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Abstract. Many passive remote-sensing techniques have
been developed to retrieve cloud microphysical properties
from satellite-based sensors, with the most common ap-
proaches being the bispectral and polarimetric techniques.
These two vastly different retrieval techniques have been im-
plemented for a variety of polar-orbiting and geostationary
satellite platforms, providing global climatological data sets.
Prior instrument comparison studies have shown that there
are systematic differences between the droplet size retrieval
products (effective radius) of bispectral (e.g., MODIS, Mod-
erate Resolution Imaging Spectroradiometer) and polarimet-
ric (e.g., POLDER, Polarization and Directionality of Earth’s
Reflectances) instruments. However, intercomparisons of air-
borne bispectral and polarimetric instruments have yielded
results that do not appear to be systematically biased relative
to one another. Diagnosing this discrepancy is complicated,
because it is often difficult for instrument intercomparison
studies to isolate differences between retrieval technique sen-
sitivities and specific instrumental differences such as cali-
bration and atmospheric correction. In addition to these tech-
nical differences the polarimetric retrieval is also sensitive to
the dispersion of the droplet size distribution (effective vari-
ance), which could influence the interpretation of the droplet
size retrieval. To avoid these instrument-dependent compli-
cations, this study makes use of a cloud remote-sensing re-
trieval simulator. Created by coupling a large-eddy simula-
tion (LES) cloud model with a 1-D radiative transfer model,

the simulator serves as a test bed for understanding differ-
ences between bispectral and polarimetric retrievals. With
the help of this simulator we can not only compare the two
techniques to one another (retrieval intercomparison) but also
validate retrievals directly against the LES cloud properties.
Using the satellite retrieval simulator, we are able to ver-
ify that at high spatial resolution (50 m) the bispectral and
polarimetric retrievals are highly correlated with one an-
other within expected observational uncertainties. The rela-
tively small systematic biases at high spatial resolution can
be attributed to different sensitivity limitations of the two
retrievals. In contrast, a systematic difference between the
two retrievals emerges at coarser resolution. This bias largely
stems from differences related to sensitivity of the two re-
trievals to unresolved inhomogeneities in effective variance
and optical thickness. The influence of coarse angular res-
olution is found to increase uncertainty in the polarimetric
retrieval but generally maintains a constant mean value.

1 Introduction

The cloud droplet size distribution (DSD) is an important mi-
crophysical property of liquid-phase clouds. Given the cloud
water content, it largely determines the shortwave radiative
effects of clouds (Twomey, 1977). It also plays a critical
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role in cloud-precipitation processes (Pruppacher and Klett,
1978). As a result, anthropogenic perturbation to the DSD
could lead to a variety of cloud property changes with signif-
icant climate implications (Lohmann et al., 2007).

Many satellite-based techniques have been developed to
retrieve cloud DSD properties from regional to global scales.
These techniques typically infer DSD properties based on an
assumed size distribution shape, characterized by an effec-
tive radius (r.) and an effective variance (ve). One such re-
trieval method is called the bispectral total reflectance tech-
nique, hereafter referred to as the “bispectral technique”,
which simultaneously retrieves cloud optical thickness ()
and r. from a pair of cloud reflectances, typically one in the
visible to near infrared (VNIR) and the other in the short-
wave infrared (SWIR) or midwave infrared (MWIR) spec-
tral range (Nakajima and King, 1990b). This retrieval tech-
nique has been implemented for numerous satellite and air-
borne instruments, such as the Moderate Resolution Imaging
Spectroradiometer (MODIS; King et al., 2003; Platnick et
al., 2003, 2017), the Spinning Enhanced Visible and Infrared
Imager (SEVIRI; Roebeling et al., 2006), and the Suomi
National Polar-orbiting Partnership Visible Infrared Imag-
ing Radiometer Suite (Suomi NPP VIIRS; Rosenfeld et al.,
2014).

A second, fundamentally different, retrieval technique is
the multi-angular polarimetric reflectance technique, here-
after referred to as the “polarimetric technique”. This re-
trieval requires multi-angular observations of the polarized
reflectance in the cloudbow scattering region. In addition to
re, the polarimetric technique can also retrieve ve (Bréon and
Goloub, 1998). Global retrievals using the polarimetric tech-
nique were first demonstrated by the Polarization and Di-
rectionality of Earth Reflectance (POLDER; Deschamps et
al., 1994) instruments operating from 1996 to 2013 on three
different satellite platforms. The Aerosol Polarimetry Sen-
sor (APS; Mishchenko et al., 2007) would have been the first
spaceborne multi-angular polarimeter from the US to provide
global aerosol and cloud property retrievals. Unfortunately, it
was lost as a result of the satellite launch failure in 2011,
which suddenly interrupted development of polarimetry-
based remote sensing in the US. Recognizing the great poten-
tial of polarimetric techniques for aerosol and cloud remote
sensing, NASA has invested heavily in recent years in the
development of airborne polarimeters, such as the Research
Scanning Polarimeter (RSP; Cairns et al., 1999), the Air-
borne Multi-angle Spectro-Polarimetric Imager (AirMSPI;
Diner et al., 2013), and the Airborne Hyper-Angular Rain-
bow Polarimeter (Air-HARP; Martins et al., 2017). More-
over, several spaceborne missions are in development, such
as the Multi-Angle Imager for Aerosols (MAIA; Liu and
Diner, 2017); HARP; the Plankton, Aerosols, Cloud, ocean
Ecosystem mission (PACE); and the Multi-viewing, Multi-
channel, Multi-polarization Imaging mission (3MI; Marbach
etal., 2013). Each of these missions will have a multi-angular
polarimeter on board. In the foreseeable future, we may ex-
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pect to have operational global retrievals of cloud droplet size
distributions from both bispectral and polarimetric methods.

The bispectral and polarimetric remote-sensing techniques
are the primary tools we have to obtain DSD observations
on a global scale. It is therefore essential to identify and ex-
plain differences between the two techniques so we can bet-
ter understand their respective advantages and limitations. A
satellite retrieval intercomparison of POLDER and MODIS
re retrievals by Bréon and Doutriaux-Boucher (2005) repre-
sented one of the first attempts to identify and understand
the differences between the two techniques. The main find-
ing from this study is that the bispectral MODIS retrieval
of re (2.13um) (using the 2.13 um SWIR band) is persis-
tently 2 um larger than the 150 km scale polarimetry-based
POLDER retrieval over the ocean, despite a close correlation
between the two. A variety of factors, from differences in
sensitivity to cloud vertical profile to influence of cloud hor-
izontal inhomogeneity, have been suggested to explain this
difference. However, as pointed out by the authors, all these
factors might contribute to the difference. It is difficult, if not
impossible, to untangle them in observations and determine
their relative importance. In addition, POLDER observations
in this study were aggregated from the nominal 6 km spatial
resolution to a much coarser 150 km resolution to achieve the
angular resolution needed to resolve the cloudbow. The vast
difference in spatial resolution (i.e., 150km for POLDER
and 1 km for MODIS) makes the interpretation of the 2 um
re difference between the two retrievals even more difficult.

A more recent study by Alexandrov et al. (2015) is based
on observations from the recent sub-orbital Polarimeter Def-
inition Experiment (PODEX) in 2013. In that study, the po-
larimetric re retrievals for marine stratocumulus decks off
the California coast from the airborne RSP instrument are
compared to collocated bispectral retrievals from the Au-
tonomous Modular Sensor (AMS). Interestingly, the two re-
trievals are found to be in close agreement, with a correla-
tion of 0.928 and negligible bias of less than a micron. Be-
yond the clear instrument differences of the Alexandrov et
al. (2015) and Bréon and Doutriaux-Boucher (2005) studies,
it is still unclear how well the bispectral and polarimetric re-
trievals should compare to one another and what situations
might cause them to differ, raising numerous questions and
motivating this study.

A great challenge facing these observational studies is the
intertwining of various instrument- and scene-dependent fac-
tors that lead to retrieval differences. For example, the polari-
metric and bispectral methods have different sensitivity to the
cloud vertical profile, and at the same time they are also both
affected by cloud horizontal inhomogeneity (Zinner et al.,
2010; Zhang et al., 2012, 2016; Miller et al., 2016). It is dif-
ficult, if not impossible, to disentangle these factors based on
observations alone. This study approaches the intercompari-
son of bispectral and polarimetric retrievals through a differ-
ent route: rather than use observational remote-sensing data,
synthetic retrievals are generated from large-eddy simula-
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tions (LESs) of clouds. Modeling radiative transfer in an LES
scene to obtain total and polarized reflectances opens up the
possibility of using the LES to perform synthetic bispectral
and polarimetric retrievals. This retrieval simulator frame-
work has proven to be a useful tool in other cloud remote-
sensing studies (Miller et al., 2016; Zhang et al., 2012). Us-
ing this idealized simulation at high spatial resolution, we
can attempt to parse the effects of unresolved sub-pixel in-
homogeneity, spatial resolution, and angular resolution on
the intercomparison of polarimetric and bispectral retrievals.
The scale of the LES simulations (~ 10 km) in this study pre-
vents us from examining resolutions as large as the standard
POLDER retrieval (~ 150km), but we are able to advance
understanding of how spatial resolutions between 50 m and
1 km influence retrievals. These scales are suitable for air-
borne instrument comparisons, which certainly fall some-
where in this range. The use of a satellite retrieval simula-
tor opens up two unique opportunities for developing and
studying cloud microphysical retrievals: first, it provides the
means to compare retrievals directly to LES cloud micro-
physics; second, it allows us to perform a retrieval technique
intercomparison that is independent of instrument charac-
teristics and other differences that complicate observational
studies. This study focuses on three particular questions:

— How well do the bispectral and polarimetric retrievals
perform relative to the LES fields used as input to the
retrievals?

— How do the bispectral and polarimetric retrieval tech-
niques compare to one another at high spatial resolu-
tion?

— How are the bispectral and polarimetric retrieval tech-
niques sensitive to specific observational conditions
(i.e., the influence of spatial and angular resolution)?

The rest of the paper is organized as follows: Sect. 2 pro-
vides a brief introduction to the theoretical basis of the two
retrieval techniques; Sect. 3 describes the LES-based satel-
lite retrieval simulations used in this study; the comparisons
between the two techniques based on the LES cases are pre-
sented in Sect. 4, followed by summary and discussion in
Sect. 5.

2 Background
2.1 Cloud microphysical and optical properties

In satellite remote-sensing DSDs are often described using
theoretical distributions that fit well with in situ observations,
in addition to being mathematically convenient (Deirmend-
jian, 1964; Tampieri and Tomasi, 1976; Martin et al., 1994;
Miles et al., 2000). A popular theoretical DSD is the gamma
distribution proposed by Hansen and Travis (1974):

N (rire, ve) = NoCr' =3 Y exp[—r/ (reve) ] . ()
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where the independent variable r is the cloud droplet radius,
N (r) is the droplet size distribution, Ny is the droplet number
concentration, and C is a normalization constant. The two
distribution parameters are the effective radius (re) and the
effective variance (ve) of the DSD:

_ Jo Qe(r*N(rydr

oS Qe(r)r2N (r)dr
~ fooor3N (r; re, ve)dr (r3)

re

= 2
Jo AN (rire, v dr (r?) @
_ 157 Q0e(n)(r = re)*r*N(r)dr
T2 Jo7 Qe(r)r2N (r)dr
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r2 Jo 2N (rire, ve)dr (r3)

where (") = [;°r"N(r)dr is the nth moment of the DSD.
For the spectral bands relevant to this study, the ex-
tinction efficiency (Q.) is approximately constant (i.e.,
Qc(r) ~ const. =2). Thus, the relationships between r. and
ve can be conveniently reduced to relations between arith-
metic moments of the DSD. The DSD plays an important role
in defining the bulk optical properties of a cloud. The opti-
cal property libraries used in this study are based on single-
scattering Mie calculations of monodisperse droplet optical
properties that are averaged with respect to size, according
to the gamma DSD (Wiscombe, 1979). In addition, these
single-scattering optical properties are averaged with respect
to wavelength over an instrument-specific spectral response
function (based on MODIS bands in this study) and solar
source functions (Planck blackbody function; Planck, 1914).
The single-scattering bulk cloud optical properties are sub-
sequently used to run radiative transfer calculations for the
creation of the so-called bispectral reflectance look-up table
(LUT). This LUT is made up of pre-calculated reflectances of
plane-parallel and homogeneous (PPH) clouds over a high-
resolution grid of combinations of t, r., and v.. Here, t is
defined in terms of the DSD:

0 [}
Ttot, E/ [/ Qe,x(r)neron(r)dr} dz. )
TOA LJO

2.2 Bispectral and polarimetric retrieval methods

The bispectral method retrieves t and r. simultaneously from
a pair of observed cloud reflectances, typically using a com-
bination of VNIR and SWIR/MWIR bands. The VNIR band,
with relatively negligible liquid water droplet absorption, and
the SWIR/MWIR band, where droplets are moderately ab-
sorptive, can be used to remotely infer T and r. because of
this difference in sensitivity to multiple scattering (thickness)
and absorption (droplet size). This method is usually imple-
mented using a LUT, shown graphically in Fig. 1a, which
has a fixed ve. Cloud reflectance in the VNIR band (centered
around 0.865 pum) increases with t (gray) for a fixed 7., while
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the reflectance in the MWIR band (centered around 3.75 um)
decreases with re (colored) when t is fixed. The retrieved
properties are obtained by performing a two-dimensional in-
verse interpolation between observed reflectance and the 7—
re grid. A notable characteristic of the bispectral LUT is that,
when the optical thickness is low (7 <3), the isolines of the
LUT are more densely packed and less orthogonal, which
results in reduced sensitivity and increased retrieval uncer-
tainty (Werner et al., 2013). The bispectral technique is not
particularly sensitive to ve, so typically a fixed value is as-
sumed (e.g., ve =0.1 in the operational MODIS retrieval,
though it is kept as an error source in calculating pixel-level
uncertainties). While different combinations of bands are
used to perform the bispectral retrieval, in this study we fo-
cus on VNIR reflectances centered on 0.865 pm, with the sec-
ond band selected from either a 2.13 um centered SWIR band
or a 3.75 um centered MWIR band. There are consequences
for the r. retrieval depending on the particular set of bands
selected. For example, a strongly absorbing SWIR/MWIR
band limits penetration into the cloud, and as a result the
retrieved re is vertically weighted toward the microphysics
prevalent in the uppermost part of the cloud (Platnick, 2000).

For the polarimetric retrieval, the angular pattern of the
linearly polarized reflectance! is the source of sensitivity
to cloud microphysical properties. Polarized reflectances are
dominated by single scattering because multiple scattering
induces depolarization. As a result, the single-scattering po-
larized phase functions (—Pj2) shown in Fig. 1b and c are
good approximations to the observed angular pattern of po-
larized cloud reflectances (Bréon and Goloub, 1998). These
phase functions demonstrate the sensitivity of the polarimet-
ric retrieval to both r. and ve. As r. increases in Fig. 1b,
the supernumerary bow peaks (around a scattering angle of
142°) become narrower and shift toward smaller scattering
angles. In contrast, as ve increases in Fig. 1c the supernumer-
ary bow peaks erode in magnitude, eventually smoothing out
for broad DSDs (ve >0.15). A consequence of this erosion of
the supernumerary peaks is that the polarimetric retrieval has
less sensitivity to both re and ve for very broad DSDs. The
polarimetric retrieval does not significantly rely on multi-
spectral information, although observations in several bands
may help provide stronger observational constraints due to
the shift in the supernumerary bows with changing wave-
length (refer to Fig. 3 of Bréon and Goloub, 1998). The dom-
inance of the single-scattering contributions to the polarized
reflectance leads to cloud retrievals that represent microphys-
ical properties with a mean penetration depth of (zss) <0.5
and sensitivity that saturates for optical depths greater than
~ 3 from the cloud top. The polarimetric retrieval is often
based on a parametric curve-fitting retrieval algorithm like

INote that throughout this paper we will refer to “linearly polar-
ized reflectances” simply as “polarized reflectances” in recognition
of the negligible contribution of circularly polarized light in the at-
mosphere (Hansen, 1971).
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Figure 1. Demonstrations of the microphysical sensitivity of the
bispectral and the polarimetric techniques. (a) features the bispec-
tral LUT exhibiting sensitivity to re (colored isolines), due to ab-
sorption in the MWIR reflectance. The VNIR reflectances provide
sensitivity to optical thickness (gray isolines). (b) and (c¢) demon-
strate the sensitivity of polarimetric technique to re and ve, respec-
tively. The supernumerary bow peaks of the polarized phase func-
tion (— Pp3) shift and become narrower with increasing droplet size
(re), whereas the peaks erode in magnitude for broadened droplet
size distributions (ve).

the one presented in Alexandrov et al. (2012b), although
there are other techniques (e.g., the rainbow Fourier trans-
form (RFT) technique of Alexandrov et al., 2012a, which
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ATEX clean

Figure 2. The optical and microphysical properties (7, re, and ve) of the LES cases examined in this study. The panels are arranged such
that each LES case appears row-wise and the different properties appear column-wise. Note that the vertical weighting functions used for
the displayed re(VW) and ve(VW) correspond to single-scattering assumptions. Cloud-free masking in each of the images appears in gray.
Refer to Sects. 2 and 3 for discussion and definition of each of these properties. Axis labels have been removed to enlarge each map, but the
spatial dimensions of each scene are roughly 7 x 7 km (refer to Sect. 3 for the specific resolutions of each LES case).

can retrieve DSDs with arbitrary mathematical form). The
parametric technique relies on a library of — Pj» curves with
varying r. and v, that are parametrically scaled and adjusted
to fit the observed reflectance via a nonlinear least squares
optimization procedure. This process yields the phase func-
tion that best matches the angular pattern of the observation,
thus determining the r.(pol) and v, (pol) retrieval. The polari-
metric method described above does not result in a retrieval
of 7; however, it can still be obtained by implementing a sim-
plified variant of the bispectral t retrieval. With simultaneous
measurements of the total reflectance in a VNIR band and
the re(pol) retrieval, a VNIR-only LUT curve can be used to
perform a 1-D interpolation of the corresponding bispectral
LUT curve for Rynir (re(pol), 7).

Both bispectral and polarimetric techniques are suscepti-
ble to a variety of retrieval uncertainties. The main objective
of this study is to understand how the retrieval uncertainties

www.atmos-meas-tech.net/11/3689/2018/

influence each technique and whether they can lead to devia-
tion between the two techniques in terms of retrieval results.
In this study, we focus on five major sources of retrieval un-
certainty for both techniques:

1. Cloud vertical profile. In the operational retrievals, both
bispectral and polarimetric techniques assume verti-
cally homogenous clouds. However, clouds in reality
often have significant vertical variability resulting from
various processes (e.g., condensational growth, coales-
cence, sedimentation, entrainment). Deviation from the
assumed profile gives rise to many questions. For exam-
ple, how do we interpret the r. and v, retrievals based on
the homogenous cloud assumption? To what extent does
cloud vertical profile influence the bispectral and polari-
metric techniques? Note that Platnick (2000) developed
a method utilizing the so-called “vertical weighting
function” to interpret the r. retrieval from the bispectral

Atmos. Meas. Tech., 11, 3689-3715, 2018
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method for clouds with vertically varying r. profile. Re-
cently, Alexandrov et al. (2012b) took an approach that
focused on the vertical weighting of the droplet size dis-
tribution to interpret the r. and v, retrievals from the po-
larimetric technique. Miller et al. (2016) demonstrated
the usefulness of this vertical weighting approach for
understanding both bispectral and polarimetric re re-
trievals. In Sect. 4.1, we will apply a vertical weight-
ing function for both techniques on the basis of the LES
cloud fields, to help understand if cloud vertical struc-
ture could lead to significant differences between the
two techniques.

2. Sensitivity to observational uncertainty. The uncertain-
ties associated with observations of total and polarized
reflectances can differ, indicating that uncertainty may
also impact bispectral and polarimetric retrievals differ-
ently. Additionally, the two retrievals rely on a differ-
ent number of uncertain observations: a pair of uncer-
tain total reflectances (bispectral) as compared to nu-
merous uncertain polarized reflectances (polarimetric).
Furthermore the different algorithmic approaches, two-
dimensional interpolation vs. nonlinear optimal curve
fitting, introduce additional layers of complexity in
terms of the impact of uncertainty. The impact of uncer-
tainty on retrieval results for each method is highlighted
and explored in Sect. 4.2.

3. Reduced sensitivity. It can be clearly seen from Fig. la
that, when clouds are optically thin (r <3), the LUT
for the bispectral retrieval becomes less orthogonal and
the isolines of r. become more densely packed. This
reduction in sensitivity can lead to significant retrieval
uncertainties in bispectral techniques for optically thin
clouds (tr <3). Similarly, the sensitivity of the polari-
metric technique to r. and v, is reduced when DSD
becomes very broad (i.e., ve >0.15), in which case the
supernumerary bow features are barely distinguishable
(Fig. 1c). In Sect. 4.3 we will investigate the impacts
of the reduction of sensitivity on retrieval consistency
between the two techniques.

4. Sub-pixel inhomogeneity. The impact of spatial resolu-
tion and unresolved sub-pixel cloud inhomogeneity on
bispectral retrievals has been well studied (Zhang and
Platnick, 2011; Zhang et al., 2012, 2016). An important
conclusion from these studies is that the so-called plane-
parallel homogenous bias (PPHB) can cause the bispec-
tral technique to significantly overestimate r.. In con-
trast, the sensitivity of the polarimetric retrieval to unre-
solved sub-pixel inhomogeneity and resolution has not
been thoroughly studied. In Sect. 4.4 we will compare
the impacts of sub-pixel inhomogeneity on bispectral
and polarimetric techniques, and investigate whether it
can cause deviation between the two techniques.

Atmos. Meas. Tech., 11, 3689-3715, 2018
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5. Angular resolution and sampling for polarimetric tech-
nique. In addition to spatial resolution, angular resolu-
tion and sampling are also important for the polarimetric
technique. A coarse angular resolution may not be able
to resolve the supernumerary bow features. Similarly,
if the scattering angles corresponding to the supernu-
merary bows are not or only partially sampled, then the
polarimetric technique may not have enough informa-
tion content for retrieval. This issue will be discussed in
Sect. 4.5.

3 Model and methodology

The satellite retrieval simulator implemented in this study
is built around an LES model (DHARMA) with bin micro-
physics (Ackerman et al., 2004; Zhang et al., 2012; Miller et
al., 2016). The LES provides freely evolving 3-D cloud mi-
crophysical properties, which are used as a reference when
comparing to numerically simulated retrievals. The LES in
this study adopts 25 droplet size bins to represent droplet size
distributions (Ackerman et al., 1995). The optical properties
of each size bin are computed by bulk-averaging Mie scatter-
ing properties over a highly resolved flat sub-bin droplet size
distribution. The optical properties of each bin are provided
as input to radiative transfer simulations based on the size
distributions of the LES cloud fields. Vector radiative trans-
fer calculations are performed using a polarized doubling—
adding technique (PDA) to produce 1-D total and polarized
reflectances at the horizontal resolution of the LES grid (de-
scribed below) (De Haan et al., 1987). The sole consideration
of 1-D retrievals avoids 3-D radiative effects and focuses this
study on retrieval technique differences rather than on radia-
tive processes. A future study will focus on the comparison
of 3-D retrievals to these 1-D bispectral and polarimetric re-
trievals. The radiative transfer modeling in this work is per-
formed for numerous solar zenith angles (SZAs = [20, 40,
60]°), viewing zenith angles (VZAs=[—70:+470]°), and a
constant relative azimuthal angle (A® =30°). The VZA res-
olution results in a scattering angle (®) resolution on the or-
der of 0.5°. Reflectances in spectral bands (based on MODIS
spectral response functions) are centered on 0.865, 2.13, and
3.75 um wavelengths. Total reflectances in all bands are used
to produce bispectral retrievals, whereas linearly polarized
reflectances in the 0.865 um band are used to produce po-
larimetric retrievals. Subsequently, bispectral and polarimet-
ric retrievals are performed on the simulated reflectances to
obtain re, ve, and T retrievals. Bispectral and polarimetric re-
trievals are performed over a subset of observation geome-
tries, with bispectral retrievals performed for VZAs =[50,
40, 30, 20, 10, 0, —10]° and all SZAs. Meanwhile, the polari-
metric retrievals are performed for a SZA =20° and a range
of VZAs=[0:27]°, which result in reflectances spanning
scattering angles required to observe the primary and super-
numerary bow features (i.e., ® =[135:160]°). Reflectances

www.atmos-meas-tech.net/11/3689/2018/
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are also aggregated from the 50 m native LES resolution up
to coarser 100, 200, 400, and 800 m horizontal resolutions to
reflect the influence of different remote-sensing footprints.
The retrievals in this study are also performed at all of the
footprint resolutions. The bispectral LUT implemented in
this study spans microphysical properties re =[2:30] um in
steps of 0.5 um and ve =[0.01:0.11] in steps of 0.01. The
T retrieval in this study is anchored to the 0.865 band opti-
cal properties and spans 7 = [0.1 :100] with 101 logarithmi-
cally spaced grid points. Including v, variability in the bis-
pectral LUT allows for the comparison of standard MODIS-
like retrievals (the ve = 0.1 LUT) to retrievals with other ve
assumptions. The bispectral retrieval is then accomplished
by performing a 2-D linear interpolation of the observed re-
flectances and inverting between the reflectance and retrieval
space. For the polarimetric retrieval, the polarimetric phase
function library spans r. =[2:40]um in steps of 0.25um
and ve =[0.01:0.3] in steps of 0.01. The polarimetric re-
trieval implemented in this study is based on the approach of
Alexandrov et al. (2012a), fitting the polarized phase func-
tions in their Eq. (3) to the modeled polarized reflectances
of the LES scene. The optimal parametric fit in the — Py
library is determined by using a Levenberg—Marquardt non-
linear least squares algorithm. This optimal phase function is
then used to identify the corresponding re(pol) and ve(pol)
retrieval. As previously stated in Sect. 2.2, the polarimetric
retrieval of 7 is accomplished by using a constrained 1-D
version of the bispectral LUT.

The LES cloud fields are used not only to drive the ra-
diative transfer simulations but also to help interpret and un-
derstand the retrieval results. As mentioned in Sect. 2.2, it
is not trivial to interpret the r. and v, retrievals based on
the homogenous cloud assumption when the cloud has sig-
nificant vertical structure. To address this issue, for each
LES column with detailed vertical profiles of DSD, we de-
rive two reference variables, r.(VW) and ve(VW), from the
vertical weighted (VW) integration of the DSD profile. The
vertical integration is weighted by a function to account for
the penetration depth and multiple scattering of radiation in
the corresponding wavelength associated with each particu-
lar retrieval. Thus, r.(VW) and v.(VW) should be compara-
ble to the retrieved r. and ve from the simulated reflectance
(Alexandrov et al., 2012b; Miller et al., 2016; Zhang et al.,
2017). The method of vertical weighting in this study is de-
scribed in detail in Sect. 2 of Miller et al. (2016); however in
this study we have modified the vertical weighting function
to account for multiple scattering. Motivated by the conve-
nience and flexibility of the parametric approach proposed in
Eq. (4) of Zhang et al. (2017), we implement a two-variable
parametric vertical weighting function:

ror e ()]
W) =ct’exp|—at|{—+—) |, (®)]
AT

where the new parameters a and b are introduced to account
for the influence of multiple-scattering effects not originally
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considered in the vertical weighting function discussed pre-
viously in Miller et al. (2016). The parameter a scales the
optical depth, modeling the enhanced transmission caused
by multiple scattering, whereas the parameter b produces a
peaked vertical weighting function associated with the ex-
pected penetration depth of the reflected light, and ¢ is the
normalization factor. Each of these parameters is strictly pos-
itive, and for @ =1 and b =0 we obtain the original single-
scattering vertical weighting used in Miller et al. (2016). For
smaller values of a and larger values of b, the vertical weight-
ing function extends deeper into the cloud, leading to droplet
size distribution properties deeper in the cloud contributing
more information to the vertically weighted value. For the
polarimetric retrieval, a =1 and b =0 were selected due to
the dominance of single scattering in polarized reflectances.
In contrast, multiple scattering can significantly impact total
reflectances. For total reflectances a single value of a and b
was selected for each spectral band and observation geom-
etry based on coefficients that fit best to numerically calcu-
lated vertical weighting functions based on the method pre-
sented in Eq. (4) of Platnick (2000)2. Generally, we found
that a(3.75um) was larger than a(2.13 um), as would be
expected because of stronger absorption in 3.75 um reduc-
ing transmission into the cloud. We also found that b was
dependent on observation geometry (scattering angle), and
b(3.75 ym) was less than b(2.13 um) because multiply scat-
tered light in the 2.13 um band can penetrate deeper into the
cloud before scattering back out. In addition to 7.(VW) and
ve(VW), we also derive 7 gg for each LES column simply
by integrating the extinction coefficient (for A =0.865 um)
from cloud bottom to cloud top. re(VW), ve(VW), and t1gs
are used as references in the retrieval and LES property com-
parison in Sect. 4.1 to understand the differences between
the retrievals and the original LES fields. After obtaining
re(VW), 1e(VW), and 11 gs at the 50 m native LES resolu-
tion, they are aggregated to 100, 200, 400, and 800 m to help
interpret the retrievals at these coarser resolutions. It is im-
portant to note that there is a subtle difference between di-
rectly aggregating r.(VW) or v.(VW) and aggregating the
DSD (i.e., N(r)) first and then deriving the corresponding
re(VW) and v (VW). The differences between the two meth-
ods are discussed in the Appendix. The main conclusion is
that, although the two aggregation methods could be differ-
ent in some hypothetical cases with unrealistically large vari-
ability in the unresolved microphysics, they are essentially
equivalent for practical purposes. In this study, we simply
aggregate r.(VW) and ve(VW) from the native LES resolu-
tion of 50 m to obtain average values at the desired resolution
(e.g., 800 m).

2The radiatively derived vertical weighting of Platnick (2000)
implicitly depends on the re(z) profile, whereas a fixed parameter
vertical weighting described here does not. However, the impor-
tance of this difference should be less than the vertical variability
of optical depth or extinction cross section.
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Three LES cases are the focus of this study. The first (re-
ferred to as “ATEX clean” hereafter) and second (“ATEX
polluted”) cases are based on an idealized case study from
the Atlantic Trade Wind Experiment (ATEX), with differ-
ent aerosol loadings (Stevens et al., 2001). The ATEX cases
are representative of a trade wind cumulus regime in which
scattered cumuli rise into a thin, broken stratocumulus layer.
The third case (referred to as “DYCOMS-II” hereafter), orig-
inally presented in Stevens et al. (2005), is an idealized setup
based on clouds observed during the second research flight
(RF02) of the Second Dynamics and Chemistry of Marine
Stratocumulus project (DYCOMS-II) (Stevens et al., 2003).
This case is representative of nocturnal marine stratocumulus
under conditions of a dry inversion. The DYCOMS-II case
has a domain size of 6.4 x 6.4 x 1.5km (128 x 128 x 96 grid
points), while each of the ATEX simulations has a domain
size of 7.2 x 7.2 x 3km (144 x 144 x 200 grid points). The
horizontal grid spacing of these LES cases is fixed at 50 m,
while the vertical grid is stretched, with a minimum spacing
of 5 m near the surface and the capping temperature inversion
to better resolve small-scale turbulence there. Further details
of the model setup for the DYCOMS-II case are provided in
Ackerman et al. (2009). The ATEX cases are updated model
runs with increased spatial resolution that are similar to the
cases discussed in Fridlind and Ackerman (2011). For each
LES scene a snapshot of cloud microphysical and optical
properties is saved every half hour after the first hour of each
simulation, resulting in numerous cloud fields. A single time
step of each of the cases was selected to be the focus of this
retrieval study, each occurring ~ 3 h into the simulation.

The variability of cloud optical and microphysical prop-
erties in each of the LES cases is highlighted in Fig. 2 and
Table 1. Spatial inhomogeneity of both optical and micro-
physical properties of these scenes is evident, with the ATEX
polluted and DYCOMS-II cases exhibiting lower spatial in-
homogeneity and the ATEX clean case being more broken
and inhomogeneous. One method for quantifying the optical
inhomogeneity of a cloud scene is to use the sub-pixel inho-
mogeneity index,

SD[R; (0.865 um, 50m)]
mean [ R; (0.865um, 50m)]’

(6)

H, (resolution) =

where the numerator and denominator are the standard de-
viation and mean of the native LES resolution (50 m) re-
flectances within a coarser-resolution pixel. Thus, the value
of H, is computed for a coarser-spatial-resolution pixel
(800 m in Table 1) using the highest-resolution nadir-viewing
reflectances (50 m). The value of H, increases with increas-
ing sub-pixel inhomogeneity, making it a useful measure
for unresolved cloud variability. In addition to optical in-
homogeneity, each of the LES scenes also has characteris-
tically different microphysical properties. The average value
of r.(VW) of each scene varies, in part because of the initial
background cloud condensation nuclei (CCN) in each partic-
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ular case but also because of cloud top height variability. In
these LES cases v, is spatially anticorrelated with t and or-
ganized in a cellular structure — regions with higher t tend to
have smaller ve(VW), and regions with lower t tend to have
large ve(VW).

4 Results and analysis
4.1 Retrieval and LES property comparison

Before comparing the retrieval results from the two tech-
niques to one another, we must first carry out a comparison
of LES and retrieval properties to assess and understand the
differences between the retrieval results and the original LES
cloud fields at the native 50 m spatial resolution. This is a
necessary sanity check that will help understand the accuracy
and uncertainty of our retrieval routines. More importantly,
this study will help to interpret the retrievals based on homo-
geneous cloud assumption when the LES cloud fields have
naturally inhomogeneous vertical profiles. Note that the re-
trievals compared throughout the following sections are com-
pared for all combinations of viewing and solar geometries
indicated in Sect. 3.

The bispectral retrieval comparison to LES properties in
Fig. 3 depicts joint histograms of r. and t retrievals using
both the 2.13 and 3.75 pm bands against the reference values
derived from the LES fields, re(VW), ve(VW), and 7 gs. It is
important to note that these joint histograms are presented as
the logarithmic percent of the population, to emphasize de-
viations from the one-to-one line. Also, the mean regression
biases reported throughout this study are stated relative to the
plotted axes as pbias = (y — x) and wjbias| = ([ly —x|l) (i.e., x
and y denoting x and y axes). The two bispectral . retrievals,
7e(2.13 um) and r.(3.75 um), are in agreement with the LES
ground truth (Fig. 3a and b) with good correlations, both ex-
ceeding 0.95. The biases between these two retrievals and the
LES properties differ slightly. Compared to the LES, both r.
retrievals have relatively small sub-micron mean biases, and
the mean absolute biases are also sub-micron. Additionally,
it is important to note a limitation of this population: none of
the LES scenes in this study have a mean cloud top r. near
10 um. To examine the two bispectral 7 retrievals, 7(2.13 um)
and 7(3.75 um) in Fig. 3c and d, we compare them in terms of
percent differences, because the regression is so highly cor-
related (R >0.99). A slight systematically high bias on the
order of 2-5 % exists. The origin of this high bias is likely as-
sociated with deviations of the droplet size distribution from
the assumed gamma distribution form. The LES size distri-
butions sometimes exhibit longer large-droplet tails than the
assumed form. As explained earlier in Sect. 2.2, the bispec-
tral method suffers from a reduction of retrieval sensitivity
when clouds are optically thin. Therefore, if we sample only
LES columns that are optically thick (7 >3), a substantial
improvement in the regression correlations of the two 7, re-
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Table 1. Mean values (1) and standard deviations (o, in parentheses) of various optical (t and Hy) and microphysical properties (re(VW)
and ve(VW)) of the LES scenes examined in this study. Note that vertically weighted properties are listed for the polarimetric vertical
weighting function and H, for nadir-viewing 0.865 pm reflectance. Cloudy pixels is defined using a threshold of 7y g5 >0.1.

LES case CCN Scene T re(VW) ve(VW)  Hy (800 m)
concentration cloud (unitless) (um) (unitless) (unitless)

(no. cm73) fraction
DYCOMS-II 60 0.998 17.95(6.22) 15.52(1.00) 0.071 (0.11)  0.13 (0.10)
ATEX Clean 40 0.941 7.90 (8.02) 16.93 (2.62) 0.16 (0.12)  0.42(0.17)
ATEX Poll. 600 0.985 17.48 (14.71) 7.29(0.91) 0.13(0.068)  0.24 (0.13)

trievals (Fig. 3e and f) is achieved. While not all retrievals
in the 7 <3 population are biased, the majority of extreme
retrieval bias outliers belong to this thin-cloud population.
Even after this sub-selection of the data some outliers still
remain. In particular, a small population of both r¢(2.13 um)
and r¢(3.75 um) retrievals have biases exceeding r.(VW) by
as much as 20 um. The cause of these outliers and some other
differences between the retrievals and LES fields will be dis-
cussed in detail in Sect. 4.3.

The polarimetric retrieval comparison to LES properties
in Fig. 4 depicts comparisons of the polarimetric retrievals,
re(pol), ve(pol), and t(pol). The re(pol) retrieval compares
very well to re(VW) (Fig. 4a), with a regression correlation
exceeding 0.98 and a mean bias of less than 0.1 um. The qual-
ity of this retrieval comparison to LES properties also further
supports the single-scattering definition of r.(VW) for the
polarimetric retrieval. In contrast, the polarimetric retrieval
of ve(pol) reveals a regression against ve(VW) (Fig. 4c) that
does not perform quite as well. In this case the regression
correlation is much weaker (R =0.71) with a mean bias of
—0.011. While the mean bias is on the order of the ve LUT
grid spacing, it is clear that the regression correlation is poor
because of a systematic low bias for ve(VW) larger than
about 0.15. It should also be noted that the increased con-
centration of ve(pol) retrievals at ve =0.3 is a result of the
boundaries of the retrieval space, ve =[0.01, 0.3], the upper
limit of which is a consequence of the gamma distribution of
Hansen and Travis (1974) becoming monotonic for ve > 0.3.
Comparing only the population with v.(VW) <0.15 (not
shown here) results in an improved correlation of R = 0.81
with negligible mean bias. The v retrieval quality also de-
pends on the assumption that LES droplet size distributions
are accurately described using a single-mode gamma distri-
bution. The DSDs in the LES sometimes deviate significantly
from this assumption. In the context of the parametric polari-
metric retrieval used in this study this is difficult to remedy
or address. However, a different polarimetric retrieval — the
RFT, introduced in Alexandrov et al. (2012a) — offers the
possibility of retrieving an arbitrary droplet size distribution
shape. The final retrieval product, t(pol) (Fig. 4e), indicates
that a more accurate a priori r. and v, estimate has little im-
pact on the retrieval of 7. As explained earlier in Sect. 2.2, the
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polarimetric method suffers a reduction of sensitivity when
the DSD is broad, a finding that is consistent with previ-
ous work (Alexandrov et al., 2012b). This explains, for the
re(pol) retrieval, why limiting the regression population to
LES columns with ve(VW) <0.15 in Fig. 4b increases the
correlation and decreases the absolute bias. This appears to
be an indication of sensitivity to degradation of the supernu-
merary bow features for large v, features that are necessary
for reliable r.(pol) and ve(pol) retrievals.

For ve(pol) we find that, by sampling LES columns that are
optically thick (t> 3), there is moderate improvement in the
correlation and reduced biases (Fig. 4d). This improvement
stems from the correlation between the population of opti-
cally thin clouds and high ve(VW) (Fig. 4f) that are found
near cloud edges in the LES scenes. It should be noted that
an increased T does not implicitly lead to better polarimet-
ric retrievals, but here it is observed to be a consequence of
the aforementioned correlated relationship between DSD and
optical properties.

4.2 Sensitivity to measurement uncertainty

The measurement uncertainties of total and polarized re-
flectances differ, leading one to expect that bispectral and
polarimetric retrievals may have different sensitivities to un-
certainty. Their relationships to uncertainty are further com-
plicated by differences in retrieval approaches, namely inter-
polating two independent uncertain observations in a LUT
(bispectral) or curve fitting through numerous observations
that are each independently uncertain (polarimetric). Tar-
geted uncertainties for cloud and aerosol remote sensing
are § DOLP=0.5% in degree of linear polarization and
81 =3 % in total reflectance (Knobelspiesse et al., 2012).
A simple propagation of uncertainty analysis yields a polar-
ized reflectance uncertainty of § Q0 =2.5 % (in the principal
plane). Using these uncertainties as a starting point, we can
perturb the LES reflectances with uncorrelated random noise
and perform retrievals that we can then compare to the orig-
inal unperturbed retrievals. Note that, while the focus here
is on uncorrelated randomly distributed noise, other sources
of observational uncertainty exist and would need to be ac-
counted for in the context of a specific instrument’s uncer-
tainty model. As the properties of particular instruments are
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Figure 3. Joint histogram regressions of re and t in all LES cases comparing the bispectral retrievals to the LES cloud microphysical
properties. (a) and (b) are regressions of the bispectral r¢(2.13 um) and r¢(3.75 um) retrievals against the physical analogue re(VW). (¢) and
(d) are regressions of the bispectral (2.13 um) and 7(3.75 um) retrievals against the physical T (LES). (e) and (f) display the regression of the
bispectral r¢(2.13 um) and r¢(3.75 um) retrievals for only optically thick pixels (z >3). Note that in each panel the correlation is quantified
with a linear correlation coefficient (R), and the black and white contours encompass 66 and 95 % of the population, respectively.

not the focus of this study, we will focus on this more general
uncertainty analysis.

For the bispectral retrieval, a randomly distributed re-
flectance perturbation within 3 % was added to each LES
reflectance. A histogram of the percent bias of bispectral re-
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trievals of re induced by the addition of the reflectance uncer-
tainty is shown in Fig. 5a. The mean and standard deviation
of these bias distributions are stated, allowing us to interpret
the results. First, the introduction of uncertainty has very lit-
tle impact on the mean bias of bispectral r. retrievals (on
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Figure 4. Joint histogram regressions of re, ve, and 7 in all LES cases comparing the polarimetric retrievals to the LES cloud microphysical
properties. (a) depicts the regression of the polarimetric re(pol) retrieval against the physical analogue re(VW), while (b) is sub-selection of
the same regression for low ve. (¢) depicts the regression of the polarimetric ve(pol) retrieval against the physical analogue ve(VW), while
(d) is a sub-selection of the same regression for thick clouds (z > 3). (e) depicts the regression of the polarimetric 7(pol) retrieval against the
physical analogue t(LES), while (f) is sub-selection of the same regression for low ve. Note that in each panel the correlation is quantified
with a linear correlation coefficient (R), and the black and white contours encompass 66 and 95 % of the population, respectively.

retrievals, respectively. Together these two results indicate
that biases associated with measurement uncertainty will not
be systematic, with absolute variability on the order of 1 um

the order of 0.1 %). Second, the introduction of uncertainty
results in a broad distribution of r, retrieval biases with stan-
dard deviations of 5.44 and 4.02 % for the 2.13 and 3.75 um
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or less for droplet sizes below 20 um (the most prevalent pop-
ulation in this LES study). The impact of observational un-
certainty on all of the t retrievals is the focus of Fig. 5b. The
two bispectral retrievals, t(2.13 um) and 7(3.75), each have
very minimal mean biases of 0.1 %. However, like the biases
for the effective radius retrievals, the distribution of retrieval
bias is broadened to standard deviations of 8.2 and 5.6 % for
7(2.13 um) and t(3.75), respectively. The polarimetric t(pol)
retrieval on the other hand, being methodically quite similar
to the bispectral retrievals, exhibits a small systematic low
bias of about —2.43 % as shown in Fig. 5b. The origin of this
systematic bias is a known characteristic of single-band opti-
cal thickness retrievals and is clearly demonstrated in Fig. 1
of Marshak et al. (2006). The convexity of a single-band LUT
curve produces low-biased retrievals for symmetrically dis-
tributed (or averaged) reflectances. The bias distribution also
has a smaller variability (3.8 %) than the two bispectral re-
trievals, likely because the uncertainty in the SWIR/MWIR
band also (weakly) influences the bispectral t bias distribu-
tions.

The consequences of measurement uncertainty are
markedly different for the polarimetric retrieval. This is a re-
sult of the polarimetric retrieval being a search for a similar
curve in the phase function library, making the deviations in
the magnitude of observations in any one angle less impor-
tant when searching for the optimal curve — and therefore
discrete r. and ve combination. The discretely binned na-
ture of the polarimetric retrieval makes description of bias
distributions like the ones in Fig. 5 problematic. One way
to describe how uncertainty in polarized reflectances influ-
ences polarimetric retrievals is to describe the population of
retrievals that are unchanged and the population of retrievals
that changed. After the introduction of random noise, 88.1 %
of the polarimetric r.(pol) retrievals were unbiased, with
9.1 % biased high by one grid point (+0.25 um) and 2.7 %
biased low by one grid point (—0.25 um). All together, these
three populations accounted for the vast majority (99.9 %) of
retrieval outcomes. The percent bias of the r.(pol) retrieval
had a mean of 0.06 % and a standard deviation of 0.78 %.
These results agree with previous studies, for example the
finding of Shang et al. (2015) indicating that the POLDER
retrieval performed well as long as reflectance uncertainty
was less than 10 %. It should be noted, however, that the sen-
sitivity to uncertainty is also tied to the number of angular
measurements available and the properties of the droplet size
distribution. The polarimetric ve(pol) retrievals behaved sim-
ilarly, with 85.2 % of all retrievals being unaffected, 12.7 %
biased high by one grid point (4-0.01), and 1.9 % biased low
by one grid point (—0.01). Again, these three populations
account for the vast majority of (99.9 %) of retrieval out-
comes. The percent bias of the ve(pol) retrieval had a mean
of 1.14 %, consistent with a 0.01 bias and a standard devia-
tion of 22.6 %. The greater tendency toward large biases for
the effective variance is likely due to smoothing of polarized
reflectance curves after the addition of uncertainty. The large
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majority of biases in the polarimetric retrieval of v are com-
ing from the population of ve near 0.1-0.15, where the su-
pernumerary bow peaks are significantly eroded, and small
shifts in the magnitude of reflectances at angles near these
peaks could easily shift the retrieval to the next grid point.

Overall, the lack of strong systematic biases associated
with uncertainty in the case of either retrieval supports an ap-
proach of neglecting the measurement uncertainty in further
analyses. Of course, this requires acknowledging that biases
that are below 8r. =5, dve =10, or §t =7 % in either re-
trieval are probably not as important because they likely are
not detectable due to observational uncertainty.

4.3 Retrieval comparison at high resolution

In practice, most observational studies do not have access
to the underlying cloud properties with which to compare,
so instead different instruments and techniques are often
compared to one another. At the native spatial resolution
of the LES (50 m) a direct intercomparison of polarimetric
and bispectral retrieval techniques is possible, providing an
opportunity to diagnose different sources of bias. The joint
histograms of r, retrievals in Fig. 6 compare the two bis-
pectral retrievals, r¢(2.13 um) and 7.(3.75 um), to the po-
larimetric retrieval, re(pol), for all LES cases and obser-
vation geometries®. The regressions for the comparison of
both r(2.13 um) (Fig. 6a) and r¢(3.75 um) (panel b) indi-
cate high correlation (R ~0.95) and have relatively small
mean biases of less than a micron. A couple of notable
features are evident in these regressions. (1) The sign of
the mean bias appears to be sensitive to the SWIR/MWIR
band selection due to vertical weighting differences, result-
ing in re(2.13 pum) <re(pol) <re(3.75 um). (2) There are nu-
merous statistical outliers with small r¢(pol)~ 5-9 um but
broadly distributed r.(2.13 um) or r¢(3.75 um). One way to
understand these features is to constrain the data set to LES
columns where both retrieval techniques yield reliable re-
sults. As discussed previously, both the bispectral and polari-
metric retrievals are sensitive to biases for thin clouds (7 < 3),
and the polarimetric retrieval is sensitive to biases for broad
droplet size distributions (ve >0.15). Based on these crite-
ria (r >3 and ve <0.15), the constrained joint histograms
(Fig. 6¢ and d) feature much tighter regression relationships
(R ~0.99), and reduced mean absolute biases are observed.
These filters indicate that the poorly correlated population
corresponds to situations in which both retrievals are ex-
pected to suffer from significant biases. The retrieval regres-
sion can be further improved if the bispectral retrieval is ar-
tificially provided with more complete information about the
shape of the droplet size distribution. Providing the ve(pol)

3Note that ~ 1 % of pixels in the LES retrieval data correspond
to a “failed” bispectral retrieval due to falling outside of the LUT
space. These pixels are omitted from the intercomparison. Different
reasons for bispectral retrieval failure are discussed in Cho et al.
(2015).
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Figure 5. Histograms of the percent retrieval bias of retrievals based on perturbed reflectances stated relative to unperturbed retrievals.
(a) displays retrieval biases for the bispectral re retrieval. (b) displays retrieval biases for the bispectral and polarimetric t retrievals. Refer
to the text for more information about the polarimetric re and ve retrieval biases.

retrieval as an a priori assumption for the bispectral LUT
can demonstrate the sensitivity of the bispectral r. retrievals
to the ve =0.1 assumption. This serves as a test of how
collocated bispectral and polarimetric retrievals might assist
one another. To create these new retrieval results, we cre-
ated a bispectral retrieval LUT for different values of v, and
then selected a different LUT for each pixel depending on
the ve(pol) retrieval. The new coupled r¢(2.13 um) retrievals
(Fig. 6e) are largely unchanged from the ve =0.1 results,
although a slight increase in the two biases indicates that
ve =0.1 was both an appropriate and sufficient assumption
for the 7¢(2.13 um) retrieval. In contrast, the r.(3.75 pm) re-
trieval (Fig. 6f) is shown to benefit from this additional a pri-
ori information. The coupled 3.75 pum result has an increased
correlation, an order-of-magnitude-smaller bias (0.008 um),
and an absolute bias that is half as large as the original com-
parison (0.24 um). The differences between the two SWIR
band retrievals can be explained in two ways. Firstly, the ver-
tically weighted DSD of the 2.13 pm SWIR band might result
in a broader DSD (i.e., a larger ve) compared to the 3.75 um
SWIR band, due simply to deeper penetration into cloud.
This could provide one explanation for why the r¢(2.13 um)
retrieval might improve with the ve =0.1 assumption. Al-
ternatively, the R(2.13 um) reflectance might simply be less
sensitive to the broader DSD shape than the R(3.75 um) re-
flectance. Overall, these results demonstrate a feature well
known to the cloud remote-sensing community: the bispec-
tral retrieval of 7. is not particularly sensitive to v. (Naka-
jima and King, 1990a). Indeed, comparison of the coupled
bispectral retrieval of re to the polarimetric retrieval of 7,
confirms that the advantage of retrieving v, changes the bis-
pectral retrieval of r. by less than a micron, so it is appro-
priate to neglect this level of detail of the DSD for bispec-
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tral retrieval purposes. In the context of measurement uncer-
tainty, as discussed in Sect. 4.2, this effect would be below
retrieval uncertainty. Overall, this demonstrates that when
the two retrievals are compared on equal footing they are
very nearly equivalent, with only slight differences leading
to re(2.13 pm) <7¢(3.75 um) < re(pol) as would be expected
based on an increasing droplet size vertical profile and verti-
cal weighting.

The origin of the broadly distributed high-biased
bispectral retrievals in the small-droplet-size regime
(re(pol)~5um) stems from the ATEX polluted case. A
close examination of this case reveals that there are no
bispectral retrievals below 5pum, despite approximately
3.5% of the scene being characterized by ro(VW) <5 um?®.
This feature is a consequence of the bispectral LUT state
space”, which spans a r. range of 5-30 um. In contrast, the
polarimetric retrieval space spans 1-30 um. The differences
between these two LUT spaces is not so much a matter of
decision-making but is more reflective of complexities of the
bispectral retrieval for small .. To demonstrate this point,
panels a and c of Fig. 7 depict the cloud reflectances from the
ATEX polluted case within the respective bispectral LUT. It
is obvious that the black isolines for T and r. increasingly
overlap with the standard LUT space as 7 decreases. In
this region of the state space, there are multiple solutions
for a single reflectance pair; one solution is representative
of a small r. (<5um, extended LUT), while the other
indicates a much larger r. (> 5pum, standard LUT). There

4Additionally, ~ 1% of the cloudy pixels in this scene exhibit
values below 4 pm.

SNote that the MODIS LUT extends its range down to 4 pm,
and in situations with multiple solutions the larger retrieval value is
selected.

Atmos. Meas. Tech., 11, 3689-3715, 2018



3702 D. J. Miller et al.: Comparisons of bispectral and polarimetric cloud retrievals using LES

(a) 30 Joint histogram (b) a0 Joint histogram
R =0.95464 - R =0.95161 -0.5
25 Hpas =0.17233 25¢ iy, =-0.22279 1
Hipias| = 0466167 Hpjas| = 071179
: .. -1
20 20 1 m
€
3
) = -1.5 8
8 15 8 15 5
L0 o0 X
=3
- [o2}
10 10 2 8
5 51 25
oL I I . 0 I I . . 3
0 5 10 15 20 25 30 0 5 10 15 20 25 30
re(2. 13pm) re(3.75um)
() Joint histogram (r, >3 & v (VW)<=0.15) () Joint histogram (r, >3 & v_(VW)<=0.15)
30 T T T 7 30 T T T T
R =0.99151 R=0.99104 -0.5
25 Hyias = 0.21551 1 251 Hygs =-0.31414 1
Hipias] = 0-37337 Hipias| = 0-49779
-1
20 20 - 1 2
=
=}
= —_ -1.5 8
g1 8 15 ] g
L0 \:m <
S
10 10+ 1 2 g
5 5 -2.5
ol | | i ok’ | . . . -3
0 5 10 15 20 25 30 0 5 10 15 20 25 30
re(2.13um) re(3.75;¢m)
(e) Joint histogram (r, >3 & v_(VW)<=0.15) (® Joint histogram (r, >3 & v_(VW)<=0.15)
30 : 4 . 30 : . d .
R = 0.99099 R=0.993 05
25 s = 0-32835 25  fips =0.0021766 1
Hpias| = 045677 1 Hpias = 024856 ]
-1
20 20 o
f=
3
— - -1.5 8
& 15 g 15 J %5
L0 L0 S
S
N [o2}
10 10+ 1 i
5 5F 1 -2.5
O ’ i i N O - L L L 1 _3
0 5 10 15 20 25 30 0 5 10 15 20 25 30
re(2.13;1,m), coupled to ve(pol.) re(3.75um), coupled to ve(pol.)

Figure 6. Joint histogram regressions of re retrievals for all LES cases comparing the bispectral and polarimetric techniques. (a) and (b) dis-
play the unfiltered regressions of re(pol) at 0.865 um wavelength against the r¢(2.13 um) and re(3.75 um) bispectral retrievals, respectively.
After introducing filters to these regressions to remove thin clouds (r <3) and broad droplet size distributions (ve >0.15) (¢ and d), the re-
trieval intercomparison improves. (e) and (f) each replicate the results from the previous selection criteria but additionally provide bispectral
retrieval in this regression with ve(pol) as an a priori for each retrieval. Note that in each panel the correlation is quantified with a linear
correlation coefficient (R), and the black and white contours encompass 66 and 95 % of the population, respectively.
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Figure 7. (a) and (c) depict the standard bispectral LUT (light gray dashed lines) for both SWIR bands with the scattered reflectance points for
the ATEX polluted LES case plotted on top. The scatterplot is colored by the bias between the bispectral retrieval and the physical reference
(re(bispectral)—re (VW)). Spatial maps of this bias are shown for context in (b) and (d). Note that some points are colored in black to indicate
retrieval failure due to falling outside the LUT space. In addition to the standard LUT, an extended LUT including droplet sizes from 2 to
4 um is included (black dashed lines), revealing an overlapping region of the two LUTs for smaller t referred to as the “multiple-solution

space”.

is also a modest impact on 7, but due to the curvature of
the LUT this impact is less severe. The overlapping region
between the standard and extended LUT is referred to as the
“multiple-solution space”, and the amount of LUT overlap
is determined by both the observation geometry and the
selected spectral bands. Depending on the optical thickness,
the larger re retrieval may be significantly larger, because
the extended LUT isolines cross numerous larger r. isolines
in the standard LUT. The associated bispectral retrieval
bias, shown in Fig. 7b and d, highlights the conclusion
that for optically thick clouds the bispectral r. retrievals
exhibit only moderate retrieval biases on the order of =1 pm.
However, for very thin clouds (near cloud edge) the retrieval
bias can increase significantly. For some of these thinner
clouds the retrievals also fall within the multiple-solution
space, so it is possible to attribute the very large biases to
the presence of ambiguous retrieval results. Furthermore,
the multiple-solution space also provides an additional
explanation for why the removal of optically thin (7 <3)
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observations significantly improved the bispectral retrieval
comparisons.

In contrast to the intercomparison of r retrievals, the t re-
trieval intercomparison in Fig. 8 reveals very few differences
between the bispectral and polarimetric techniques. This is
not surprising, because the 7(pol) retrieval is simply an im-
plementation of the bispectral technique with additional con-
straints on r. and v, (as discussed in Sect. 2.2).

4.4 Sensitivity to unresolved spatial inhomogeneity

Unresolved spatial inhomogeneity influences the bispectral
and polarimetric cloud retrievals in very different ways. Even
for 100 % cloudy pixels these retrievals can exhibit sensitiv-
ity to sub-pixel inhomogeneity. This section focuses on the
ATEX cases because they exhibit a broader distribution of
H,, allowing us to highlight the impact of spatial inhomo-
geneity on retrievals. Spatial resolution and sub-pixel inho-
mogeneity index (H,) are inherently intertwined with one

Atmos. Meas. Tech., 11, 3689-3715, 2018
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Figure 9. Probability distributions of Hy for the combined ATEX
polluted and clean data sets at all coarsened spatial resolution (100,
200, 300, 400, 800 m).

another. This is demonstrated in Fig. 9, where the broaden-
ing and shifting of the distribution of H, for increasingly
coarsened spatial resolutions are clearly demonstrated using
data from both the ATEX clean and polluted cases. In light of
this relationship between resolution and inhomogeneity, the
inclusion of data from all spatial resolutions together broad-
ens our sampling of different inhomogeneity regimes. To that
end, Fig. 10 combines all of the coarse-spatial-resolution data
from the two ATEX cases into a single retrieval bias his-
togram. For the bispectral retrievals in Fig. 10a and b we
compare them to the polarimetric retrieval, resulting in his-
tograms that clearly show the two retrievals diverging from
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one another with increasing sub-pixel inhomogeneity, which
tends to result in larger biases. In contrast, the polarimetric
re(pol) retrieval in Fig. 10c does not appear to have a clear
systematic bias. The ve(pol) retrieval in Fig. 10d tells a more
complicated story: the median value of the bias is clearly
close to zero, but there is a tendency toward low-biased re-
trievals with increasing inhomogeneity. It should be noted
that the v.(VW) itself increases with increasing H,, which is
presumably a consequence of the anticorrelation between t
and ve(VW). This might explain why for large values of H,,
where the v.(VW)>0.15 population is more common, there
are more negative biases.

To further emphasize how unresolved inhomogeneity can
influence these two retrieval techniques, we will highlight
a particularly inhomogeneous pixel from the ATEX clean
case at the coarsest resolution (800 m). Focusing first on
the bispectral retrieval using the 2.13 um SWIR band, the
LUT scatterplot in Fig. 1la reveals that there is signif-
icant variability in the sub-pixel (i.e., 50m) VNIR re-
flectances, indicated by a large value of the sub-pixel in-
homogeneity index (H, =0.5637). In contrast to the vari-
ability of VNIR reflectances, the microphysical properties
are largely homogeneous in this 800 m pixel, indicated by
the narrow distribution of sub-pixel re(VW)som (color of
the points). The sub-pixel mean of (re(VW))som = 19.71 um
agrees well with the mean of both sub-pixel retrievals,
(re(2.13um))s50m = 18.73 um and (re(pol))50m = 18.92 um.
This combination of optical inhomogeneity and microphys-
ical homogeneity leads to an average reflectance (indicated
by the black star) for the 800 m pixel that falls signifi-
cantly below the r. =20 um isoline (i.e., the closest isoline
to the mean sub-pixel retrievals). Thus, the coarse-resolution
(800 m) reflectance results in an 800 m bispectral retrieval
with 7e(2.13 um)goom = 23.62 um, which is biased high by
~4um. This effect is attributable to the well-documented
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Figure 10. Joint histograms of retrieval biases (relative to each relevant vertically weighted LES property) with respect to H, for the
combined ATEX clean and polluted data sets at all observation geometries and including all coarsened spatial resolutions (100, 200, 300,
400, 800 m). The color bar indicates percent occurrence. (a) and (b) depict the difference between the two bispectral re retrievals and the
polarimetric retrieval, while (c) and (d) depict biases for the polarimetric re and ve retrieval against re(VW).

PPH bias induced by the curvature of the bispectral LUT with
respect to the optical thickness (Zhang and Platnick, 2011;
Zhang et al., 2012, 2016). The PPH bias has a stronger in-
fluence on the 2.13 um retrieval compared to the 3.75 pm re-
trieval (shown in Fig. 11b) because the curvature of the LUT
space is more pronounced.

The polarimetric retrieval has a fundamentally different re-
lationship to the unresolved sub-pixel inhomogeneity. This
can be demonstrated with the sub-pixel polarized reflectance
histogram in Fig. 11b. The reflectances in this figure have
been binned by scattering angle to create a distribution of
polarized reflectances for the 50 m sub-pixels within the se-
lected 800 m pixel footprint. Within the plot there are also
two curves, shifted in amplitude away from the histogram
for clarity, that display the mean 800 m multi-angular po-
larized reflectance and corresponding 800 m retrieved po-
larized phase function (with appropriate fitting coefficients).
Note that, while this histogram gives a sense of the variabil-
ity of the magnitude and scale of the polarized reflectances,
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what ultimately matters for the coarse-resolution polarimet-
ric retrieval is the relative shape of the 800 m averaged po-
larized reflectance curve. It is evident from this histogram
and these curves that the mean angular position of the su-
pernumerary bow does not shift, indicating that there is no
significant difference between re(pol)soom, (re(pol)som), and
(re(VW)som). This agrees with previous studies on the im-
pact of unresolved inhomogeneity on polarimetric re re-
trievals (Shang et al., 2015). In contrast, there is clear vari-
ability in the amplitude of sub-pixel polarized reflectances.
This variability owes itself to both optical (t) and microphys-
ical inhomogeneity (i.e., ve(VW)>0.15) within the coarse-
resolution pixel. For thin clouds (r <3) the supernumerary
bow amplitude is dependent on both t and v, (Alexandrov et
al., 2012b). With v, fixed, the polarized reflectance converges
towards an asymptotic maximum for optically thick clouds
(r = 3), a consequence of increasing depolarization due to
multiple scattering. Similarly, for a fixed 7, reflectances cor-
responding to v.(VW)>0.15 also produce decreased polar-
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Figure 11. (a) and (c) depict the bispectral LUTs and 50 m reflectances for the 2.13 and 3.75 um bispectral retrievals, respectively, for a
particularly inhomogeneous 800 m pixel. The scattered points correspond to 50 m reflectances, with color corresponding to re(VW), while
the black star corresponds to the 800 m reflectance pair (the average of the 50 m data). The polarimetric reflectance distribution histograms in
(b) and (d) address how the high-resolution (50 m) reflectance distribution influences the polarimetric retrieval at coarse resolution (800 m).
The two curves (plotted with a 0.02 reflectance shift for clarity) are the 800 m observed reflectance (black dashed curve) and the 800 m
retrieval (red solid curve). All of these figures include statistics on the high-resolution averages of physical properties and retrievals along

with their coarse-resolution counterparts for comparison.

ization in the primary and supernumerary bow features, as
discussed in Sect. 2. Each of these effects reduces sensitiv-
ity to the cloudbow features; thus unresolved variability in
T and v, could influence coarse-resolution retrievals. For ex-
ample, Shang et al. (2015) found that unresolved spatial in-
homogeneity of T and v, increased retrieval biases in ve(pol),
while they were not able to discern a trend in retrieval bi-
ases in their study. However, in our case study featured in
Fig. 11b we do not see a significant difference between
coarse (ve(pol)gpom) and fine-scale ({ve(pol)som)) retrievals,
but both retrievals are biased low relative to the mean LES
property ({(ve(VW)som)). This result was surprising, because
both fine- and coarse-resolution retrievals were biased simi-
larly. It appears as though coarse-resolution retrievals arrive
at the same answer as the fine-scale retrievals through differ-
ent processes. The average of fine-scale retrievals (that are
systematically biased low) and the retrieval based on the av-
erage of fine-scale reflectances (which are reduced for rea-
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sons discussed above) results in a similar retrieval outcome.
Unlike the bispectral retrieval, where retrievals differ from
one another at different resolutions, the polarimetric retrieval
seems to compare well to itself at both resolutions — even
when it might be biased relative to the underlying micro-
physics of the physical scene. To examine this further, we
performed polarimetric retrievals on sub-populations of the
50 m polarized reflectances within this 800 m pixel that omit-
ted either the ve(VW)>0.15 or t <3 from the population.
Removing these thin or broad droplet size distributions from
the high-resolution data set had little to no impact on either
the coarse-resolution re(pol) or ve(pol) retrieval. From these
results and the histogram in Fig. 10d it appears that the im-
pact of spatial resolution on ve(pol) retrievals is largely a con-
sequence of an unresolved anticorrelation between 7 and ve
rather than a feature directly related to spatial resolution.
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Figure 12. Angular-resolution sensitivity experiments examining polarimetric retrievals of re (a) and ve (b) for all LES scenes at the 800 m
spatial resolution. The color and size of scattered points denote the angular resolution of each retrieval. The gray dashed lines denote the £1

step in the LUT space of the polarimetric retrieval.

4.5 Sensitivity to angular resolution and sampling

The polarimetric retrieval requires high-resolution multi-
angular data to resolve the supernumerary bow features. To
test how angular resolution influences polarimetric retrievals,
we examined coarse-spatial-resolution (800 m) re(pol) re-
trievals at different angular resolutions. Each angular res-
olution (i.e., changing angular step size) was also convo-
luted with shifting angular sampling (i.e., changing the ini-
tial angle). This convolution is necessary in order to account
for all possible sets of scattering angle observations associ-
ated with each resolution. These coarse-resolution retrievals
were then compared to the original high-angular-resolution
retrieval. The results of this experiment (Fig. 12a) reveal that
coarsening angular resolution does not systematically bias
re(pol) retrievals, although angular resolutions exceeding 3°
do result in a marked increase in retrieval variability (i.e.,
a constant mean bias but increased absolute bias). In con-
trast, Fig. 12b demonstrates that angular resolutions exceed-
ing 3° lead to both high-biased ve(pol) and increased retrieval
variability. An explanation for the origin of the observed
degradation in retrieval accuracy above 3° angular resolution
is demonstrated in Fig. 13a. Two different polarized phase
functions with re =15um and v. =[0.03, 0.2] (solid and
dashed-dotted, respectively) are sampled at an angular reso-
lution of 3.5° (indicated by the gray vertical lines). This reso-
lution is coarser than the spacing between the supernumerary
bow features. As a consequence, this particular angular sam-
pling intersects these curves at nearly the same amplitudes.
This degeneracy yields a relatively low cost function during
the best-fit optimization step of the polarimetric curve-fitting
retrieval algorithm, making it possible to obtain an inaccu-
rate solution if this results in a cost-function minimum. The
lack of observed differences between these two curves re-
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sults in a lack of v, information, which could be exacerbated
by observational uncertainty. However, under different angu-
lar sampling conditions, e.g., shifting the initial angle by a
few degrees to the right, the supernumerary bow peaks of the
low v curve would be sampled and the similarity between
the observations of these two curves would vanish. This ex-
ample highlights an important feature of multi-angular po-
larimetry: observations at poor angular resolutions can suffer
from increased biases depending on whether or not impor-
tant angles are sampled. Generalizing this result requires de-
termining the angular spacing of the supernumerary bow fea-
tures for other re. Pursuing this, we find that decreasing cloud
droplet size widens and dilates supernumerary bow features,
making it easier to resolve supernumerary bow features at
coarse angular resolution. The peak-to-peak distance of the
supernumerary bow oscillations can be treated as the Nyquist
frequency, or in this case Nyquist resolution. In signal anal-
ysis, a sampling resolution finer than the Nyquist frequency
is required to appropriately resolve features of an oscillatory
signal. The Nyquist angular resolution required for resolv-
ing the supernumerary bow oscillations changes with both
re and A according to the behavior illustrated in Fig. 13b.
This analysis indicates that multi-angular observations in a
shorter-wavelength spectral band would require finer angu-
lar resolutions. The Nyquist angular resolution for A =0.865
and re = 15um is 3°, providing an explanation for the in-
creased variability in re(pol) and ve(pol) LES retrievals at
angular resolutions coarser than the Nyquist limit.

5 Summary and discussion
The analysis in this study, which features comparisons of

fundamentally different passive cloud property retrieval tech-
niques, is facilitated by comparisons to LES cloud fields used

Atmos. Meas. Tech., 11, 3689-3715, 2018
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Figure 13. (a) features the polarized phase functions re = 15 (red) at ve =0.03 (solid) and ve = 0.2 (dashed). Gray dashed lines and circles
indicate a 3.4° observation sampling of the phase functions. The Nyquist resolution is obtained by measuring the peak-to-peak distance of

the supernumerary bow oscillations and dividing that distance in half.

The Nyquist resolution changes as a function of e and A as shown in

panel b, where the gray vertical line highlights the Nyquist resolutions required for the re =15 case.

Table 2. The influence of unresolved microphysical inhomogeneity on polarimetric retrievals is explored in Shang et al. (2015). Their results
are replicated here and compared to the arithmetic mean re ({re)), and the mathematical aggregation results (r/ and vé) defined in Egs. (7)

and (8).
Sub-scale Arithmetic Polarimetric Aggregation
size distribution mixture mean retrieval rules
e Ve ‘ (re) ‘ re(pol)  ve(pol) re’ v
[5,10] [0.01, 0.01] 7.5 8.0 0.10 9.00  0.060
[5, 15] [0.01, 0.01] 10.0 14.5 0.01 | 14.00 0.056
[5,20] [0.01, 0.01] 12.5 19.0 0.01 | 19.12 0.044
[10, 15] [0.01, 0.01] 12.5 13.0 0.05 | 13.46 0.040
[10, 20] [0.01, 0.01] 15.0 16.5 0.10 | 18.00 0.060
[15,20] [0.01, 0.01] 17.5 18.0 0.01 | 1820 0.028
[5, 10, 15] [0.01, 0.01, 0.01] 10.0 12.0 0.10 | 12.85 0.069
[5, 10, 20] [0.01, 0.01, 0.01] 11.7 14.0 0.10 | 17.38 0.087
[5, 15, 20] [0.01, 0.01, 0.01] 133 17.5 0.02 | 17.69 0.049
[10, 15,20] [0.01,0.01, 0.01] 15.0 16.0 0.10 | 17.07 0.055

as input to the retrievals. At the native LES resolution (50 m)
there are promising results for both the bispectral and polari-
metric retrievals (with 1-D radiative transfer assumptions).
For the bispectral retrieval, the LES comparison shows sig-
nificant biases for retrievals of very thin clouds, as well as
only small differences between the vertically weighted cloud
properties in each of the two SWIR/MWIR bands (2.13 and
3.75 um). Meanwhile, for the polarimetric retrieval, the com-
parison demonstrates that the re(pol) retrieval agrees well
with the vertically weighted in situ properties of each LES
scene. However, the ve(pol) retrieval exhibits persistent low
biases due to a lack of retrieval sensitivity to very broad
droplet size distributions (i.e., v.(VW)>0.15). The optical
thickness retrievals from both methods are effectively the
same, with the caveat that the polarimetric technique per-
forms the re(pol) retrieval as an a priori constraint on the t

Atmos. Meas. Tech., 11, 3689-3715, 2018

retrieval space. Regarding t, both bispectral and polarimetric
retrievals were found to have a small systematically high bias
on the order of 2-5 %.

The uncertainty in observed total and polarized re-
flectances was found to introduce only weak systematic bi-
ases in bispectral or polarimetric r, retrievals (0.1 % or less).
Similarly, the bispectral t retrievals were also not system-
atically biased. In contrast, total reflectance uncertainty did
produce a slight systematic bias of —2.43 % in the polari-
metric t(pol) retrieval that can be linked to the convexity
of the single-band LUT used to perform the retrieval. This
sort of bias could perhaps be accounted for by introducing
a Taylor expansion correction similar to the one discussed
in Zhang et al. (2016) in the context of unresolved inhomo-
geneity. Beyond these systematic biases, we found that the
induced uncertainties in the bispectral retrievals were §r. =5

www.atmos-meas-tech.net/11/3689/2018/
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or 6t =7 %. The influence of polarimetric retrieval is likely
sensitive the polarimetric LUT grid spacing, but here we
found uncertainties that were less than the bispectral retrieval
of re, dre(pol) =1 to 4 %, and Sve(pol) = 10 to 20 %. In the
context of the rest of our comparison studies, the lack of sys-
tematic biases and relatively small uncertainties allowed us
to discuss retrieval behavior in the absence of uncertainty.

The retrieval intercomparison of polarimetric and bispec-
tral retrievals in this study demonstrates that both techniques
yield very similar results, especially when the most reliable
populations of cloud properties are selected for each method
(r >3 and v, around 0.1). While the physical principles and
measurement requirements are vastly different, both retrieval
techniques seem to be able to capture similar information
about r. and 7. These results agree with high-resolution air-
borne observations obtained during the PODEX and ORA-
CLES field campaigns, where RSP and AMS microphysical
retrievals are compared (Alexandrov et al., 2015; Knobel-
spiesse et al., 2017). These high-spatial-resolution field cam-
paign observations indicate that the two retrieval techniques
agree well to within the tolerances also found in the present
study. The bispectral r, retrievals are found to be moderately
sensitive to ve in the 3.75 um band, and less so in the less
absorptive and more deeply penetrating 2.13 um band. Cou-
pling the retrieved ve(pol) to the bispectral re (3.75 um) re-
trieval led to slight improvements in the r¢(pol) and r.(VW)
comparison. It should be noted that for MODIS cloud prod-
ucts the bias due to the v, = 0.1 assumption does not substan-
tially impact the 7, retrieval compared to other sources of bias
(i.e., cloud inhomogeneity or 3-D radiative effects). In addi-
tion, the MODIS Collection 6 cloud product includes uncer-
tainty estimates associated with the v, assumption. The in-
tercomparison of the bispectral and polarimetric t retrievals
indicates that the two produce very similar results. This was
to be expected, as the polarimetric technique also uses a bis-
pectral LUT approach to derive 7. When the results from the
two methods diverge, the observations tend to be related to
the thin-cloud regimes.

The presence of a multiple-solution space in the bispec-
tral LUTs, where small droplet sizes (r. <5) have the same
reflectance as larger droplets, was shown to induce numer-
ous outliers, resulting in a significant high bias in the bis-
pectral retrievals for both r. and (to a lesser extent) t. This
multiple-solution space likewise impacts the MODIS op-
erational products, since the bispectral LUTs used in the
MODIS Collection 6 cloud products include theoretical re
solutions as low as 4 um. However, for retrievals with mul-
tiple LUT solutions the MODIS product only reports the
larger r. value, leading to a systematic bias if the observed
cloud really includes a population of small droplets. As a
consequence, for thin clouds with small droplet sizes one
can expect the comparison of polarimetric and bispectral re-
trievals to disagree. This strong high bias for small r, re-
trievals provides a plausible explanation for the large dis-
crepancies observed in the small-droplet-size regime in the

www.atmos-meas-tech.net/11/3689/2018/

intercomparison of MODIS and POLDER retrievals (Bréon
and Doutriaux-Boucher, 2005). Absent a solution to this is-
sue, future intercomparisons or combined climatological data
sets should be limited to retrievals of re(pol) exceeding 5—
7 um (depending on the respective bispectral LUT multiple-
solution-space properties).

At the coarse spatial resolutions of most satellite instru-
ments, cloud inhomogeneity can significantly impact re-
trievals. In the context of this study we find that the in-
fluence of unresolved spatial inhomogeneity is a dominant
source of bias between the polarimetric and bispectral 7, re-
trievals. In this study we found that even for 100 % cloudy
pixels (at a coarse 800 m horizontal resolution) the influence
of the PPH bias is significant, with the average r. bias ex-
ceeding 1 um in the most inhomogeneous LES scene (ATEX
clean). Based on these results we still expect that the overall
systematic bias observed in the MODIS and POLDER in-
tercomparison of moderate droplet size regimes is in large
part attributable to the influence of this PPH bias (Bréon and
Doutriaux-Boucher, 2005). Recently, great effort has been
made to account for the influence of the PPH bias on bis-
pectral MODIS retrievals. The 2-D Taylor expansion tech-
nique implemented by Zhang et al. (2016) offers the possibil-
ity of quantifying (and potentially correcting for) the impact
of PPH bias on bispectral retrievals. This approach requires
high-spatial-resolution measurements in at least one spectral
band to obtain the sub-pixel reflectance variability, which is
used to determine corrections for the bias of r and 7. In addi-
tion to PPH bias, 3-D radiative effects are also influenced by
spatial resolution. The focus on 1-D radiative transfer in this
study leaves questions for future studies regarding the influ-
ence of these 3-D radiative effects. Future work will need to
identify the relative differences between 3-D radiative effects
on total and polarized reflectances and retrievals.

Sufficient angular resolution is one of the more impor-
tant requirements of the polarimetric retrieval technique. We
find that resolving the multi-angular polarized reflectance at
a resolution coarser than the Nyquist angular resolution of
the supernumerary bow results in greater uncertainty (r.(pol)
and ve(pol)) and biased (ve(pol)) polarimetric retrievals. The
required angular resolution is dependent both on droplet
size and wavelength. Future cloud polarimetric instrumenta-
tion should consider these angular-resolution requirements.
While we have not explicitly tested the so-called “super-
pixel” approach implemented for POLDER retrievals, these
coarse-spatial- and coarse-angular-resolution studies lead to
some anticipated biases induced by this technique. We would
expect such an approach to further bias ve(pol) retrievals low,
due to the lack of sensitivity to unresolved high-ve popula-
tions. In addition, this current study indicates that r.(pol) re-
trieval variance might increase, but the mean bias might not
increase significantly. However, if there is significant corre-
lation between the unresolved r. and ve populations within
an observation footprint, the mean r, bias would be expected
to suffer.

Atmos. Meas. Tech., 11, 3689-3715, 2018
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Ultimately, the utility of any optical property data set de-
pends on the science questions for which the data set will
be used. These questions may focus on the determination of
domain-averaged water mass, radiative flux calculations, or
microphysical process studies on a range of scales. The ap-
propriate retrieval may differ for each of these science ques-
tions, and as a consequence the comparison of the bispectral
and polarimetric retrievals discussed here ought to be viewed
through the lens of a particular application.

Atmos. Meas. Tech., 11, 3689-3715, 2018
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Appendix A

We often treat the droplet size distribution observed by
in situ instruments (on the order of meters) as relatable to
the inferred size distribution properties obtained by remote-
sensing retrievals (on the order of kilometers). This math-
ematical analysis addresses how resolution and scale influ-
ence the inferred cloud microphysical distribution. The mod-
ified gamma distribution not only suits observations of in situ
cloud droplet size distributions, but it also exhibits several
useful mathematical relationships:

<r2> =r2(ve—1)Que — 1)
<r3> =rd(we—1)Que — 1)
() =rd e =D Qe = D e+ 1. (A1)

From a retrieval perspective all droplet size distributions are
treated as gamma-distributed. There is a potential disconnect
here, from the perspective of scale analysis, when retrievals
at a 50m spatial resolution (our LES resolution) and re-
trievals at 1 km (MODIS retrieval resolution), or even 150 km
(POLDER retrieval resolution), each are being treated as
gamma-distributed. However, not all droplet microphysics
information is created equal; the droplet size distributions at
higher resolution (subscript i) influence the low-resolution
(subscript Ir) droplet size distributions. With high-resolution
information the different moments of the coarser-resolution
droplet size distribution should be able to be constructed
from the high-resolution microphysics. For a distribution
made up of the summation of gamma size distributions the
moments of the low-resolution distribution can be expressed
by the following relationship, because summation and inte-
gration are each linear operators:

k
(rn>lr :/rr" |:ZN1' (V’ Te,is ve,i)] dr
1
k k

=3 [ / PN (7 e Ve dr] =S [)]. A

i i
With this mathematical rule in mind, the values of r. and

ve for the low-resolution droplet size distribution can be ob-
tained by substitution into Egs. (2) and (3):

= = . (A3)

o S 402)
_ (r )lr<r >lr = _1. (A4)

(5r0)
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Henceforth, we will refer to the #, and v/ relationships in
Egs. (7) and (8) as microphysical “aggregation rules.” It
should be noted that these rules fundamentally treat the DSD
as gamma-distributed at all scales.

The microphysical aggregation rules allow for the expla-
nation of some features of the coarse polarimetric retrieval
experiments displayed in Shang et al. (2015). Referring to
the inhomogeneous polarimetric retrieval experiments in Ta-
ble 2 and Fig. 4 of their paper, we reproduced their results
and calculated the corresponding . and v, in our Table 2,
which contains the same retrieval examples and correspond-
ing r. and v results for the cases examined in their study.
There is a clear difference between the mean re or v, and
the polarimetric retrieval results. Using the microphysical ag-
gregation rules defined above, we derived that the appropri-
ate distribution properties, r, and v., are generally in closer
agreement with the polarimetric retrievals of re(pol). These
results offer a possible explanation as to why the polari-
metric retrieval does not agree with the average of the sub-
scale microphysics in the Shang et al. study. A couple of
things should be noted here: (1) when there is little variabil-
ity in the unresolved r. (e.g., re =[15, 20] um), the mean, re-
trieval, and estimated mixture are generally all in agreement
(e.g., (re) =17.5, re(pol) =18, and r, =18.2 pm). (2) When
large variability in the unresolved re (e.g., re =[5, 20]) is
present, both the retrieved and estimated mixture strongly fa-
vor the larger droplet effective radius (e.g., re(pol) =19 and
r, =19.12 pm). (3) Large variability in unresolved r, some-
times results in large differences between ve(pol) and v..
The last two points are likely a consequence of the resulting
coarse-resolution (multi-modal) distribution differing signif-
icantly from the gamma-distribution assumption stated pre-
viously.

Applying this analysis to the aggregation of LES scene mi-
crophysics will allow for the determination of how accurate
a spatial mean aggregation reflects the true coarse-resolution
microphysical parameters. We first assumed that all of the
highest-resolution vertically weighted size distributions can
be assumed to be appropriately characterized by a gamma
distribution with re = re(VW) and ve = ve(VW). We then ag-
gregated these LES microphysical properties at the 50 m na-
tive resolution to increasingly coarser resolutions (100, 200,
400, and 800 m), using both the mean and the aggregation
rules. We found that the differences between the two tech-
niques are negligible (Are ~0.01 um and Ave ~0.001) and
do not significantly vary with final resolution. Apparently,
the importance of the aggregation rules in the LES are far less
important than what we had found in the multiple-moment
cases tested in Shang et al. (2015). One clear difference be-
tween the these multiple moment cases and the LES was that
the toy models are reductive bimodal distributions, exhibiting
very large sub-scale microphysical inhomogeneity in re. This
non-physical variability is something that is not commonly
observed in the LES or in observational studies. To address
this, we performed a theoretical examination of how impor-
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tant the aggregation rules are for calculating the bias be-
tween simple average aggregation and mathematical rule ag-
gregation. In this experiment we established various distribu-
tions of unresolved DSDs with varying r. and v, populations.
These joint distributions of r. and v were used to test how
the variance (i.e., the unresolved variability) would influence
the average and mathematical-rule-aggregated results. This
test confirmed that large differences between the simple aver-
age and mathematical aggregation rules requires spatial inho-
mogeneity of microphysics much larger than those observed
in the LES or typical observational studies. Based on these
results we recommend that future studies focusing on the
effect of unresolved microphysical inhomogeneity on polar-
ized retrievals should consider more realistic inhomogeneity
conditions on both 7. and ve.

Atmos. Meas. Tech., 11, 3689-3715, 2018
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