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Electric Motor Noise from Small Quadcopters: Part I – 

Acoustic Measurements 
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There is increased interest in using electric motors to drive propulsors across a range of 

small air vehicle classes.  Applications include both vertical lift and conventional takeoff and 

landing systems for Small Unmanned Aircraft Systems.  Mission profiles call for integrating 

these systems into urban airspaces exposing populated areas to new noise sources.  In addition 

to the propulsor noise from rotors and propellers, electric motors are expected to contribute 

to the overall sound levels and possibly human annoyance.  This work presents acoustic 

measurements of electric motors used for small quadcopters to characterize the sound and 

identify sources with and without a propeller.  Free field microphone measurements were used 

to determine directivity and a phased microphone array was used to identify sound sources.  

A companion paper (Part II – Source Characteristics and Prediction) compares the far field 

results with current probe measurements of the signal driving the motor, the structural 

response of the motor case, and describes prediction methods of electric motor noise. 

I. Introduction 

lectric motors are being used for small Unmanned Aircraft Systems (sUAS) across a wide range of sizes and 

applications.  The motors drive propellers that are known to be noisy as sUAS fly over populated areas on the 

ground.  There has been an increase in the number of sUAS operating in the airspace with demand that is expected to 

significantly grow.  There are plans to use sUAS for package deliveries to residential locations.1  There are also visions 

of utilizing vertical lift vehicles for transporting people for on-demand mobility (ODM) in urban areas.2  For both of 

these applications it will be important to address noise issues by identifying noise sources, applying noise reduction 

technologies, and developing prediction methods that can be used to evaluate their impact on community noise. 

 Vertical lift “quadcopters” use four motors to drive propellers with variable speed control.  While most of the noise 

from a sUAS comes from the propeller, there is evidence that a portion of the noise also comes from the electric 

motors.3,4  Sound spectra show that tones from the electric motor can dominate in frequency bands around 4 to 6 kHz, 

which are important for perceived noise levels for human hearing and annoyance.  A primary source for this noise is 

the vibration of the case enclosing the rotor, stator and magnets of the motor.  For the small quadcopters, the outer 

case rotates and the stator is inside the motor.  The case is exposed to the air and the sound can freely radiate from 

each motor. 

The purpose of this work is to study the noise from small quadcopter electric motors.  Several motors were tested 

both in isolation and with a propeller for various speeds to measure acoustic directivity.  A phased microphone array 

was used to help identify sound sources.  A current probe was used to measure the signal from the speed controller to 

the motor for comparisons with the acoustic spectra.  A complementary paper5 focuses on structural analysis of the 

case and the prediction of the frequencies that contribute to the sound field.  Casing resonance vibration modes and 

loading on the motor cause an amplification of tones and can become a dominant noise source.  

A longer term objective of this work is to develop noise prediction methods for a wide range motor sizes that can 

be used in aircraft noise prediction codes, such as NASA’s Aircraft Noise Prediction Program (ANOPP).  The current 

work with small motors is an initial cost-effective step to document source mechanisms and develop noise prediction 

methods.  Future work will focus on larger motors that will be used on air vehicles using either batteries or turbo-

electric power sources. 
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II. Experimental Approach 

 Acoustic tests were done in the Acoustic Testing Laboratory (ATL) at the NASA Glenn Research Center (Figure 

1). The ATL is an anechoic chamber with a cut-off frequency of 100 Hz. The interior dimensions of the chamber are 

21-ft. deep x 17-ft. wide x 17-ft high.  The ATL has a removable steel grate working platform and access to portable 

floor wedges to convert the facility into a hemi-anechoic chamber. 

 Initial tests mounted the motors on a pole cantilevered 

from the floor.  A vibration damping coupler was used to 

minimize structural excitations to the mount, however, 

this was shown to not work very well due to unwanted 

sound coming from the cantilevered pole.  Tests were also 

conducted with the motor hanging from a ceiling traverse 

using its electronic control wires and strings.  This was 

found to be best for minimizing extraneous mounting 

noise, but was difficult to control the motor orientation 

relative to microphone arrays due to the motor torque.  

Finally, a mounting fixture was constructed using wood 

craft sticks and nylon fishing line to suspend the motor in 

the middle of the chamber.  Two sticks were attached in a 

cross and tied taught to the tips of several acoustic wedges 

on the walls.  Swivel connectors were used and taped to 

minimize vibrations.  Vertical lines were used to fix the 

height, which was especially important when propellers 

were mounted that created an upward force.  A close-up 

of the motor mount is shown in Figure 2. 

Three arrays of microphones were used to measure the 

free-field acoustics (Figure 3(a)).  Each array contained 

five microphones on a constant radius arc.  The arrays are 

designated small, medium and large, and had an arc radius, 

R, of 10, 40 and 75-inches, respectively.  The center 

microphone on each array was oriented 90-degrees from 

the motor shaft axis, which is the direction normal to the 

motor case.  There were two microphones below and two 

microphones above the center microphone to measure the 

directivity of noise.  Figure 3(b) shows a picture of the 

installation viewed from the right rear side of ATL looking toward the motor.  Figure 3(c) through Figure 3(e) shows 

the directivity angles for each array. 

In addition to the free-field microphone arrays, a phased microphone array was used to help identify extraneous 

noise sources, and distinguish sources between the propeller and motor case.  The phased array was an ACAM 100 

manufactured by the Signal Interface Group with BeamformX software written by OptiNav, Inc..6  The array was 

placed one meter away from the motor case at various locations surrounding the motor.  It was determined that 

 
Figure 2. Method for mounting motor in ATL 

 
(a)  

 
(b) 

Figure 1. Acoustic Test Laboratory (ATL) at the 

NASA Glenn Research Center. (a) Schematic. (b) 

Picture of ATL with motor and microphone array. 
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positioning the array normal to the motor case (90-degrees) provided the best assessment of noise originating from 

the motor.  Figure 4 shows the phased microphone array installed in ATL. 

 In addition to the acoustic measurements, the 

motor speed was simultaneously recorded using 

an optical laser probe.  The laser was mounted on 

a tripod and pointed at the rotating motor case.  

The case was painted black and a strip of 

reflective tape was added to generate the once-

per-rev signal from the optical probe.  A 

Tektronix TCP-303 probe was used to record the 

current in one of the three wires leading from the 

speed controller to the motor.  The results from 

the current probe measurements are included in 

the companion paper.5  

 
Figure 4. Phased microphone array in “Front Normal” 

position. 

Phased Array 

                  
 (a)                 (b)  

 
(c)           (d)          (e)  

Figure 3. Microphone arrays. (a) Top view schematic in ATL. (b) Arrays installed in ATL. (c) Small. (d) 

Medium. (e) Large. 

 

Small Array 

Medium Array 

Large Array 

Motor 
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III. Results 

 A summary of the test matrix is shown in Figure 5.  Three motors that are commonly used in small quadcopters 

were tested over several speeds that are representative of typical operating conditions.  The model numbers of the 

motors were 3DR (850 kV), 2212 (920 kV), and 2312 (960 kV).  All three motors have 14 magnetic poles and 12 

stators.  Three speed controllers 

were used with each motor.  The 

speed controllers were designated 

E300, 3DR and 420S.  The E300 

and 3DR controllers use square 

wave inputs to control the speed, 

where the 420S uses a sine wave.  

They were investigated to study 

the impact on noise.  The results 

are presented in the companion 

paper.5  The loading on the motors 

was varied by testing the motor 

only, and adding two- and three-

bladed propellers.  For all tests, 

the free field acoustics and phased 

microphone array were used to 

characterize the sound field.  An 

accelerometer was placed on the 

motor rotor case for static ping 

tests to determine casing 

structural natural frequencies and 

damping levels. 

 A comparison of the ambient sound pressure level (SPL) spectra with motor only data are shown in Figure 6.  All 

three motors are plotted for the upper microphone (microphone 9) on the medium microphone array.  The ambient 

levels represent the limit of the ¼-inch microphones rather than the true background noise in ATL.  The spectra from 

the motors are for the lowest speed tested (4380 RPM) and without a load (motor only).  The spectra from each motor 

have different characteristics for tones and broadband levels, but they all show sufficient signal-to-noise levels to 

distinguish tones above the background levels, and broadband noise levels over frequencies ranging from 2000 to 

5500 Hz 

 Sample directivity SPL spectra are shown in Figures 7 through 9 for the 3DR, 2212 and 2312 motors, respectively.  

The medium array was used for these plots with microphone 8 data removed due to inconsistencies with this channel.  

All three motors show dominant radiation of sound in a direction normal to the motor case (toward microphone 7) 

over most frequencies, with the levels falling off above and below the motors at other angles.  For the 3DR motor 

(Figure 7), there is a broadband noise peak that radiates above the motor towards microphone 9 from about 3000 to 

4500 Hz and below the motor towards microphone 5 from about 3000 to 4000 Hz.  For the 2212 and 2312 motors, the 

dominant radiation of sound is normal to the motor case (microphone 7) across all frequencies. 

 

 

 
Figure 5. Test matrix. 

 
Figure 6. Background noise and motor only SPL comparisons for three motors, microphone 9 on medium 

array, 4380 RPM. 
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The influence of loading on the radiated noise is explored next.  Figure 10 shows the SPL spectra for the 3DR 

motor using the 3DR controller driving the motor at 5370 RPM.  Figure 10(a) is for motor only and Figure 10(b) 

applies a load using a two-bladed propeller.  Adding the propeller introduces blade passing frequency tones and higher 

harmonics that are evident up to about 4000 Hz.  At this speed, the shaft order frequencies occur at multiples of 89.5 

Hz.  Every other harmonic (multiples of 179 Hz) contain harmonics of blade passing frequencies from the two-bladed 

propeller.  The tones from the propeller have a higher amplitude than the shaft order tones up to about 5000 Hz.  The 

propeller also increases the broadband noise across the entire spectra.  The directivity of sound reverses the trend from 

motor only results with peak levels above (microphone 9) and below the motor (microphone 5).  This is consistent 

with acoustic data presented in Ref. 3 using a similar motor.  Two tones associated with the motor at 4651 and 5011 

Hz (Figure 10(a)) are amplified by the propeller loading by about 10 to 15 dB (Figure 10 (b)).  Figure 11 shows SPL 

directivities for selected frequencies of the narrowband spectra shown in Figure 10.  The amplification of the motor 

tones and the directivity trends with and without the propeller are evident in these plots. 

 

 

 

 

 

 
Figure 7. SPL directivity on medium array for 3DR motor, 5370 RPM, 

motor only. 

 
Figure 8. SPL directivity on medium array for 2212 motor, 5370 RPM, 

motor only. 

 
Figure 9. SPL directivity on medium array for 2312 motor, 5370 RPM, 

motor only. 
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(a) 

 
(b) 

Figure 10. SPL spectra on medium array for 3DR motor, 5370 RPM. (a) 

Motor only. (b) Two-bladed propeller and motor. 

 
(a) 

 
(b) 

Figure 11. SPL directivity for selected frequencies on medium array for 

3DR motor, 5370 RPM. (a) Motor only. (b) Two-bladed propeller and 

motor. 
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(a)                   (b) 

Figure 13. Phased array spectra for 3DR motor, 5370 RPM. (a) SPL. (b) Position of phased array below the 

motor. 

 
(a)                   (b) 

Figure 12. Phased array spectra for 3DR motor, 5370 RPM. (a) SPL. (b) Position of phased array normal 

to the motor. 

Phased Array 

Motor 

Motor 

Phased Array 

 The phased microphone array was used to help locate the noise sources across the acoustic spectra.  In order to 

confirm that the phased array could be used to isolate tones, a simulation was done where specific tones were emitted 

from small speakers placed on a pedestal and separated by a distance similar to the distance between the motor case 

and the tip of the propeller.  The results are not shown here, but were found to be satisfactory for frequencies ranging 

from 4000 to 6300 Hz where the motor tones were observed. 

 The placement of the phased array was also studied for the 3DR motor running at 5370 RPM with and without the 

two-bladed propeller.  Figure 12 shows the SPL spectra processed from the phased array with a 48.8 Hz bandwidth 

and comparing phased array positions relative to the motor.  For all cases the phased array is located normal to the 

motor case and centered in the plane of rotation of the motor case (Figure 12(b)).  The “rear normal” position faces 

the motor from the rear of ATL at a distance of 39 inches.  The “front normal” position is located at the same distance 

but position at the front of ATL (Figure 3(a)). 

 The results plotted in Figure 12 show qualitative similarity in spectra at the front and rear positions of the phased 

array, but quantitative differences over some range of frequencies, such as below 4000 Hz for motor only spectra.  

However the two tones at 4639 and 5030 Hz from the motor show similar results at both positions.  The tone 

amplification that was observed from the propeller loading using the medium array microphones is also observed in 

the phased array results. 

 Figure 13 shows similar SPL spectra from the phased array located radially 34-inches below the motor as shown 

in the photograph (Figure 13(b)).  The directivity of the sound is consistent with the medium array free field 

measurements showing stronger propeller tones below the motor.  For all positions of the phased array in Figures 12 

and 13, the motor tones have the highest SPL across the spectra even with the propeller.  Since the focus of this work 

is on electric motor noise, the “normal” position of the phased array was used for subsequent measurements. 
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 Comparisons of the medium 

array, microphone 7 spectra, and 

the phased array spectra for the 

3DR motor at 5370 RPM are 

shown in Figures 14 and 15 for 

motor only and with a propeller, 

respectively.  Note that the 

microphone 7 data was processed 

with a 6.10 Hz bandwidth and the 

phased array spectra used 48.8 

Hz.  The spectra for both cases are 

in good agreement when 

accounting for the different 

bandwidths.  In Figure 15 there is 

about a 10 dB increase in SPL for 

frequencies associated with the 

propeller noise, which is probably 

due to the distributed source 

across the blades and the different 

bandwidths.  The amplification of 

the motor tones is evident at 4639 

and 5030 Hz.  There are also 

motor tones being amplified at 

6250 and 7519 Hz. 

 Images from the beamforming 

of the phased microphone array 

are shown in Figures 16 through 

23 for discrete frequencies of 1172, 2050, 4638, 5029, 5469, 6250, 7520 and 7617 Hz, respectively.  The images and 

plots on the left side of the figures are for motor only, and the images and plots on the right side are for cases with a 

propeller.  The tone at 1172 Hz for motor only is shown in Figure 16(a) to originate near the right side of the motor 

case.  Adding the propeller causes the source to shift to the propeller (Figure 16(b)).  The source is shifted toward the 

advancing side of the propeller blades.  (The propeller rotates clockwise viewed from the top, so the blade is advancing 

on the right side of the propeller in the pictures).  A similar result is shown in Figure 17 for 2050 Hz, but the propeller 

source is more distributed across the top and bottom of the blade.  The resolution of the phased array becomes an issue 

below about 1000 Hz, so the results at higher frequencies should be reliable. 

 Figures 18 and 19 show the spectra and imaging for the two tones attributed to the motor.  The beamforming 

results support that the motor case is the source of the tones with or without the propeller.  The images show the source 

is centered on the right side of the case for 4638 Hz and shifts to the right side of the case for 5029 Hz.   

Figure 20 is for 5469 Hz and shows a clear separation between the motor only, where the noise originates from 

the motor case (Figure 20 (a)), and when the propeller is added, where the sound radiates from the tip of the propeller 

(Figure 20(b)).  In Figures 21 and 22, the sound source with a propeller appears to come from a combination of the 

propeller and the motor case, where the sound for motor only clearly comes from the motor case.  This suggests that 

the propeller load is amplifying the contribution from the motor source.  Finally, Figure 23 shows a clear separation 

of sources again at 7617 Hz between the motor and the propeller. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. SPL comparisons for microphone 7 versus phased array, 3DR 

motor, 5370 RPM,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

motor only. 

 
Figure 15. SPL comparisons for microphone 7 versus phased array, 3DR 

motor, 5370 RPM, propeller. 
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(a)                   (b) 

 

 

 

 

 

 

 

 

(c)                  (d) 

Figure 16. Phased array data for 3DR motor, 5370 RPM, 1172 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) Beamform image for propeller. (c) SPL for motor only. (d) SPL for propeller. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                   (b) 

 

 

 

 

 

 

 

 

(c)                  (d) 

Figure 17. Phased array data for 3DR motor, 5370 RPM, 2050 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) Beamform image for propeller. (c) SPL for motor only. (d) SPL for propeller. 
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(a)                   (b) 

 

 

 

 

 

 

 

 

(c)                  (d) 

Figure 18. Phased array data for 3DR motor, 5370 RPM, 4638 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) Beamform image for propeller. (c) SPL for motor only. (d) SPL for propeller. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                   (b) 

 

 

 

 

 

 

 

 

(c)                  (d) 

Figure 19. Phased array data for 3DR motor, 5370 RPM, 5029 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) Beamform image for propeller. (c) SPL for motor only. (d) SPL for propeller. 
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(a)                   (b) 

 

 

 

 

 

 

 

 

(c)                  (d) 

Figure 20. Phased array data for 3DR motor, 5370 RPM, 5469 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) Beamform image for propeller. (c) SPL for motor only. (d) SPL for propeller. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                   (b) 

 

 

 

 

 

 

 

 

(c)                  (d) 

Figure 21. Phased array data for 3DR motor, 5370 RPM, 6250 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) Beamform image for propeller. (c) SPL for motor only. (d) SPL for propeller. 
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(a)                   (b) 

 

 

 

 

 

 

 

 

(c)                  (d) 

Figure 22. Phased array data for 3DR motor, 5370 RPM, 7520 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) Beamform image for propeller. (c) SPL for motor only. (d) SPL for propeller. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                   (b) 

 

 

 

 

 

 

 

 

(c)                  (d) 

Figure 23. Phased array data for 3DR motor, 5370 RPM, 7617 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) Beamform image for propeller. (c) SPL for motor only. (d) SPL for propeller. 
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 Similar data were acquired for the 2312 motor with 2-bladed and 3-bladed propellers (Figure 24).  Comparisons 

of the medium array, microphone 7 spectra, and the phased array spectra for the 2312 motor at 5370 RPM are shown 

in Figures 25, 26 and 27 for motor only, a 2-

bladed propeller and a 3-bladed propeller, 

respectively.  The amplification of the motor 

tones is evident for the two-bladed propeller 

as it was for the 3DR motor, but the increase 

in SPL is less (~5 dB).  The three-bladed 

propeller did not appear to amplify the 

motor tones and propeller noise becomes 

most important. 

Images from the beamforming of the 

phased microphone array are shown in 

Figures 28 through 33 for discrete 

frequencies of 3125, 4394, 5029, 5224, 

6250, and 6885 Hz, respectively.  The 

narrow range of frequencies were selected to 

focus on the motor noise.  The weak tone at 

3125 Hz for motor only is overcome by 

propeller noise for both two and three blades 

(Figure 28).  For 4394 Hz, the 2-bladed 

propeller appears to have contributions from 

both the motor and the propeller (Figure 29).  

Once the 3-bladed propeller is used, the 

contribution from the motor is reduced.  The 

strongest motor tone occurs at 5029 Hz 

(Figure 30).  The motor remains the primary 

source of noise with both propellers at this 

frequency.  The tone at 5224 Hz (Figure 31) 

shows relative contributions similar to 4394 

Hz.  For higher frequencies at 6250 Hz 

(Figure 32) and 6885 Hz (Figure 33), both 

propellers dominate over the motor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 25.      SPL comparisons for microphone 7 versus phased 

array, 2312 motor, 5370 RPM, motor only. 

 
Figure 26.      SPL comparisons for microphone 7 versus phased 

array, 2312 motor, 5370 RPM, 2-bladed propeller. 

 
Figure 27.      SPL comparisons for microphone 7 versus phased 

array, 2312 motor, 5370 RPM, 3-bladed propeller. 

 
(a)                                (b)                              (c) 

Figure 24.      Load conditions. (a) 2312 motor. (b) 2-bladed “9443” 

propeller. (c) 3-bladed “9450” propeller. 
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(a)                  (b)  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                  (d)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e)                  (f)  

Figure 28. Phased array data for 2312 motor, 5370 RPM, 3125 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) SPL for motor only. (c) Beamform image for 2-bladed propeller. (d) SPL for 2-bladed 

propeller. (e) Beamform image for 3-bladed propeller. (f) SPL for 3-bladed propeller. 
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(a)                  (b)  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                  (d)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e)                  (f)  

Figure 29. Phased array data for 2312 motor, 5370 RPM, 4394 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) SPL for motor only. (c) Beamform image for 2-bladed propeller. (d) SPL for 2-bladed 

propeller. (e) Beamform image for 3-bladed propeller. (f) SPL for 3-bladed propeller. 
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(a)                  (b)  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                  (d)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e)                  (f)  

Figure 30. Phased array data for 2312 motor, 5370 RPM, 5029 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) SPL for motor only. (c) Beamform image for 2-bladed propeller. (d) SPL for 2-bladed 

propeller. (e) Beamform image for 3-bladed propeller. (f) SPL for 3-bladed propeller. 
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(a)                  (b)  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                  (d)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e)                  (f)  

Figure 31. Phased array data for 2312 motor, 5370 RPM, 5224 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) SPL for motor only. (c) Beamform image for 2-bladed propeller. (d) SPL for 2-bladed 

propeller. (e) Beamform image for 3-bladed propeller. (f) SPL for 3-bladed propeller. 
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(a)                  (b)  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                  (d)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e)                  (f)  

Figure 32. Phased array data for 2312 motor, 5370 RPM, 6250 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) SPL for motor only. (c) Beamform image for 2-bladed propeller. (d) SPL for 2-bladed 

propeller. (e) Beamform image for 3-bladed propeller. (f) SPL for 3-bladed propeller. 
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(a)                  (b)  
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(e)                  (f)  

Figure 33. Phased array data for 2312 motor, 5370 RPM, 6885 Hz (blue arrow in SPL). (a) Beamform image 

for motor only. (b) SPL for motor only. (c) Beamform image for 2-bladed propeller. (d) SPL for 2-bladed 

propeller. (e) Beamform image for 3-bladed propeller. (f) SPL for 3-bladed propeller. 
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IV. Conclusion 

Tests were conducted on motors used for small quadcopters to study the acoustic characteristics.  The motors were 

tethered in an anechoic chamber to isolate the noise contributions from the motor.  Comparisons were made with 

and without a propeller loading source over several speeds.  The following conclusions are made from the 

investigation: 

 The most important noise source are tones, but there can be broadband noise as a secondary source over a 

narrow frequency range that is dependent on the type of motor. 

 Motor noise peaks in a direction normal to the motor rotor axis and falls off above and below the motor at 

other angles. 

 Relative to motor only tests, adding the propeller introduces shaft order tones, blade passing frequency tones, 

and higher harmonics that are evident up to about 4000 Hz.  The propeller also increases the broadband noise 

across the entire spectra.  The directivity of sound reverses the trend from motor only results with peak levels 

above and below the motor. 

 Strong motor tones can be amplified by the propeller loading by 5 to 15 dB and exceed the propeller noise 

levels.  But this was only observed for a two-bladed propeller.  A three-bladed propeller showed no 

amplification of the motor tones. 

 The phased microphone array provides acoustic spectra that are in good agreement with far field microphone 

data.  Beamform images successfully distinguish motor and propeller noise contributions.  The spatial 

resolution and apparent variation of source locations on the motor case suggests multiple modes of vibration 

are responsible for motor tones at different speeds. 
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