forces and moments can be unsteady
- Less confidence in scaling relationships

Propulsion Challenges: Plumes Near Landing

At Mach = 0.8 (20t payload):
Altitude above surface: 975 m Downrange to target: 1.04 km Flight path angle: -35° Plumes extend $\mathbf{1 5 0} \mathbf{m}$ in front of the vehicle!

Source: F. Canabal (NASA MSFC), LociCHEM solutions, instantaneous Mach number contours, 2018.

- Unsteadyaerodynamics in nominal operation
- Transitions through nozzle expansion conditions as the vehicle decelerates
- Throttling introduces asymmetry and can significantly alter the resulting aerodynamics

Propulsion Challenges: Surface Plume Interaction

Mars Science Laboratory
$5,600 \rightarrow 700$ lbf of thrust, $60+f t$ from surface
Damaged instrument

Human Mars Lander $180,000 \mathrm{lbf} \rightarrow 36,000 \mathrm{lbf}$ of thrust,

10+ft from surface in proximity to other assets

The total thrust at landing is 50 times more than Curiosity or InSight missions. Landing on bedrock is preferred, but even that may be altered.

Landing Precision

- Landing precision is improving with each Mars mission
- To get to the current state of the art, system changes have been made, along the way:
- MSL had the first active hypersonic guidance
- In addition, Mars 2020 employs a range trigger on the parachute, and uses Terrain Relative Navigation
- Human missions will need integrated guidance, improved velocimetry, and hazard detection/ avoidance

EDL Vehicle Designs: 20 t Payload Capability

Name	Shape	Vehicle Dimensions	Launch Mass	Entry Mass	Ballistic Number	L/D
Capsule		$10 \mathrm{~m}(\mathrm{~h}) \mathrm{x}$ $10 \mathrm{~m}(\mathrm{w})$	68 t	63 t	$500 \mathrm{~kg} / \mathrm{m}^{2}$	0.3
Mid L/D		$22 \mathrm{~m}(\mathrm{l}) \mathrm{x}$ $7.3 \mathrm{~m}(\mathrm{~h}) \mathrm{x}$ $8.8 \mathrm{~m}(\mathrm{w})$	66 t	62 t	$380 \mathrm{~kg} / \mathrm{m}^{2}$	0.55
ADEPT	$4.3 \mathrm{~m}(\mathrm{~h}) \mathrm{x}$ 18 m diameter	60 t	55 t	$155 \mathrm{~kg} / \mathrm{m}^{2}$	0.2	
HIAD		$4.3 \mathrm{~m}(\mathrm{~h}) \mathrm{x}$ 16 m diameter	57 t	49 t	$155 \mathrm{~kg} / \mathrm{m}^{2}$	0.2

ADEPT = Adaptable Deployable Entry \& Placement Technology HIAD = Hypersonic Inflatable Aerodynamic Decelerator
Mid-L/D = Has a lift-to-drag ratio (L/D) of about 0.55

