

The LUVOIR Surveyor: Decadal Mission Concept Update

Matthew R. Bolcar, Jason Hylan, Julie Crooke and the LUVOIR Study Team NASA / GSFC

SPIE Astronomical Telescopes & Instrumentation Austin, TX 11 June 2018

Talk 10698-23

What is LUVOIR?

Large UV / Optical / Infrared Surveyor A space telescope concept in tradition of Hubble:

- Broad science capabilities
- Far-UV to near-IR bandpass
- Suite of imagers and spectrographs
- 5-year prime mission, extendable through serviceability and upgradeability
- Guest-observer driven

"Space Observatory for the 21st Century"

Ability to answer the questions of the 2030s and beyond

A Tale of Two LUVOIRs

• LUVOIR-A

- 15-m diameter segmented, obscured aperture
- Four instrument bays:
 - Extreme Coronagraph for Living Planetary Systems (ECLIPS-A)
 - LUVOIR UV Multi-Object Spectrograph (LUMOS-A)
 - High Definition Imager (HDI-A)
 - Pollux High-res. UV Spectropolarimeter (CNES Contributed)
- Designed to use SLS Block 2 launch vehicle with an 8.4 x 27.4-m fairing

• LUVOIR-B

- 8-m diameter segmented, unobscured aperture
- Three instrument bays:
 - ECLIPS-B
 - LUMOS-B
 - HDI-B
- Designed for a "conventional" 5 x 19.8-m fairing and heavy-lift rocket

The LUVOIR Study Team

- Science and Technology Definition Team
 - 25 voting members from community
 - 10 non-voting reps. of international space agencies
- Six Community Working Groups
 - Exoplanets
 - Cosmic Origins
 - Solar System
 - Simulations
 - Communications
 - Technology
- Four Instrument Teams
- Study Office located at GSFC and provides engineering design support

Organization

11 June 2018

LUVOIR Science

Imagine Astronomy with LUVOIR

Low-mass galaxy at z = 2Low-mass galaxy at z = 2with Hubblewith LUVOIR-A

Credit: G. Snyder (STScI)

11 June 2018

Solar System Remote Sensing

Pluto with HST

Pluto with LUVOIR-A

Credit: NASA / New Horizons / R. Parramon

11 June 2018

Imaging Earth 2.0

Modern Earth with LUVOIR-A

Credit: LUVOIR Tools / T. Robinson (NAU) / G. Arney (NASA GSFC)

Strategy for Habitable Exoplanets

B. Griswold (NASA GSFC)

Credit:

Ξ.

Exoplanet Yields in 2-year Survey

Color photometry, orbit determination, and spectroscopic search for water/methane Additional follow-up spectroscopy of promising planets

LUVOIR-A

Status Update

- Completed first iteration of architecture design last year
 - Full mission design: telescope, instruments, spacecraft, ground system, orbit, etc.
- After evaluating science yields, executed a redesign of Architecture A payload
 - Goal of improving exoEarth yields

Architecture A Redesign

- Optimized aperture geometry for compatibility with coronagraphs
 - Forced a redesign of the instruments to work with new prescriptions

Additional Changes to LUVOIR-A

- Changed coronagraph instrument design
 - Replaced point-source fiber-fed spectrometers with integral field spectrograph
 - Dramatic improvement in throughput and observing efficiency
 - Optimized channel transition wavelengths to take advantage of low-noise detectors in visible
- Updated thermal architecture to better support passive cooling of the instrument detectors
- Updated payload articulation concept to align centerof-gravity with center-of-pressure
 - Improved operations concept / reduced number of momentum dumps

Credit: D. Jones (NASA GSFC)

Flat, 2-3 Layer / Sunshade

Credit: D. Jones (NASA GSFC)

Stowed in a SLS Block 2 8.4 x 27.4-m Fairing

LUVOIR-B

Status Update

- LUVOIR-B originally planned to be a ~9-m onaxis design
 - "Scaled down" version of LUVOIR-A
- Following the yield issues on LUVOIR-A, we began to ask whether this design was viable
 - Simply scaling by D², a 15-m with 50 exoEarths implies a 9-m version would get ~18 exoEarths
- Study team set out to explore a series of trades to determine our options

ExoEarth Yields

Stowed in a "Conventional" 5 x 19.8-m Fairing

Credit: D. Jones (NASA GSFC)

LUVOIR-B Deployment Sequence

LUVOIR Instruments:

Extreme Coronagraph for Living Planetary Systems (ECLIPS)

ECLIPS Technical Overview

- Three-channel instrument allowing simultaneous observation:
 - Ultra-Violet (UV) (200 525 nm)
 - Imaging camera only
 - Visible (VIS) (515 nm 1030 nm)
 - Imaging camera + integral field spectrograph (IFS)
 - Near Infrared (NIR) (1000 nm 2000 nm)
 - IFS + High-resolution spectrograph (HRS)

Credit: J. Corsetti, Q. Gong (NASA GSFC)

11 June 2018

LUVOIR Instruments: High Definition Imager (HDI)

HDI Technical Overview

- Two channel instrument:
 - Overlapping 2' x 3' field-of-view
 - UVIS (200 nm 1.0 μm)
 - Nyquist sampled at 500 nm
 - NIR (~800 nm 2.1 μm)
 - Nyquist sampled at 1.0 μm
- Channel select mechanism allows for following modes:
 - UVIS channel only
 - NIR channel only
 - 50/50 beamsplitter
 - Dichroic (400-800 nm; 800-1.6μm)
 - UV-optimized

HDI-B Optical Design

HDI Detectors

• HDI-A

- UV/VIS (UVIS) = 6 x 4 tile of 8k x 8k, 6.5 µm pixels
 - 1.6 Gpix, 3.4 mas/pix
- NIR = 6 x 4 array of 4k x 4 k, 10 μ m pixels
 - 0.4 Gpix, 6.9 mas/pix
- HDI-B
 - UVIS = 3×2 tile of $8k \times 8k$, $6.5 \mu m$ pixels
 - 0.4 Gpix, 6.4 mas/pix
 - NIR = 3 x 2 tile of 4k x 4k, 10 μ m pixels
 - 0.1 Gpix, 12.9 mas/pix

LUVOIR Instruments:

LUVOIR UV Multi-Object Spectrograph (LUMOS)

LUMOS Technical Overview

- Two channel instrument:
 - 2' x 2' UV / VIS multi-object spectrometer using a microshutter array at telescope focus
 - Far-UV: 100 200 nm
 - Near-UV / VIS: 200 1000 nm
 - 2' x 2' Far-UV imager
- Point-source high-resolution spectrograph is also include on LUVOIR-B version
 - Pollux instrument includes this capability on LUVOIR-A

Mode	Band (nm)	R	Angular Res. [mas]
G120M	100-140	44,000	18
G150M	130-170	55,000	19
G180M	160-200	56,000	15
G155L	100-200	13,000	24
G145LL	100-200	~500	TBD
G300M	200-400	39,000	7
G700M	400-1000	39,000	10

11 June 2018

LUVOIR, SPIE 10698-23, Bolcar, Austin, TX

LUMOS-B Optical Design

Credit: K. France, B. Fleming (UC Boulder)

Summary

• LUVOIR-A

- Completed a redesign of the optical telescope element
- Working on updating instrument opto-mechanical designs
- Finalizing other observatory systems
 - Spacecraft, thermal management system, etc.

• LUVOIR-B

- Settled on an 8-m off-axis telescope design
- Developing instrument opto-mechanical designs
- Finalizing other observatory systems
 - Spacecraft, thermal management systems, etc.

Look Ahead...

- Finalizing engineering designs of both architectures by the end of Summer '18
- Preparing Concept Maturity Level 4 (CML 4) deliverables to NASA HQ in Fall '18
 - CML 4 deliverables due Jan. 2019
- Next spring, one of the two architectures will be costed by an external organization
- Final reports due to NASA HQ in June 2019 and to NAS in July 2019