🚳 https://ntrs.nasa.gov/search.jsp?R=20180004653 2019-08-31T15:29:17+00:00Z

AEROSPACE Assuring Mission Success

Avoiding stair-step artifacts in image registration for GOES-R navigation and registration assessment

#### Thomas J. Grycewicz\*a, Frank J. De Lucciaa, Bin Tan<sup>b,d</sup>, Peter J Isaacson<sup>a</sup>, John Dellomo<sup>c,d</sup>

<sup>a</sup>The Aerospace Corporation, 2310 E. El Segundo BI., El Segundo, CA USA 90245-4691, <sup>b</sup>SSAI, 10210 Greenbelt Rd., Suite 600, Lanham, MD USA 20706, <sup>c</sup>GST, 7855 Walker dr., Suite 200, Greenbelt, MD USA 20770, <sup>d</sup>NASA GSFC Terrestrial Information Systems Laboratory,8800 Greenbelt RD., Greenbelt, MD 20771

#### SPIE Optical Engineering and Applications 28 August – 1 September 2016

© 2016 The Aerospace Corporation



9972-30

#### Overview

- Stair-step is a subpixel image registration artifact
- We have seen this before... ten years ago
- GOES-R Advanced Baseline Imager (ABI) Instrument Navigation and Registration (INR) assessment
- Methods to reduce the stair-step artifact
- Conclusions



# Shift Estimation using Image Registration



- Similarity metric uses a form of image correlation
  - Normalized cross-correlation (Pearson coefficient)
  - Normalized Mutual Information (NMI)
  - Phase Correlator (Fourier processing)
- Output increases as images are shifted towards perfect alignment
  - Inputs are pixelated with same pixel size
  - Output is similarly pixelated
  - Maximum location shows image shift to nearest pixel
- Interpolation is required to estimate sub-pixel registration
  - Stair-step is an interpolation artifact

Illustrations from De Luccia et.al., Proc. SPIE 988119

FROSPACE

#### Common concept for measuring GOES-R INR metrics

# Characteristics of the Stair-Step Artifact



- This chart shows the position estimate for a pair of images as the true shift varies from -1 to 1 pixel
- The initial estimate of registration is the nearest-pixel location
- We fit the correlation peak with a quadratic for the final estimate
  - Correct for offsets of an integer number of pixels

#### Stair-step is a sub-pixel estimation artifact

# Characteristics of the Stair-Step Artifact



- We fit the correlation peak with a quadratic for the final estimate
  - Correct for offsets of an integer number of pixels
  - Subpixel shifts require interpolation which can introduce stair-step
    - Estimates with stair-step fall between the true location and the nearest neighbor in the blue zone

#### Stair-step is a sub-pixel estimation artifact

#### Ten Years Ago....



Third Generation (all optical) Correlator

# Spring 2006

Operated in burst mode (5-150 frames) Input camera operates at 400 FPS Input pre-processing at 50 FPS Optical correlator operates at 50 FPS (Hamamatsu OASLM has ~12 ms response time) Correlation location calculated 50 FPS Output interpretation takes minutes

Material from Grycewicz et.al., Proc. SPIE 66950J e-mail address Department/subdivision name



#### **All-Optical Correlator Registration Results**



Material from Grycewicz et.al., Proc. SPIE 66950J

e-mail address Department/subdivision name **AEROSPACE** 

## Stair-Step is Hard to Detect

A sub-pixel artifact

- Stair-step is a sub-pixel artifact
  - It won't be seen except in an experiment with sub-pixel image displacement and sub-pixel ground truth
  - Typically small-on order tenth pixel
- Registration is typically a point estimate
  - You don't typically have a line of motion to estimate
  - One estimate—one error
  - Error is a combination of many system noise terms, including stair-step
- In the ABI case, our goal is to detect and measure subpixel misregistrations
  - If present, the effect of stair-step will be to make the ABI images appear better registered than they actually are

#### Stair-step is easy to miss, and easy to ignore



## **GOES-R INR Assessment**

- In March 2014 the GOES-R flight project initiated two efforts to develop tools for independent evaluation of on-orbit Image Navigation and Registration (INR) performance
  - The Product Monitor (PM), developed by the ground project, provides heritage capability for INR performance assessment
  - An independently developed capability for INR performance assessment using different techniques for risk reduction
- INR Performance Assessment Tool Set (IPATS) has been developed to:
  - Independently measure INR performance characteristics
  - Generate image-level and multi-image-level statistics
  - Provide data visualization capability
  - Archive results
- Aerospace is the primary architect and developer of IPATS, with final development and test ongoing jointly with SSAI and GST

Material from De Luccia et.al., Proc. SPIE 988119



## INR metrics of interest

- Navigation (NAV) error
  - Difference between location of pixel in data product and true location
- Frame-to-frame registration (FFR) error
  - Relative navigation error of corresponding pixels of same band in consecutive images
- Within-frame registration (WIFR) error
  - Difference between radial separation of two pixels on the FG and their true angular separation
- Swath-to-swath registration (SSR) error
  - Relative navigation error of two neighboring pixels on opposite sides of image swath boundary
- Channel-to-channel registration (CCR) error
  - Relative navigation error of corresponding pixels of different bands in the same frame

Material from De Luccia et.al., Proc. SPIE 988119

Key metric for any type of error is "3-sigma error", 99.73<sup>rd</sup> percentile of distribution of error magnitudes over a 24 hour data collection period. e-mail address Department/subdivision name



## Simulation Methodology



- Use IPATS tools and processes to register surrogate images
  - Surrogate images have known ground truth
- Landsat images aggregated 25x25 or 33x33
  - Registered images have GOES-like GSD of 750-1000 m
  - Subpixel shifts in 0.03 or 0.04 pixel increments
- Used to simulate in-channel and channel-to-channel registration



# Stair-Step in Surrogate GOES-R Images

Simulations built with Landsat data



- Simulations use set of eight Landsat 64x64 pixel band 3 (red) chips
- Normalized cross-correlation (Pearson coefficient)
- Simulated motion by individual Landsat pixels (1/25 GOES pixel)
- RMS error 0.06 pixels

#### Stair-step seen in early simulations



## Stair-Step Artifact in Simulated GOES-R Images

30x30 pixel chip simulated from Landsat 7 band 3 (red) **Cross Correlation** 



Max 3\*STD = 0.160 Max 3\*STD = 0.816Min 3\*STD = 0.070 Min 3\*STD = 0.023 1.1 1.5 **Estimated Shift** 0.9 Estimated Shift 1.1 0.7 0.5 0.7 0.3 0.3 0.1 -0.1 -0.1 0.5 1 **True Shift** -0.5 Normalized Mutual Information NMI + Sobel

- Set of 961 images
- Shifted by multiples of 1/33 pixel

Max 3\*STD = 0.144Min 3\*STD = 0.055

0.5

**True Shift** 



Max 3\*STD = 1.279

-0.2

-0.6

-1

**True Shift** 

**True Shift** 

CC + Sobel



1.1

0.9

0.7

0.5

0.3

0.1

-0.1

**Estimated Shift** 



1

1

1

## Image Set Run in IPATS

Simulation set used to characterize correlation techniques



- This Landsat image of Haiti was used for simulations both within and outside of the IPATS framework
- The boxes define 30 pixel x 30 pixel ABI correlation regions
- Visible and infrared bands were correlated



#### How can we reduce the size of the stair-step artifact?

- Increase the resolution
  - By estimating with high-resolution inputs, we get a high-resolution output
  - Need to start with high-resolution inputs, otherwise its just interpolation
- Estimate the error and subtract
  - If we can estimate the error, we can compensate
  - A sinusoidal estimate works well for mild stair-step
- Choose a different correlator
  - Different correlators have different stair-step response
- Choose a different output interpolator
  - Stair-step is an interpolation artifact
  - Choosing a good interpolator is critical

#### We are in the middle of a performance trade

#### **Increase Reference Resolution**

Data from surrogate ABI images on slide 12

- Increasing the reference resolution results in a large reduction in the magnitude of stair-step
- Correlation done at the smaller pixel size
  - The spatial period of the stair-step is reduced to the smaller pixel size
- This works well for NAV assessment
  - Reference chips can have arbitrary scale
- Requires that one of inputs is available at high-resolution
  - Not helpful for CCR or FFR
  - When both images are rescaled, interpolating the inputs is similar to interpolating the output, but has computational disadvantages

Good NAV technique











## Increasing Resolution by Interpolation of Both Inputs

Data from surrogate ABI images on slide 14

- Linear interpolation results in similar registration metrics at all zoom factors
  - Here, SPF = Sub-Pixel Factor = amount of linear interpolation
- These correlations were all done within IPATS
- Very little difference is seen in the results
- "Truth" line has been adjusted for observed channel-to channel offset





# Estimate the Error and Subtract

Data from surrogate ABI images on slide 12

- A small stair-case is estimated by a sinusoidal offset
  - Zeroes at whole and half pixel shifts
  - Maxima at ¼ and ¾ pixel shifts
  - Magnitude can be estimated by modeling
- Stair-case cannot be eliminated this way, but can be greatly reduced





#### Method-of-choice for FFR, SSR, and CCR

#### **Choose a Better Correlator**

Data from surrogate ABI images on slide 12

- Normalized Cross-Correlation (NCC) performs better than NMI when images are in similar bands
  - NMI has an advantage for dissimilar CCR combinations—visible to IR
- A phase-space correlator operating in the Fourier domain is being evaluated as an alternate solution





## Choose a Better Output Interpolator

Data from surrogate ABI images on slide 12

- The goal is to find the location of the primary peak in the output correlation plane at subpixel accuracy
- We have evaluated two interpolators
  - Both interpolators start at the location defined by the largest value in the correlation plane
  - The "Centroid" interpolator finds the center-of-mass of the pixels in a 5x5 region about the peak in the correlation plane
  - The "Parabolic" interpolator fits onedimensional parabolas to the correlation peak in the x and y dimensions





#### Conclusions

- We have described the stair-step registration artifact
- We have shown this may be an issue for GOES-R ABI registration
  - Of order tenth pixel if misregistration is spread across a full pixel
  - Much smaller if misregistration is always a quarter pixel or less
  - Estimated subpixel misregistration smaller than actual
- Effect of stair-step can be minimized
  - Good choice of correlator
  - Good choice of interpolator
  - Remaining effect can be estimated and compensated



# Backup



#### But Why? A Notional Explanation



- I plan to build an animation here showing how the stair-step must arise if you start with an assumption that the measured values are correct in a region around the sample point
  - That is, you get stair-step if you estimate the points but don't estimate or under-estimate the slopes
  - Frank—I believe that the parabolic refinement will estimate the line with minimum slope that passes through three points. Is this true?

We assume an area around the measurement to be correct

#### Linear JTC Input and Correlation Peak



Material from Grycewicz et.al., Proc. SPIE 66950J

e-mail address Department/subdivision name

## **Binary JTC Input and Correlation Peak**





- Binarized by convolving with Laplacian kernel and thresholding
- Correlation computed digitally

25 AEROSPACE

Material from Grycewicz et.al., Proc. SPIE 66950J

#### **Two-Stage Joint Transform Correlator, Binary Input**

**Two Stage BJTC** 



#### All-Optical JTC, Linear Input

**OASLM - Linear Input** 

