

Autonomous Coordinated Airspace Services for Terminal and Enroute Operations with Wind Errors

Todd Lauderdale, Christabelle Bosson, Yung-Cheng Chu, and Heinz Erzberger NASA Ames Research Center

Increasingly Complex Airspace

Foundational Autonomy Research

Development of an Autonomous Airspace Service

4D separation, arrival management and weather avoidance

Operations in the presence of uncertainty and errors

Coordinated operations across 20 enroute centers

Terminal Area Operations

Coordinated Terminal Area and Enroute Operations

Trajectory Prediction Errors in the Terminal Area

Handling Novel Operations (Aviation 2018 Talk by Bosson)

Cloud-Based Service

Coordination Rules

Coordination Rules

Dallas (D10) TRACON

Simulated Traffic in D10; 350 Flights at Present Day Demand Levels

Coordinated Enroute and Terminal Operations

TRACON Visibility and Control

Enroute Visibility and Control

Losses of Separation Near Boundaries

Coordination Rules

Use Enroute Separation

Enroute Ensure Conflict Free Across Boundary

Terminal Assumes "Frozen" Enroute Trajectories

Conflicts Detected with Less than 1 Minute to Loss of Separation

Wind Field Errors

Actual Winds (Constant 25 knots from the South) Predicted Winds (150% Actual Magnitude)

Example Trajectories

Detection Buffer

Missed Alerts

False Alerts

Errors and Arrival Scheduling

Arrival Schedule Conformance Monitoring

Number of Resolutions

Total Delay

Number of Schedule Changes

- Coordinated operations in multiple types of airspace were demonstrated in the presence of trajectory prediction errors
- Simple rules were demonstrated that enabled coordination across control boundaries
- Arrival schedule conformance monitoring reduced delay significantly at the cost of significantly more resolutions