

Dynamic Radioisotope Power Systems Development and Potential First Mission Utilization

S. Oriti, S. Wilson, M. Hickman, J. Zakrejsek I Salvatore.M.Oriti@nasa.gov I (216) 433-2066 I NASA Glenn Research Center, Cleveland, OH 44135

ABSTRACT

Dynamic power conversion offers the potential to significantly enhance Radioisotope Power System (RPS) performance. Potential improvements include higher conversion efficiency (more power per kg of Pu-238 fuel and less waste heat), low or zero degradation beyond fuel decay, and thus higher end-of-mission power. Degradation-free life of Stirling-cycle conversion has been demonstrated on the time scales required by several missions.

DYNAMIC POWER CONVERSION

- Stirling, Brayton, Rankine, Ericsson are suitable for space applications
- Conversion efficiencies demonstrated up to 40%
 Non-contacting bearings and seals (enables long-life continuous operation)
 Zero degradation via elimination of wear mechanisms
- Macroscopic engineering challenges (high-temp materials, high-cycle fatigue)

ADVANCED STIRLING RADIOISOTOPE GENERATOR (ASRG)			
Development Timeframe	2006-2013		
Heat Source	2 GPHS		
Power	140 W _e (DC)		
Efficiency	28%		
Conversion Technology	Free-piston Stirling		
Specific Power	4.4 W _e /kg		

CONVERTOR PERFORMANCE GOALS

Derived from Surrogate Mission Team input

Encompasses wide range of potential Planetary Science Missions

CATEGORY	GOAL
Design Life	20 years
Efficiency	>24% at T _{cold} >100°C
Specific Power	≥20 W _e /kg
Partial Power	Enables conversion-redundant generators
Size	Enables 200-500 W _e generator
Degradation	<0.5%/year
Hot-end Temp	<1000°C
Cold-end Temp	20-175°C
Random Vibe	Launch qual (14.6 g _{rms})
Static Acceleration	20g for 1 minute, 5g for 5 days
Radiation	300 krad
Robustness	Ample margins, tolerant of user error

RECENT CONVERTOR DESIGNS

	FLEXURE ISOTOPE STIRLING				
	CONVERTOR (FISC)				
	American Superconductor, Inc.				
	Power	70 W _e			
	Efficiency	31%			
k	Hot-end	650°C			
	Specific Power	21 W _e /kg			

CONVERTORS

NOTIONAL GENERATOR DESIGNS

8x convertors

PATH TO FLIGHT DEVELOPMENT

PHASE	DURATION	WORK FOCUS	TRL
1	6 months	Design	4
	D	ecision Gate 1	XA-1
2	18 months	Prototype Fabrication Performance Demonstration	4, 6
3	12-24 months	IV&V Test Support	6
	D	ecision Gate 2	

Specific Power 33 W _e /kg		
		Hot End Cold End
THERMO-ACOL CONVERTO Northrup Grumman A	JSTIC POWER DR (TAPC) Aerospace Systems	
Power	110 W _e	Alternator
Efficiency	26%	
Hot-end	700°C	Alternator
Specific Power	19 W _e /kg	

MISSION POTENTIAL

Power

- Dynamic power conversion has never been flown in space
- Analogous cryocoolers have operated for up to 20 years in space
- First mission could be much shorter than outer planets (3 yrs vs 20 yrs)
- Lunar mission as flight demo is viable
- Short cruise time, several destinations that require RPS, short mission duration
- For short missions, life with margin has been demonstrated at flight-prototype level
- For long missions (>15 years), demonstrating 2x life is unrealistic
- First mission must accept some amount of risk, which can be burned down

Date

TDC #13

TDC #14

Example perform

convertors show

- Flightlike Stirling convertors have operated in lab setting for over 12 years (at full temp and power)
- NASA GRC test article holds all-time world record for heat-engine runtime (>110,000 hrs)

0	-		
6			
		JP.	

Flexure-bearing Stirling convertor continuous operation test article

2010	2016	Test Article	Years of Operation	Test Article	Years of Operation
65.4 W	65.4 W	TDC #13	12.6	ASC-0 #3	8.3
64.5 W	64.5 W	TDC #14	12.1	ASC-E3 #4	3.1
		TDC #15	11.6	ASC-E3 #6	2.4
ance data of flexure-bearing ng degration-free life		TDC #16	11.6	ASC-E3 #9	1.6
				ASC-E3 #8	1.9
				ASC-L	4.0
				ASC-L	4.0

Example cumulative runtimes on flight-relevant Stirling convertors at NASA GRC

