https://ntrs.nasa.gov/search.jsp?R=20180004728 2019-08-31T15:42:25+00:00Z

A RADAR-BASED EVALUATION OF GPM RETRIEVALS OF THE RAIN DROP SIZE DISTRIBUTION

Walter A. Petersen, and Patrick N. Gatlin, Earth Science Branch, ST-11, NASA-MSFC David B. Wolff, NASA /GSFC-WFF, Ali Tokay, GSFC/UMBC, M. Grecu, GSFC/Morgan State U.

- Context
- Approach
- **DPR Issues in convection**
- Combined Different then GV *and* DPR
- Summary

Acknowledgements: L. P. D'Aderrio (U. Ferrara), T. Berendes (MSFC/UAH), D. Marks (WFF/SSAI), J. Pippitt (GSFC/SSAI), M. Wingo (MSFC/UAH)

Research Support: NASA Precipitation Measurement Mission Science Team, Global Precipitation Measurement mission

NASA

Context: DSD a fundamental GPM Core Observatory Science Requirement

GPM "Core" L1 Science Requirements

- DPR: *quantify rain rates* between 0.22 and 110 mm hr-1 and *demonstrate the detection of snowfall* at an *effective resolution of 5 km*.
- GMI: *quantify rain rates* between 0.22 and 60 mm hr-1 and *demonstrate the detection of snowfall* at an *effective resolution of 15 km*.
- Core observatory instantaneous rain rate estimates at a resolution of 50 km with bias and random error < 50% at 1 mm hr¹ and < 25% at 10 mm hr¹, relative to GV
- Core observatory estimation of the Drop Size Distribution (DSD) D_m to within +/- 0.5 mm. [note- no N_w requirement]

Approach: 2DVD to Radar, Radar to Satellite

- Empirical models developed for NASA field campaign "regimes" (Oklahoma, Iowa, Alabama, Mid-Atlantic Coastal, Washington Coast, Appalachians/Piedmont....)
- Aggregated "DSD fit" to make "ALL-regimes" for U.S. continental-scale statistical verification (> 200,000 minutes used)

• "ALL" DSD <u>model-fit</u> relative errors: BIAS < 10%, MAE < 15%

Approach: Radar to GPM using Validation Network (VN) Radars

88Ds, NPOL, KWAJ

Dual-pol quality-controlled moments and diagnostics (DSD, rain rate, HID etc.) computed from ~70 network radars

VN Matching

DPR Range gates/footprints within 100 km of a given radar geometrically volume-matched to intersecting DPR rays (> 5000 volumes since launch)

Products stored (e.g., select DPR variables, Polarimetric moments, **DSD**, HID, RR...)

L1 Requirement DSD: Continental Scale VN-GPM Comparisons

DPR, 2AKu, CMB V5 D_m vs. GV Radar D_m

- <u>L1 requirement met because it is driven by stratiform-</u>about ~0.2 mm higher than GV but.....
- DPR Convective D_m bias is a problem (D_m ceiling at 3 mm in MS an artifact)

Isolating Convective D_m Behavior Relative to the Ice Process

When D_m > 2.5 More rimed ice (graupel/hail) aloft in convection

Also....PDFs of Z (not shown) indicate "large D_m" pixels have significantly larger Z both above and below the melting level.

Closer look at V5 DPR MS/NS(KuPR): Convective N_w vs. D_m against GV

• DPR D_m bias implies lower N_w vs GV along Z-isopleths; bias is obvious but functional behavior similar (physics)

Impacts of Increasingly Positive D_m Bias in Convective Rain

Marked low bias against GV rain rates when DPR-Identified large drop regimes occur

• V5 N_w vs. f(D_m,Z) trend (slope) is different from GV and DPR

New results (M. Grecu) using light N_w-Dm constraints (similar to GV)

Approach:

• Polarimetric radar-based DSD retrievals (D_m, N_w) geo-matched and compared to GPM satellite footprints/swaths.

Results:

- Level 1 requirement of D_m within +/- 0.5 mm is overall satisfied in V5 (V6-prelim version nearly identical).
- DPR: Sensitivity to rain type-
 - KuPR, DPR convective D_m positive biases relative to GV- "large D_m" bias but similar physical behavior in N_w-D_m space
 - Large D_m-bias associated with convection having more frequent and deeper graupel/dense ice HID categories
 - Big D_m (low N_w) bias associated with a *marked convective rainfall under-estimate*
- <u>Combined-Algorithm</u>: N_w vs. D_m behavior is different than DPR or GV in V5; testing with improved DSD constraints suggests reduction in rain rate bias.

Moving ahead:

- For future versions isolate *details* of DSD behavior as a function of GPM algorithm assumptions (e.g., attenuation correction, R-D_m, beam filling impacts)
- Continue to evaluate and refine GV approach

Backup

Approach: Check Aggregate against Individual Regimes

Application of the "ALL" relationship to certain regimes (e.g., OLYMPEX) with less frequently sampled large ZDR (e.g., OLYMPEX) introduces more uncertainty in D_m;

N_w behavior much more stable.

Regime Sub-sample comparisons to NPOL

- Sanity check: Regime D_m, N_w fits tested using NPOL observations and field 2DVDs
- Bias behavior is good.

Field	Bias	Absolute Bias	Samples
IFloods	0.00	0.42	6,610
IPHEx	0.07	0.34	1,058
OLYMPEx	0.03	0.34	1,008
LOG10[N _w]			
IFloods	0.04	0.90	6,610
IPHEx	-0.12	0.89	1,058
OLYMPEx	0.21	0.89	1,008

Explore DPR Convective: A "Case" Example

DSD "Big D_m" Impact

Tail of "big-D_m" data points makes up ~12% of the convective sample...... Worth fixing/examining more?

Yes.

Intra-Footprint Variability of Large D_m-Pixels: Greater Below/Above the Melting Layer

Standard Deviation

Standard Deviation

GR Z Std Dev Histogram 2AKu/NS for DPR V05A convective above BB up to four 1.5km layers, 100% Above Thresh DPR Dm GE 2.7

