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SYSTEMS AND METHODS FOR TRANSFER
FUNCTION ESTIMATION USING
MEMBERSHIP FUNCTIONS

ORIGIN OF THE INVENTION

The invention described herein was made by employees
of the United States Government and may be manufactured
and used by or for the Government for Government pur-
poses without the payment of any royalties thereon or
therefore

FIELD

The present invention is related to a method and hardware
realization thereof, and, in particular, to a non-linear method
of capturing and effecting a transfer function for a single
input, single output function, multiple input, multiple output
function, single input, multiple output, etc.

BACKGROUND

Small space flight instruments and other such instruments
have been confined to simple systems utilizing microcon-
trollers and microcontroller cores. Microcontrollers can per-
form linear transfer function calculations readily, but when
non-linear calculations are needed, many microcontrollers
do not contain the resources to perform the non-linear
calculations. Learning algorithms are one method of solving
for and calculating non-linear transfer functions. Most learn-
ing algorithms typically reside in larger computation frames
and are rather complex. Fuzzy logic systems work well with
microcontrollers, but adaptive fuzzy systems require a great
deal of computational power. Thus, a simpler solution to a
self-learning, auto adaptive system may be attractive for
smaller instruments. For example, a method and system for
such instruments that may learn a linear or non-linear
transfer function may be beneficial.

SUMMARY

Certain embodiments of the present invention may pro-
vide solutions to the problems and needs in the art that have
not yet been fully identified, appreciated, or solved by
current learning systems. For example, the method may
allow a system to take any kind of unknown transfer
function (linear or non-linear), learn and store the transfer
function, and effect the system when embedded, for
example, in a micro-controller.

In one embodiment, a computer-implemented method is
provided. The computer-implemented method includes cre-
ating, by a computing system, a plurality of combinations
for at least one input, and calculating an output for the
plurality of combinations. The computer-implemented
method may also include calculating, by the computing
system, an error based on the calculated output.

In another embodiment, an apparatus is provided. The
apparatus includes at least one processor, and memory
including a computer program. The computer program, with
the at least one processor, is configured to cause the appa-
ratus to create a plurality of combinations for at least one
input, calculate an output for the plurality of combinations,
and calculate an error based on the calculated output.

In yet another embodiment, a computer-implemented
method is provided. The computer-implemented method
includes calculating, by a computing system, an output value
for the at least one input, and calculating an error value for

2
the at least one input based on the output value and a desired
output. The computer-implemented method also includes
updating at least one weight and a constant associated with
each combination for the at least one input.

5

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of certain embodiments of the
invention will be readily understood, a more particular

to description of the invention briefly described above will be
rendered by reference to specific embodiments that are
illustrated in the appended drawings. While it should be
understood that these drawings depict only typical embodi-
ments of the invention and are not therefore to be considered

15 to be limiting of its scope, the invention will be described
and explained with additional specificity and detail through
the use of the accompanying drawings, in which:
FIGS. 1A-1C are flow diagrams illustrating a process for

operating or training a fuzzy neuron, according to an
20 embodiment of the present invention.

FIG. 2 is a diagram illustrating operation of a fuzzy
neuron, according to an embodiment of the present inven-
tion.
FIG. 3 is a diagram illustrating training of a fuzzy neuron,

25 according to an embodiment of the present invention.
FIG. 4 is a diagram illustrating an example of scaling of

a fuzzy neuron, according to an embodiment of the present
invention.

FIG. 5 illustrates a block diagram of a computing system,
30 according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

35 One or more embodiments pertain to a method that allows
single-to-multi-input, single-to-many-outputs system trans-
fer functions to be estimated from input/output data sets. The
method may run in the background while the system is
operating for other purposes or may be utilized oflline using

4o data sets created from observations of the estimated system.
The method may utilize a set of fuzzy membership functions
spanning the input space for each input variable. Linear
combiners associated with combinations of input member-
ship functions may be used to create the ouput(s) of the

45 estimator. Coefficients may be adjusted on line through the
use of the learning algorithms.
The method may create usable models that can effect any

number of complex transfer functions such as a continuous
exclusive OR function, time domain (slew rate) filter, auto-

50 matic gain controller, non-linear algebraic function calcula-
tor, etc. This method may be embedded within microcon-
trollers, facilitating simple and effective placement of
learning functions and adaptive elements into small hard-
ware systems, including instruments for space, bioimplant-

55 able devices, stochastic observers, etc.
FIGS. 1A-1C are flow diagrams 100 illustrating a process

for operating or training a fuzzy neuron, according to an
embodiment of the present invention. The following
description of the process shown in FIGS. 1A-1C is pro-

60 vided in conjunction with FIGS. 2 and 3.
In FIG. 1A, the process begins at 105 with a computing

system receiving an input for a transfer function from, for
example, a computing unit. In certain embodiments, the
computing unit may be a microcontroller, a processor, an

65 analog-to-digital (A-to-D) converter, a data bus, etc. In
FIGS. 2 and 3, for example, input A is received and fuzzifiers
a through h are associated with input A.
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At 110, the computing system fuzzifies the first input. For
example, membership of an input variable in a membership
function or fuzzifier spans the range of 0, no membership to
1, or complete membership. In this example, the computing
system compares a value of the first input (input A) against
fuzzifiers a through h. Referring to FIGS. 2 and/or 3,
because input A has a value of 60 in this example, the
membership of input A in fuzzifier b is 0.35 and the
membership of input A in fuzzifier c is 0.65. Once the first
input has been fuzzified, the computing system at 115 stores
the fuzzifiers that, for example, input A was a member of for
later use as pointers to weight coefficients and constants used
in functions to combine input variables, and stores the
strengths of the membership to be used to modulate the
result of this combining.
The computing system at 120 determines whether there

are additional inputs. If there are additional inputs, the
process returns to 105 to receive the next input. In the
example described in FIGS. 2 and 3, the computing system
may determine that there is an additional input, e.g., input B.
The process may then return to 105 in order to receive input
B and then processes steps 110 through 120 are executed for
input B. It should be noted that in this embodiment fuzzifiers
i through p shown in FIGS. 2 and 3 are the same fuzzifiers
as a through h. This last qualification defines a minimalist
configuration for this embodiment, such that each input may
be iteratively compared to the same set of fuzzifiers and, as
such, is easiest to realize in software or embed in hardware.
It should be appreciated that another process may be realized
for this fuzzifier stage.

In a single input system, if there are no additional inputs,
the computing system at 125 associates the fuzzifiers, which
the single input A is a member of, to the strength of
membership that input A had to that fuzzifier. For a two input
system (e.g., inputs A and B), four couplets (or combinations
of fuzzifiers) shown in FIGS. 2 and 3 are created, e.g.,
combination couplet (b,n), combination couplet (b, o), com-
bination couplet (c, n), and combination couplet (c, o), for
inputs A and B.
At 130, the computing system calculates the minimum

values of membership for each combination that were cre-
ated for the input. For example, FIGS. 2 and 3 show the
minimum values (e.g., 0.35, 0.18, 0.65, and 0.18) that are
calculated for each combination (e.g., couplet (b, n), couplet
(b, o), couplet (c, n), and couplet (c, o)) for inputs A and B.

At 135, a single fuzzifier in single input system, or a
combination of fuzzifiers in a multiple input system, may be
used as a pointer (or address) to a location within a software
or hardware data structure. The software or hardware data
structure may include a stored weight and constant (in the
single input system) or a weight per input and a constant
(multi-input system), all of which are used to create a
combiner function or polynomial. In this example, FIGS. 2
and 3 show that the combination (b, n, 0) points to weight
W(A) (e.g., the weight used to modulate input A in the
combiner function) at location 0, the combination (b, n, 1)
points to weight W(B) (the weight used to modulate input B
in the combiner function) at location 1, and the combination
(b, n, 2) points to the constant at location 2. When the
process is utilized for operating a fuzzy neuron, the weights
and constant may be predefined numbers (see FIG. 2).
However, when the process is utilized for training the fuzzy
neuron, the weights and constant are initialized as random
numbers prior to training (see FIG. 3).
The computing system at 140 uses or pulls the weights

and constant from memory for the combination using the
pointer generated in 135, and invokes a combiner polyno-

_►,

mial. For example, in FIGS. 2 and 3, for combination (b, n),
the following polynomial may be used: f(b, n)=A*W(A)+
B * W(B)+C. The result from the polynomial is stored at 145.
At 150, the computing system determines whether there

5 are additional combinations. If the computing system deter-
mines that additional combinations exist for the input, then
the process returns to 135. For example, in FIGS. 2 and 3,
the computing system may determine that there are addi-
tional combinations (e.g., couplet (b, o), couplet (c, n),

io couplet (c, o)) for input A, and may repeat steps 135 to 150
until there are no further combinations left for input A.

If the computing system determines that there are no
additional combinations for the input, the computing system
at 155 may calculate the output for the associated input or

15 inputs. In FIGS. 2 and 3, the output is calculated by using the
minimums and the associated result from step 145.

If the process is utilized to train a fuzzy neuron, the
computing system at 160 calculates the error using the
calculated output from step 155 and a desired output. In one

20 embodiment, the error may be calculated using the follow-
ing equation: error-desired output—calculated output. See,
for example, FIG. 3. It should be appreciated that the desired
output may be a predetermined number in some embodi-
ments, or created in runtime in other embodiments. At 165,

25 the computing system updates the weights and constant for
each combination for the input based on the calculated error,
the strength for each of the combinations and a-priori
determined or time/sample variant stability factor (a small
number or function used to settle the learning algorithm). It

30 should be appreciated that learning may continue for an
infinite duration for an infinite input set (e.g., within an
observer application) or may cease based on some conver-
gence criterion such as, but not limited to, minimized error
gradient, and combiner weights and constants stored for an

35 embedded steady state application.
At 170, the computing system determines whether all

outputs have been calculated. If the computing system
determines that an additional output needs calculated, the
computing system returns to 130. For example, because

4o FIG. 3 shows two inputs (e.g., inputs A and B), the com-
puting system will return to 130 to calculate minimums for
each combination for input B, such that the output for input
B can be calculated via steps 135-155. If there is no
additional output to be calculated, the computing system

45 returns to 105 to receive the next input. This process may
continue until the error falls below a threshold level or
converges.
The process steps shown in FIGS. lA to 1C may be

performed, in part, by a computer program, encoding
50 instructions for a nonlinear adaptive processor to cause at

least the process described in FIGS. lA to 1C to be per-
formed by the apparatuses discussed herein. The computer
program may be embodied on a non-transitory computer
readable medium. The computer readable medium may be,

55 but is not limited to, a hard disk drive, a flash device, a
random access memory, a tape, or any other such medium
used to store data. The computer program may include
encoded instructions for controlling the nonlinear adaptive
processor to implement the method described in FIGS. lA

60 to 1C, which may also be stored on the computer readable
medium.
The computer program can be implemented in hardware,

software, or a hybrid implementation. The computer pro-
gram can be composed of modules that are in operative

65 communication with one another, and which are designed to
pass information or instructions to display. The computer
program can be configured to operate on a general purpose
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computer, or an application specific integrated circuit
("ASIC"). Since a steady state application may utilize ana-
log inputs and outputs, window comparisons with minimum
calculations (e.g., fuzzifiers) and linear combiners, a target
embodiment may be realized using analog computing tech-
niques, both electronic and mechanical.

FIG. 4 is a diagram 400 illustrating an example of scaling
of a fuzzy neuron, according to an embodiment of the
present invention. In this example, 8 fuzzifiers are associated
with each of the 3 inputs, inputs A, B, and C. The number
of combinations of fuzzifiers for N inputs is 2N. The number
of sets of weights (N+1) and constants for any output is M',
where M is the number of membership functions (or fuzzi-
fiers).

However, in the case, for a system with N inputs, M
fuzzifiers, and Q outputs, there may be 2' combinations of
fuzzifiers for a set of N inputs and a total of Q*MN sets of
(N+1) weights and constants for the system. It should be
appreciated that by storing additional weights and constant
sets at each location pointed to by a membership function
combination, each associated with a unique output, addi-
tional outputs can be accounted enabling construction of an
N input, Q output system (where N may, but does not
necessarily, equal Q).

FIG. 5 illustrates a block diagram 500 of a computing
system, according to an embodiment of the present inven-
tion. System 500 may include a bus 505 or other commu-
nication mechanism that can communicate information and
a processor 510, coupled to bus 505, that can process
information. Processor 510 can be any type of general or
specific purpose processor. System 500 may also include
memory 520 that can store information and instructions to
be executed by processor 510. Memory 520 can be com-
prised of any combination of random access memory
("RAM"), read only memory ("ROM"), static storage such
as a magnetic or optical disk, or any other type of computer
readable medium. System 500 may also include a commu-
nication device 515, such as a network interface card, that
may provide access to a network.
The computer readable medium may be any available

media that can be accessed by processor 510. The computer
readable medium may include both volatile and nonvolatile
medium, removable and non-removable media, and com-
munication media. The communication media may include
computer readable instructions, data structures, program
modules, or other data and may include any information
delivery media.

Processor 510 can also be coupled via bus 505 to a display
540, such as a Liquid Crystal Display ("LCD"). Display 540
may display information to the user. A keyboard 545 and a
cursor control unit 550, such as a computer mouse, may also
be coupled to bus 505 to enable the user to interface with
system 500.

According to one embodiment, memory 520 may store
software modules that may provide functionality when
executed by processor 510. The modules can include an
operating system 525 and training and operating module
530, as well as other functional modules 535. Operating
system 525 may provide operating system functionality for
system 500. Because system 500 may be part of a larger
system, system 500 may include one or more additional
functional modules 535 to include the additional function-
ality.
One skilled in the art will appreciate that a "system" could

be embodied as a personal computer, a server, a console, a
personal digital assistant (PDA), a cell phone, a tablet
computing device, or any other suitable computing device,

T
or combination of devices. Presenting the above-described
functions as being performed by a "system" is not intended
to limit the scope of the present invention in any way, but is
intended to provide one example of many embodiments of

5 the present invention. Indeed, methods, systems and appa-
ratuses disclosed herein may be implemented in localized
and distributed forms consistent with computing technology.

It should be noted that some of the system features
described in this specification have been presented as mod-

io ules, in order to more particularly emphasize their imple-
mentation independence. For example, a module may be
implemented as a hardware circuit comprising custom very
large scale integration (VLSI) circuits or gate arrays, off-
the-shelf semiconductors such as logic chips, transistors, or

15 other discrete components. A module may also be imple-
mented in programmable hardware devices such as field
programmable gate arrays, programmable array logic, pro-
grammable logic devices, graphics processing units, or the
like.

20 A module may also be at least partially implemented in
software for execution by various types of processors. An
identified unit of executable code may, for instance, com-
prise one or more physical or logical blocks of computer
instructions that may, for instance, be organized as an object,

25 procedure, or function. Nevertheless, the executables of an
identified module need not be physically located together,
but may comprise disparate instructions stored in different
locations which, when joined logically together, comprise
the module and achieve the stated purpose for the module.

so Further, modules may be stored on a computer-readable
medium, which may be, for instance, a hard disk drive, flash
device, RAM, tape, or any other such medium used to store
data.

Indeed, a module of executable code could be a single
35 instruction, or many instructions, and may even be distrib-

uted over several different code segments, among different
programs, and across several memory devices. Similarly,
operational data may be identified and illustrated herein
within modules, and may be embodied in any suitable form

4o and organized within any suitable type of data structure. The
operational data may be collected as a single data set, or may
be distributed over different locations including over differ-
ent storage devices, and may exist, at least partially, merely
as electronic signals on a system or network.

45 One or more embodiments pertain to an apparatus,
method, and a computer program configured to create a
plurality of combinations for at least one input and calculate
an output for the plurality of combinations. An error may
also be calculated using the calculated output.

50 It will be readily understood that the components of the
invention, as generally described and illustrated in the
figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the detailed
description of the embodiments is not intended to limit the

55 scope of the invention as claimed, but is merely represen-
tative of selected embodiments of the invention.
The features, structures, or characteristics of the invention

described throughout this specification may be combined in
any suitable manner in one or more embodiments. For

60 example, the usage of "certain embodiments," "some
embodiments," or other similar language, throughout this
specification refers to the fact that a particular feature,
structure, or characteristic described in connection with an
embodiment may be included in at least one embodiment of

65 the invention. Thus, appearances of the phrases "in certain
embodiments," "in some embodiments," "in other embodi-
ments," or other similar language, throughout this specifi-
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cation do not necessarily all refer to the same embodiment
or group of embodiments, and the described features, struc-
tures, or characteristics may be combined in any suitable
manner in one or more embodiments.
One having ordinary skill in the art will readily under-

stand that the invention as discussed above may be practiced
with steps in a different order, and/or with hardware ele-
ments in configurations that are different than those which
are disclosed. Therefore, although the invention has been
described based upon these preferred embodiments, it would
be apparent to those of skill in the art that certain modifi-
cations, variations, and alternative constructions would be
apparent, while remaining within the spirit and scope of the
invention. In order to determine the metes and bounds of the
invention, therefore, reference should be made to the
appended claims.
The invention claimed is:
1. A computer-implemented method, comprising:
storing, by a computing system, a plurality of sets of
component values of a linear process in association
with a plurality of pointers, wherein each one of the
plurality of pointers is stored in association with one of
the plurality of sets of component values of the linear
process, wherein each one of the plurality of pointers
comprises designations of at least two membership
functions of a plurality of membership functions;

receiving, by the computing system, input data, the input
data comprising a first input value and a second input
value;

classifying, by the computing system, the input data based
on the plurality of membership functions, wherein each
membership function provides a membership fraction
for an input value that varies as a function of that input
value, wherein each membership fraction indicates a
strength of membership associated with a correspond-
ing one of the membership functions, wherein classi-
fying the input data generates classifying data, wherein
the classifying data comprises:
a first set of non-zero membership fractions associated

with a first set of membership functions for the first
input value;

a second set of non-zero membership fractions associ-
ated with a second set of membership functions for
the second input value; and

designations associated with membership functions
belonging to the first and second sets of membership
functions;

generating, by the computing system, a plurality of com-
binations of values of the classifying data, wherein
each combination comprises:
a first designation of a first membership function of the

first set of membership functions;

8
a second designation of a second membership function
of the second set of membership functions; and

a minimum membership fraction between the member-
ship fraction provided by the first membership fun-

s tion and the membership fraction provided by the
second membership function, wherein each combi-
nation of the plurality of combinations corresponds
to one of the plurality of pointers;

retrieving a subset of the plurality of sets of component
10 values of the linear process for the first and second

input values based on the pointers corresponding to the
generated combinations;

calculating, by the computing system, a plurality of
15 intermediate values by performing the linear process on

the first and second input values using each retrieved
set of component values of the subset; and

calculating, by the computing system, an output for the
input data using a combination of the plurality of

20 intermediate values and the minimum membership
fractions associated with the generated combinations,
wherein the combination of the plurality of intermedi-
ate values and minimum membership fractions is a
model of a non-linear transfer function.

25 2. The computer-implemented method of claim 1,
wherein the linear process comprises a weighted polynomial
combination of the input data.

3. The computer-implemented method of claim 2,
wherein the combination of the plurality of intermediate

30 values and minimum membership fractions associated with
the generated combinations comprises multiplying each of
the intermediate values by a corresponding minimum mem-
bership fraction to generate a plurality of scaled values,

35 adding the plurality of scaled values to generate a scaled
sum, and dividing the scaled sum by a sum of the minimum
membership fractions of the generated combinations.

4. The computer-implemented method of claim 1, further
comprising, calculating, by the computing system, an error

40 
based on a difference between the output and a desired value
wherein an error is calculated based on each desired output
and each calculated output.

5. The computer-implemented method of claim 4, further
comprising updating the plurality of sets of component

45 values based on the calculated error.
6. The computer-implemented method of claim 4,

wherein the desired value is a predetermined value.
7. The computer-implemented method of claim 4,

wherein, prior to updating the plurality of sets of compo-

50 
nents values, the plurality of sets of component values each
comprise a random set of numbers.
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