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This review of aircraft electric propulsion architectures conveys that several aircraft 

system studies have indicated a potential benefit associated with using electrical systems to 

replace or augment the traditional fuel-based propulsion system. This exciting new approach 

for designing aircraft opens the door for new configurations. It is also important to convey 

that this field of study is in its infancy and much improvement is required across the breadth 

of supporting technologies if the promise of these aircraft concepts is to be realized. 

I. Nomenclature 

BLI  = boundary layer ingestion 

CFD  = computational fluid dynamics 

CO2  = carbon dioxide 

FPR  = fan pressure ratio 

g  = gram 

HP  = horsepower 

hr  = hour 

kg  = kilogram 

km  = kilometer 

kN  = kilonewton 

kW  = kilowatt 

lbm  = pound mass 

lbf  = pound force 

m  = meter 

MW  = megawatts 

nm  = nautical mile 

NOx  = oxides of nitrogen 

NRA  = NASA Research Announcement 

N3CC  = an advanced conventional single-aisle aircraft concept 

sec  = seconds 

N+3  =  aircraft three generations later than current state-of-the-art 

N+4  =  aircraft four generations later than current state-of-the-art 

STARC-ABL = Single aisle Turboelectric AiRCraft with Aft Boundary Layer ingestion 

SUGAR  = Subsonic Ultra Green Aircraft Research 

TRL  = technology readiness level 

W  = watt 

WATE++  = Weight Analysis of Turbine Engines 
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II. Introduction 

NASA challenged US industry and academia in the mid-2000’s to identify technology paths for disruptive 

improvements in commercial aircraft fuel burn, emissions and noise. These studies, summarized in reference 1, 

outlined exciting and promising challenges in airframe design, propulsion design, and propulsion-airframe integration. 

These studies showed that substantial improvements in aircraft fuel burn, emission, and noise metrics would require 

significant changes and bold technical advancements. The use of electrical power distribution to augment propulsion 

was one proposed way to increase design freedom and to improve future aircraft. However, the identification of an 

efficient, viable aircraft with electrified propulsion is complex. The first challenge is the aircraft must obtain a system-

level benefit from the modified propulsion system that outweighs the added complexity. The second challenge is that 

improvements must be realized in the electrical power conversion, distribution, and control components to reduce the 

weight of the electrical system without out compromising flight safety. The final challenge is the shear breadth of 

concepts and technologies that are a radical departure from conventional aircrafts and podded, under-the-wing turbine 

engines. Aircraft concept studies require mature input assumptions for the electrical power system components and 

the electrical system research needs to be grounded with reasonable aircraft constraints. NASA’s Advanced Air 

Transport Technology Project has approached the electrified aircraft propulsion challenge by concurrently exploring 

top-down aircraft concept definition and bottom-up electrical component technology research in order to identify one 

or more narrow-body (150-passenger class) aircraft concepts that would operate over typical commercial missions 

with reductions in both fuel burn and total energy consumption. These aircraft design concepts are reviewed and 

promising combinations of aircraft design concept and electrical propulsion technology are identified herein. It should 

be mentioned that many of the air-vehicle and propulsion-system integration options discussed here also could be 

achieved with mechanical solutions. Indeed, NASA is continuing its investment in advanced turbomachinery. Final 

aircraft design analysis will include a consideration of all competing propulsion options; for brevity only the electrified 

propulsion solutions are discussed here. 

The aircraft concepts covered here will be organized by the manner in which the electrical powertrain is integrated 

into an aircraft. The aircraft powertrain classification shown in Fig. 1 defines one all-electric, three hybrid electric, 

and two turboelectric powertrains [2]. All-electric systems would use electro-chemical energy storage, typically 

batteries, for propulsive power. Hybrid electric powertrains can be implemented in several ways. In parallel hybrid 

architectures, a battery-powered motor and a fuel-powered turbine engine would both mount on the same propulsion 

fan shaft such that the fan could be driven by the two energy sources independently. In series hybrid architectures, 

some or all of the power in the gas turbine shaft would be converted to electric power and distributed to drive the 

motors and charge the batteries. Series/parallel partial hybrid systems would combine features of a pure series or pure 

parallel hybrid electric powertrain. Turboelectric aircraft would use on-board electric generation by the fuel-powered 

turbine for propulsive power. Commercial aircraft already generate both mechanical shaft power for propulsion and 

electrical power for non-propulsive loads. Each of these general powertrain classes can be applied in many different 

aircraft designs and some examples will be described here. Advanced propulsion design concepts are closely tied to 

technology maturation and therefore technology development assumptions must be explored in parallel. For example, 

the size of aircraft that can use an all-electric solution is closely coupled to battery technology advancement 

assumptions [3]. 

III. Hybrid Electric Aircraft Studies 

The focus of early electrified propulsion research was fuel burn reduction, so augmenting jet fuel with batteries 

was a natural starting point.  The Boeing-led Subsonic Ultra Green Aircraft Research (SUGAR) was a NASA 

sponsored study that performed a comprehensive battery-augmented, single aisle aircraft (SUGAR-VOLT) assessment 

[4]. The SUGAR-VOLT attempted to meet the aggressive goal of 60 percent reduction in fuel burn by combining a 

truss-braced wing and a hybrid-electric propulsion system. The truss-braced wing was responsible for significant 

aerodynamic and weight improvements with the parallel hybrid-electric propulsion system allowing battery energy to 

augment the engine thrust during cruise. Unfortunately, the SUGAR-VOLT implementation of a hybrid-electric 

propulsion system did not provide a reduction in overall aircraft energy usage, just on-wing fuel usage. This straight 

forward parallel hybrid powertrain implementation approach could make sense if terrestrial power generation were 

substantially cleaner and/or more economic than burning jet fuel in the air. For the foreseeable future, though, battery 

power energy densities and terrestrial charging do not provide a sufficient economic or environmental benefit to justify 

the SUGAR-VOLT implementation. However, this result does not provide information about other possible hybrid 

electric aircraft solutions. Two more research efforts were sponsored by NASA to further explore the hybrid electric 
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Fig. 1.  Classification of electrical powertrains as applied to air vehicles. 

trade space in the context of narrow-body aircraft. These efforts, competed under the NASA Research Announcement 

(NRA) system, were challenged to determine how overall energy efficiency of a commercial aircraft mission could 

be improved with a parallel hybrid approach. An entry into service date of 2035-2040 was assumed but fuel burn and 

energy benefits were calculated by comparing to an aircraft with comparable advanced technology improvement. 

Resizing of turbomachinery, best mission segments for battery augmentation, and concepts of operation were 

considered. The studies were required to design a vehicle that could meet a current design mission range of 6482 km 

(3500nm) but were also encourage to scrutinize the impact of hybrid powertrains on shorter missions of 1667 km (900 

nm); these are the so-called economic missions that are the most common flight missions. 

 

A. UTRC Hybrid Geared Turbofan System 

Under contract to NASA, United Technology Research Corporation has conceptualized a parallel hybrid version 

of their geared turbofan engine. The parallel hybrid system utilizes a geared turbofan providing 106.8 kN (24,000 lbf) 

of thrust and 2.1 MW motor connected to the low spool tower shaft [5]. Keys to this design include an efficient bi-

directional control of power between the low spool shaft and a motor/generator as well as an advanced fuel plus fan-

flow thermal management. This arrangement allows the low spool to be powered by the low pressure turbine, or the 

motor, or any combination of the two. The electrical system would be used to provide boost power during takeoff and 

climb and this peak power shaving would result in a smaller core, which was expected to be 2.3% more efficient than 

a baseline geared turbofan at cruise conditions. Mission analysis and sizing of the system were performed using the 

Boeing N+4 Refined SUGAR aircraft model as a baseline. This boost configuration required approximately 1300 kW-

hr of energy storage. The electric powertrain and resulting vehicle efficiency were calculated based on a range of 

technology maturation assumptions. The ten-year horizon powertrain system was projected to provide a reduction in 

on-wing fuel usage and to break-even with respect to overall flight energy requirements for the 1667 km (900 nm) 

economic mission. Assumptions for 20-year improvements in system components, including battery system energy 

densities reaching 1000 kW-hr/kg, yielded concepts of operations with an overall energy improvement. These 20-year 

estimates resulted in a system benefit of 7 to 9 percent fuel burn reduction and a 3 to 5 percent energy reduction for 

the economic mission range of 1667 km (900 nm).      
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B. RRNA Variable Pitch Geared Turbofan System 

Under contract to NASA, Rolls-Royce North America has been exploring a parallel hybrid concept that they call 

the Electrically Variable Engine. The optimization of the parallel hybrid electric propulsion trade space was performed 

at the subcomponent level, the aircraft level, and the fleet management level with the Electrically Variable Engine 

technology [6]. These studies are finding energy savings through concepts of operation and are exploring mission 

optimization using battery power to drive fans for taxiing, idle decent, and take-off power augmentation. One key 

operational aspect was to always utilize maximize take-off weight and optimize the balance between battery and fuel 

weight for the desired mission range. This allowed the more common short range missions to maximize the mission 

energy coming from the batteries. Motor sizes between 1MW and 2.6 MW were considered. The result was up to 28% 

reduction in fuel burn for a 900 nm mission, and up to a 10% total energy reduction for a 500 nm mission. Optimizing 

for minimum fuel usage predicts an 18% reduction in total fleet fuel usage. The analysis also explored optimization 

for minimum total mission energy (fuel energy + electrical energy), CO2 production, or operational cost per flight. 

Notably, the system could not be optimized to minimize more than one objective at a time. For example a system 

optimized to minimize fuel burn consumed 1.5% more energy, cost 4.3% more, and emitted 7.2% more CO2 than a 

system which was optimized to minimize each of the other objective functions separately. 

IV. Turboelectric Aircraft Studies 

The NASA N-3X concept vehicle is a classic “technology collector” design. Here, a broad collection of advanced 

technologies was considered together to explore a possible upper boundary in aircraft development. This vehicle was 

envisioned to be fully turboelectric, use a cryogenically-cooled superconducting powertrain, and employ a blended-

wing body fuselage [7]. The concept analysis found significant fuel burn savings for an advanced aircraft compared 

to a 2005-baseline aircraft with nominally 20% of the improvements coming from the proposed turboelectric 

distribution. While these greatly advanced systems will continue to be the goal for future aircraft, electrified propulsion 

likely will be employed first in smaller aircraft and at lower power levels. A recent analysis considered a fully 

turboelectric powered aircraft for a conventional fuselage in the narrow-body aircraft class with state-of-the-art power 

components [8]. Not surprisingly, the aircraft did not close with net benefits and the size of the thermal management 

system was identified as one of the key technical challenges. Although a fully turboelectric powertrain offers the 

greatest configurational freedom, it may not be necessary to convert all of the turbine energy into electricity. A 

partially turboelectric powertrain, like a parallel hybrid powertrain, may allow some new propulsion-integration 

benefits with power systems in the one to two megawatt range rather than the 10 to 20 megawatt range. 

A. Tailcone Thruster Partial Turboelectric Aircraft 

NASA evaluated a tailcone thruster concept as one minimalist approach to partial turboelectric distribution. 

Version “A” of the Single aisle Turboelectric AiRCraft with Aft Boundary Layer ingestion (STARC-ABL) concept 

was publish in 2016 [9]. This narrow-body, commercial transport concept with a turboelectric propulsion system 

architecture was developed assuming entry into service in 2035 and compared to a similar technology conventional 

configuration. The turboelectric architecture consisted of two underwing turbofans with generators extracting power 

from the fan shaft and sending it to a rear fuselage, axisymmetric, boundary layer ingesting fan. An exploration of the 

design space was performed to better understand how the turboelectric architecture changes the design space. System 

sensitivities were run to determine the sensitivity of thrust specific fuel consumption at top of climb and propulsion 

system weight to the motor power, fan pressure ratio, and electrical transmission efficiency of the aft, boundary-layer-

ingesting fan. These results indicated that the turboelectric concept has an economic mission fuel burn reduction of 

7% and a design mission fuel burn reduction of 12% compared to the conventional configuration. These encouraging 

results warranted further analysis and a summary of the Version “B” STARC-ABL concept is presented below. 

 Two single-aisle commercial transport concepts were refined assuming an entry into service in the 2035 

timeframe. Both concepts, the advanced conventional configuration (N3CC) and the turboelectric concept (STARC-

ABL), utilized technologies that were assumed to be at technology readiness level (TRL) 6 by the year 2025, mission 

profiles that use advanced air space management, and were similar in wing-body configuration. Key differences 

between the concepts were the turboelectric architecture, the rear fuselage BLI fan employed by the STARC-ABL 

concept, and the T-tail empennage resulting from the rear fuselage fan placement. Having the greatest commonality 

between the concepts was determined to be the best way to evaluate the impact of the turboelectric propulsion system 

architecture with a rear fuselage BLI fan. Both the N3CC and STARC-ABL configurations were updated since the 

publication of Ref. 9. The changes include increasing the design cruise speed to Mach 0.785, modifying the wing 

sweep angle, using the NASA Glenn N+3 geared turbofan model [10] with core limited to greater than 2.5 lbm/sec, 

adding propulsion system weight estimates calculated using the Weight Analysis of Turbine Engines (WATE++) 
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code, and decreasing the underwing engine fan pressure ratio to 1.3. Additionally, the mission constraints were 

modified to provide comparable performance to N3CC, the onboard voltage was increased to 1000 volts, and better 

weight estimates were included for the thermal management system. The N3CC turbofan was resized to exactly match 

the thrust required by the vehicle and to conform to the 2.5 lbm/sec limit on compressor exit correct flow rate. Another 

significant improvement entailed use of a coupled aero-propulsive analysis with powered CFD; previously only a 

simple superposition of a BLI ducted fan (propulsor) and a clean tailcone flowfield was employed. The coupled 

analysis included the interaction between the aircraft and the propulsor that are not captured when the propulsor is just 

dropped on top of a previously computed aircraft only flow field. 

Fig. 2  Tailcone Thruster aircraft configuration with key propulsion and power system assumptions. 

Many of the key powertrain and propulsion system assumptions remained the same and are shown in Fig 2. The 

electrical system modeling assumed 9.7% overall system losses. At a component level, the assumptions correspond to 

on-going technology development activities [11]. The specific power and efficiency of the motor and generator were 

assumed to be 13.2 W/g and 96 percent, respectively. The specific power and efficiency of the inverter and rectifier 

were assumed to be 19 W/g and 98 percent, respectively. The distribution cables were assumed to weigh 3.9 kg/m and 

be 99.6 percent efficient. The tailcone propulsor was assumed to have a fan pressure ratio of 1.25 and a maximum 

power of 2.61 MW that would throttle down along with the underwing engines. 

Table 1  Aircraft system performance comparison. 

This new, higher fidelity assessment of the STARC-

ABL concept still identifies a net fuel burn benefit and 

an overall energy savings compared to the N3CC aircraft 

with same level of assumed technical advancements. The 

resulting aircraft performance parameters are compared 

in Table 1. Although the empty weight is higher for the 

new aircraft configuration, the takeoff weight is slightly 

lower. In this design, the weight of the third propulsor is 

balanced by downsizing the fan and nacelles of the 

underwing engines. The projected fuel savings is 2.7 

percent for a typical economic mission (1667 km or 900 

nm) and 3.4 percent savings for the full design mission 

of 6482 km (3500 nm). Separate higher fidelity analysis 

showed that wing circulation has a significant impact on 

amount of ingested fuselage boundary layer and suggests 

placing the fan at the aft-most position. This placement 

sensitivity may be one factor that favors a motor-driven 

shaft rather than a direct turboshaft. The powertrain 

weight is also highly sensitive to cable weight and thus 

relatively high distribution voltages will be required. 

Conversely, further improvements in the powertrain would provide additional energy saving; an additional fuel 
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savings of 4 percent is the upper boundary for no electrical transmission loss with everything else being equal. The 

comparison is likewise sensitive to the relative advancement of the advanced turbine engines. If turbomachinery 

improvements are greater than assumed, the advantage of tailcone thruster configuration would be reduced with 

everything else being equal. 

V. Continuing Evolution of Aircraft Concepts 

The previously discussed hybrid electric concept studies indicate that together mission, propulsion system, and 

energy storage optimization can improve the overall fuel burn or energy consumption. Similarly, the partial 

turboelectric aircraft analyses indicate that optimization of propulsion-airframe integration with energy distribution 

can improve vehicle energy consumption. However, these designs presume significant advancement beyond the state-

of-the art in the electrical powertrain components. Natural questions to ask are: 1) how realistic are these technology 

development assumptions, 2) when will these components and subsystems be available, and 3) how does the aerospace 

community focus their research efforts to reach these goals. As mentioned previously, and as described in Ref. 10, the 

technology assumption used in these recent studies for the electrical machines and power inverters are anchored by 

current technology development activities. Additionally, there is an ongoing investment in higher specific power and 

efficiencies for terrestrial power grid modernization and electrification of other vehicles. Table 2 illustrates the 

technology development needs that were identified by the system studies discussed in previous sections. Technologies 

that are foundational for multiple types of electrified aircraft, cells shaded green, are identified as high priority 

investments. 

 

Table 2.  Narrow-body electrified aircraft technology development needs for hybrid electric (yellow), 

turboelectric (blue), and technology common to both (green) 

Energy Storage Electrical Dist. Turbine Integration Aircraft Integration 

Battery Energy 

Density 

High Voltage Distribution Fan Operability with 

different shaft control 

Stowing fuel & batteries; 

swapping batteries 

Battery System 

Cooling 

Thermal Management of 

low quality heat 

Small Core development and 

control 

Aft propulsor design & 

integration 
 

Power/Fault Management Mech. Integration Integrated Controls 
 

Machine Efficiency & 

Power 

Hi Power Extraction 

 

 

The studies described in section III explored parallel hybrid powertrains and how batteries could be used to make 

narrow-body, transport aircraft more fuel and energy efficient. Similarly section IV explored options for using 

turboelectric, particularly partially turboelectric, powertrains in narrow-body aircraft classes. Each of these designs 

give insight into the component and subsystem requirements for this new class of aircraft. The convergence of aircraft 

design solutions and technology improvements encouraged the next aircraft questions. In 2016, NASA solicited 

proposals for the conceptual design of an advanced, narrow-body-class, commercial transport aircraft that featured a 

significant amount of electrical propulsive power. The purpose of this study was to evaluate both technology and value 

proposition of vehicles with expected entry into service specified to be 2035 or earlier. The required payload was 154 

passengers with a design mission of 6482 km (3,500 nm) and a design cruise speed of Mach 0.785. A frequent 

operation 1667 km (900 nm) economic mission was also identified. NASA required that the advanced electrified 

aircraft be capable of operating in the current infrastructure including Class C airport operations, that it should be 

designed to minimize mission energy use and life cycle carbon, and that it should show significant margins below the 

current stringencies for noise and NOx [12]. The infrastructure restriction was especially significant in this study 

because it disallowed recharging or swapping of batteries at the airport. The intent of this research program was to 

compare an advanced electrified aircraft to a conventional aircraft with the same technology level in order to determine 

what the benefits are and if they outweigh the weight, cost, and integration penalties associated with electrification. 

In addition, technology development approaches, safety issues, and certification challenges would be identified and 
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discussed. Finally, this research program would provide independent approaches to electrification of a commercial 

transport, which could be compared to the NASA STARC-ABL concept. 

Two contracts were awarded under the NRA Single-Aisle Hybrid Gas-Electric Aircraft Concept topic in 2017. 

One of the contracts was awarded to Rolls-Royce North American Technologies (LibertyWorks) partnered with 

Empirical Systems Aerospace (ESAero). LibertyWorks and ESAero proposed a concept that features a wing-

embedded distributed propulsion system that uses both mechanical and electrical power distribution for the propulsors. 

The concept configuration and wing-embedded propulsion system has some common features with the ESAero ECO-

150 concept [13], which was used as a starting point. In addition to the wing-embedded propulsion system, the concept 

also features boundary layer ingesting (BLI) electrically driven propulsors on the aft fuselage. The series/parallel 

partial hybrid system uses a battery to provide boost power during takeoff and climb and to supplement thrust for 

operations under 3000 ft to reduce NOx emissions. This contract is currently scheduled to end in July 2018. 

The second contract was awarded to Boeing, who had partnered with Rolls Royce LibertyWorks and the Georgia 

Institute of Technology. The Boeing team proposed a concept featuring a truss-braced wing and an electrically driven 

tailcone BLI propulsor. The Boeing concept’s two turbofan engines employ motor/generators capable of accepting 

boost power from the battery, providing electrical power to the tailcone propulsor, or providing power to recharge the 

battery. The concept configuration has some outward similarities to the STARC-ABL configuration; however, the 

hybrid-electric architecture of the Boeing concept is significantly different from the turboelectric architecture of the 

NASA concept. This contract is currently scheduled to end in June 2018. 

VI. Conclusions 

As a technical community, we have spent the last 70 years perfecting the tube-and-wing aircraft and the podded 

turbine engine. Although there will continue to be improvements in each of these separately, enhanced propulsion and 

airframe integration is likely to be the cornerstone of future aircraft. Rapid improvements in power electronics will 

continue to increase the efficiency, specific power, and overall power of aircraft electrical systems. A spiral approach 

to advancing aeronautics-focused electrical technology in concert with electrically-focused aircraft design will 

continue to move the aeronautics community towards a powerful future. 
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