

Using Board Games as Subject Matter for
Developing Expertise in Model-Based

Systems Engineering

Matthew Corrado

Georgia Institute of Technology
mattcorrado98@gmail.com

Kathryn Trase

NASA Glenn Research Center

216–433–8067
Kathryn.trase@nasa.gov

Copyright © 2018 by Matthew Corrado and Kathryn Trase. Published and used by INCOSE with permission.

Abstract. As more organizations transition from traditional document-centric systems engineering

to a model-based approach, many are challenged to train their staff in new languages, tools, and

methodologies, while managing the expectations of stakeholders and their expected model

outcomes. In particular, challenges associated with learning a new modeling language and

developing skills in the ‘art’ of modeling present organizations with formidable obstacles to

realizing this transition. This paper hypothesizes that systems engineers may more readily learn

how to correctly model with SysML, and develop intuition about the art of modeling and using

patterns, if their learning references a commonly and thoroughly-understood subject, such as a

board game. This paper presents a case for the use of board games as subject matter for new

modelers. It demonstrates the concept with a sample model of Hasbro’s popular board game,

Monopoly, and discusses the limitations of this approach and potential adaptations that may

broaden the applicability of the learned skills to projects. Finally, results from a small feasibility

assessment and concepts for more formal study to evaluate the hypothesis are presented.

Introduction

As organizations continue to transition their systems engineering tools and methodology to more

model-based methods, they face challenges in training staff in new languages, cultivating intuition

in the ‘art’ of modeling, addressing stakeholder needs via the models, and integrating the model

into current project management practices. In particular, challenges associated with learning a new

modeling language and developing skills in the art of modeling present organizations with

formidable obstacles to realizing this transition.

Training in the Systems Modeling Language (SysML) often references over-simplified sample

models of subject matters, of which learners may only have a cursory understanding. For example,

learners may know generally how an automobile (Friedenthal, Moore, & Steiner 2015) or

spacecraft (Deligatti 2014) operates, but are not typically experts in all aspects of those systems’

designs, or they may have different levels of understanding relative to their colleagues (whether

fellow modelers or not). Pilot projects, such as that described by Vipavets, et al., often face

challenges in proceeding to model at lower levels of detail than what was covered in initial training

courses due to the limited depth of concept coverage.

SysML is the current de-facto language standard for a model-based approach, but has been

identified as difficult to learn (Andersson et al. 2010) and difficult to specialize for a particular

domain, especially by systems engineers who may not be trained in such topics as knowledge

https://ntrs.nasa.gov/search.jsp?R=20180005540 2019-08-31T15:00:37+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/161999001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mattcorrado98@gmail.com

management and ontology development. Some (Voirin et al. 2015) have embarked on an approach

to develop custom, domain-specific languages (DSLs) to get around the hurdle of having to learn

new terminology and syntax, and make adoption more user-friendly. However, if SysML is to be

utilized until the development of community-accepted DSLs, then a learning approach that focuses

specifically on the language and the subtleties of the ‘art of modeling’ is necessary.

While some modeling practitioners have cited the importance of modeling with a purpose and

considering how the end stakeholder will use the information in the model (Hallqvist & Larsson

2016), there is a requisite learning period where new practitioners must simply be allowed to

explore the language and associated techniques. Only after having grasped advanced aspects of

the language and developing some confidence in successful modeling patterns can the new

practitioner be able to think critically about a specific stakeholder and how to implement their

concerns within the model content and structure.

Introductory aspects of SysML can be taught with top-level overviews of subject matters, but

acquiring more advanced skill in applying the language and associated modeling techniques

requires learners to have greater depth of understanding of the educational subject matter. By

selecting a subject matter that learners understand thoroughly to the lowest level, training efforts

can offer learning experiences that are more practically applicable to real project scenarios,

including: how to model at different levels of abstraction while maintaining traceability between

levels, or how to organize both the model and patterns to best achieve stakeholder objectives.

This paper makes the case for using board games as a commonly and thoroughly-understood

subject matter for teaching the more subtle aspects of SysML and the art of modeling, followed by

some example modeling of the game Monopoly by Hasbro, and finally, proposals for future

investigations to validate the hypothesis of accelerated and deeper learning.

Premise: MBSE Learning Can Be Enhanced by Modeling Board Games

Board games may be suitable subject matter for new modeling practitioners to utilize when first

learning to apply a modeling language and concepts. Most games are sufficiently multi-faceted in

that several modeling language constructs must be utilized to capture the full nature of the game.

These facets thus provide learners with opportunities to both apply several language constructs, as

well as determine how to provide traceability between constructs (e.g., from requirements to

behavior, or state machines to activities). While games may not necessarily be considered

“complex” by the systems engineering community’s technical definition, because they do not

consist of several parts that combine and transmit data in sophisticated ways (Ferreira 2001), one

could consider games to be sufficiently complicated and thus warrant methodical description, and

potentially analysis, via modeling.

By using a game as the modeled subject matter, students could focus their learning only on

modeling principles and techniques, without simultaneously trying to learn the subject (as may be

the case when an automobile engineer attempts to learn SysML using a model of a spacecraft, for

example). Peer tutoring and remote learning may also be more effective when familiar games are

utilized as model subjects. Presuming two people have played the same game, it would be easier

for the learners to intuit more subtle aspects of modeling rules and conventions by reviewing

models created by someone else. Sample models of games, even if the learner has not generated

the model him- or herself, may also prove more useful as an example or reference, given a

reasonably similar level of understanding of the subject matter. Learners would more readily be

able to identify when a description of the game (as modeled) does not align with their

understanding of its rules or behavior, and either discern a language or pattern subtlety, or identify

a modeling error or cheater.

In addition to simply learning modeling languages and constructs, games may also provide an

avenue toward learning more advanced modeling and simulation techniques. Game play could be

modeled in the system model, and more complex probabilistic or mathematical models developed

in external tools could be integrated with the system model to enable a higher-fidelity simulation.

The learner benefits from already having a sense of the expected simulation outcome (does the

simulation output match their experience in playing the game?), and can focus attention on learning

the tools and integrated simulation techniques.

Modeling games can also provide an opportunity to develop skills that would be utilized in

applying modeling techniques within a project environment. For example, skills in developing and

generating documents from the model could be practiced: in this analogy, the rules of the game

are to the players as the system requirements document is to the project. The learner can again

focus on learning the mechanics of preparing content for document generation or stakeholder

review, rather than also trying to learn the subject matter.

With a greater confidence in applying the language correctly and some intuition about the

appropriate way to model a topic, the learner may be better equipped to solicit input from

stakeholders regarding both the scope of the model and intended use of the information stored

within the model. However, this paper does not attempt to provide guidance on how the systems

engineer should decide which design aspects are the appropriate topics to model, in order to

address stakeholder needs.

Characteristics of Games Suitable for Modeling

The wide variety of games and their diversity of game play mechanisms provides plenty of

opportunities to apply different pillars of SysML, or emphasize some over others, and test

modeling patterns in different scenarios. While games with a single mechanism, such as “roll-and-

move” (found in Chutes and Ladders or Candyland, e.g.), may be too simple in concept to be

instructive on the details of SysML or provide coverage of most of the language’s pillars, games

with several mechanisms quickly become sufficiently complex to be candidates for learning

modeling techniques.

The gaming mechanisms themselves may be an interesting case study for learning how to develop

patterns (in this case, the game mechanisms) and adapt known patterns to a specific instance (i.e.,

to a particular set of games that each use that pattern but perhaps in a variant form). Table 1 lists a

few game mechanisms that may be extensible to real project scenarios and lists a few associated

modeling constructs.

Other characteristics of games suitable for modeling include, as a subset or in combination with

each other:

● Multiple players, game pieces or markers, and conditions for winning or losing

● Multiple types of interactions between players

● Variable player roles, levels of difficulty, rules, or initial game set-up or conditions

Table 1: Sample game mechanisms of interest for learning SysML and modeling techniques

(Adapted from Board Game Geek (n.d.))

Mechanism Description (adapted from Board Game Geek (n.d.))
Sample Modeling

Constructs

Trading
Players interchange game pieces, tokens, currency, etc.

between each other.

Interface definition

and constraints,

sequences

Set

Collection

Players work to achieve a specified combination of items

or conditions. Collecting or achieving a sets typically

results in award of points or game resources, or wins the

game.

Constraints, states,

objective functions

Variable

Player

Powers

Different role capabilities or features are assigned to

different players within the same game, such that each

player might play to variations of the main rules.

Variants, constraints,

requirements, states,

use cases, allocation

Deck/Pool

Building

Players start the game with a given deck or set of cards or

pieces, and add and/or exchange those pieces over the

course of the game, or multiple games. Some games

allow additional items to be “purchased” and

subsequently added to the set of cards. These new items

typically enhance the abilities of the player or rules of the

game in future sessions.

Architecture, context

or domain definition,

variants, constraints,

use cases, allocation

Chit-Pull

System

A player draws a random counter to indicate which group

of units may be moved during that turn. In some cases,

constraints may be placed on which type of units, the

quantity of units, or possible behaviors of those units, that

may be executed.

Activities, sequences,

states, allocation

Monopoly Example

A thorough discussion of the intricacies of a SysML model of Monopoly necessitates a discussion

of the qualities of Monopoly that make it a good candidate to model. First, the popular and widely

understood board game exhibits most, if not all, of the characteristics described above. In essence,

Monopoly is highly complex and widely understood, both of which need to be true of a game that

is to be used as a learning and teaching tool. In fact, Monopoly is perceived as so simple that

Hasbro recommends it for anyone who is at least eight years old, and most people are typically

exposed to it at that age (Jingles 2013). The game’s ubiquity affords it an advantage over similar

games: Monopoly only seems simple because a large number of people have a pre-existing

familiarity with it, as it is arguably one of the most popular board games of all time (Kismet 2017).

Without this familiarity, Monopoly would reveal itself as a complex system with moving parts,

competing objectives, interfaces, and more. Given the right amount of time, one could create a

SysML model that describes Monopoly using all of the pillars and diagrams of SysML. However,

for the purposes of this demonstration, many, but not all, of the possible modeling constructs are used.

Figure 1. Monopoly model containment tree

The structure of the SysML model of Monopoly, referred to hereafter as “the Monopoly model,”

is intended to analogize that of a model of a real system. In other words, each section, or package,

of the model represents a different concept or pillar that one would likely represent in a model of

an actual system. For instance, most SysML models capture requirements, block definition

representing the structure or architecture of the system, activity diagrams to describe the behaviors

of the system, and more. Refer to Figure 1, a view of the containment tree of the Monopoly model.

The Monopoly model was developed so that different aspects of the game of Monopoly represent

different pillars of SysML. These relationships are discussed in detail below. Samples of

Requirements, Block Definition, Activity, and Parametric elements corresponding to concepts in

the game are provided, and discussion of potential future work for Use Case, Internal Block,

Sequence, and State Machine elements follows.

Requirements

In the case of a game, the requirements (for play, game set-up, winning or losing, etc.) are found

in the rulebook. Rules can be modeled in the same fashion as technical requirements, as

demonstrated in Figure 2, which is an example requirements diagram that describes how the initial

money provided to each player shall be divided. In this case, Rules 1.1 through 1.7 are derived

from Rule 1, as indicated via the <<deriveReqt>> stereotype on the relationships. It would be

instructive to the learner, and typical of a real project discussion, to consider which SysML

requirement relationships should be used in the project and under which circumstances. In this

case, one may consider applying the <<Refine>> relationship as an alternative and compare the

options with project stakeholders to understand why one relationship type is preferred over

another. Even requirements numbering could be evaluated by the learner to assess whether one

numbering approach works better than another, and the applicable circumstances to which each

approach applies.

Figure 2 also illustrates how different cross-cutting modeling techniques can relate various SysML

pillars to each other. Figure 2 relates the act of providing the starting money to each player (an

activity) to the corresponding requirement being satisfied: a common modeling pattern used to

demonstrate all requirements have a specified function, and all functions relate to a specified

requirement. Similarly, Figure 2 describes a block that defines the architectural element that

satisfies the specified requirement; another modeling pattern. In a real engineering model, every

requirement should be satisfied by some other element in the model. In the Monopoly model, it is

Figure 2. Sample requirements diagram describing rules of the game

not always possible to show, through some measurement or action, that a rule has been satisfied.

However, there still are several cases in which this modeling technique can be practiced, as

described above.

Requirements could also be developed to capture constraints of the game, just as a system must

perform under a variety of operational constraints. For example, one rule in Monopoly could be

that there shall be a certain finite quantity of money circulating throughout the game at a given

time. This requirement could be satisfied by a constraint property representing the total amount of

money in the game, which could be found by summing the total value that each player and the

bank possesses.

Therefore, the rules of a game serve as an appropriate substitute for requirements in the scope of

the game-system analogy. While the rules of games, Monopoly in particular, are not always

extremely complex, there are a lot of opportunities to discuss subtleties, preferences, explore

alternative modeling approaches, and create meaningful relationships between the rules of a game

and other game characteristics. This process of modeling the rulebook of Monopoly then creates

an excellent environment to practice modeling real requirements and refining modeling approaches

to integrate them within the rest of the system model.

Block Definition

When modeling a game, the “structure” can be interpreted in more than one way and at multiple

levels of detail, just as a system may utilize numerous variations of “structure and hierarchy”

during the lifecycle (physical, functional, logical, organizational, etc.). The physical board and the

illustrations or “spaces” on it contribute to the game’s structure, but the players, cards, cash, and

“tokens” should also be considered within the game’s context to create a complete model.

Figure 3 defines each of these aspects as being part of the game’s context.

There are multiple ways the context described in Figure 3 could be represented, and it would be

instructive to the learner to explore these options and the rationale for choosing one approach over

another. Ideally, the learner could develop an intuition to know whether they should model with

one technique over another, according to their overall modeling objective - be it simulate a game

or define what comes in the box. For example, there are multiple types of cards described in
Figure 3: the student could evaluate whether there is any value to creating a generalization with

specializations for each type, and assess which stakeholders would use that information and for

what purpose. Or, the student could discuss any potential impacts the decision to create the

generalized card would impact the model organization, or the ability to query the model.

In the Monopoly model, the primary packages that contain the structure of the game are those titled

“Players and Pieces” and “Monopoly Board.” The former package contains basic definitions of

the different types of players that one can be in Monopoly. For instance, there are various tokens

that a player can choose to represent him or herself in the game. To define these tokens, it is best

to use a block definition diagram (BDD) like the one shown in Figure 4. Note that each of the

tokens are shown as specializations of the generic Token block, which enables the defined part

and value properties to be inherited by the tokens. These attributes would be necessary for potential

Figure 3. Sample block definition diagram of Monopoly Context

Figure 4. Token definition using a Block Definition diagram

future work to run a simulation of a game, or calculate the total value of money in circulation, for

example. If stakeholders were not interested in simulating a game, the learner would consider

whether those attributes are necessary, and whether the effort taken to detail each type of token is

appropriate.

The latter package, titled “Monopoly Board,” defines the structure of the physical board itself and

the individual spaces. The associated BDD contains each of the 40 spaces, or properties, on an

actual Monopoly board. Each space is then related to the Monopoly Board block via the part

property relationship. This relationship, displayed in a BDD as a line with a black diamond,

represents the idea that each of the spaces is a part of the board, and similarly, the board is the

owning element of each of the blocks. This diagram, shown on Figure 5, is one example of an

opportunity to work with part properties. The detail-oriented learner could go so far as to

enumerate each Community Chest or Chance Card, for example.

The Monopoly model can be utilized to explore more advanced modeling concepts, such as the

development of custom stereotypes. A <<monopolyBoardSpace>> stereotype is applied to each

of the real estate property space elements. This stereotype allows each of the spaces to inherit a

certain list of attributes typical of all Monopoly board spaces. The custom attributes of the

<<monopolyBoardSpace>> stereotype are price, color, and type, as shown in Figure 6. The color

and type attributes are also typed by custom value types, “Color” and “Space Type,” respectively.

Further stereotypes could be defined to group spaces by their space type, rather than simply

utilizing a value type, which could enable more detailed implementation of cash flows to support

a hypothetical simulation of a game, for example. The learner could assess either option in

consideration of their overall modeling goals and expected model output, just as they would in a

real project scenario.

Activities

The high-level package, titled “Game Play,” contains the behaviors utilized in playing the game,

represented as activities, and activity diagrams that convey the order in which the behaviors occur

as control flows. The primary activity that was modeled is called “Play Game,” seen in Figure 7.

This activity details the cyclical nature of playing a game of Monopoly at a top level. Figure 7

takes a player through all of the possible paths of one “turn.” A higher-level activity flow could be

utilized to set this behavior in a loop until some conditions are met, for example. The “Play Game”

activity makes use of several aspects of modeling activities, including merges, forks, decision

nodes, and event probabilities (in concept). Future modeling activities could integrate the system

model with an external tabulation of various event probabilities given a player’s location on the

Monopoly Board, further developing the learner’s skills in cultivating an analysis ecosystem.

While this diagram only conveys control flows, a learner could also consider the flow of cash or

pieces as represented by object flows to fully develop experience in applying activity modeling

techniques. Cross-cutting methods could also be explored via the use of swimlanes to represent

multiple players or the role of the bank, for example.

Figure 5. BDD describing the Monopoly Board and each space of real estate

Figure 6. Definition of the <<monopolyBoardSpace>> stereotype

Figure 7. Activity diagram of “Play Game”

Parametrics

The most appropriate aspect of the game of Monopoly that one can analyze parametrically is the

system of money. In the Monopoly model, this analysis is done in the package titled “Money.” In

Monopoly, numerous exchanges of money take place between the bank and the players and

between the players and each other. One could envision using the model to monitor and track the

money moving through this artificial economy. For instance, the Monopoly model contains blocks

that define the “tokens” that a player can use in a game. Therefore, there is a model element that

represents any player partaking in a game at a given time. This allows one to track the amount of

money or other specific assets that a player has obtained. To accomplish this, one can assign a

value property to these blocks that represents the amount of value (in money and assets) associated

with one player. Ideally, this value can be automatically updated based on other activities that

occur within model. For example, it is possible to track a player's actions during his turn and add

or subtract money or property to or from his token based on the path that he takes. At the end of

the game, it would be simple to determine who has the highest net worth (just look at the player’s

block).

Therefore, throughout the course of a game of Monopoly, players may easily calculate their net

worth in order to establish who is currently in the lead. This act of summation can readily be

represented in the model via the application of parametric “roll-ups.” In order to do a roll-up in

SysML, there first needs to be some property of some tiered system to aggregate. Figure 8

describes the approach taken to aggregate a player’s net worth, which consists of cash on-hand,

Figure 8. Definition of the tiers of value for a given player or token

Figure 9. Summation constraint block and recursive ‘Roll-Up’ pattern

property value, and the value of buildings located on that property. However, the value of some of

those parts is the sum of its own subparts, described in Figure 9 via the recursive “innerValue”

part property and “Money RollUp” constraint property. Using this pattern, given the worth of each

player’s cash, property, and buildings, it is possible to derive the total “net-worth” for the player.

The purpose of this section on parametric modeling is not to explain the concepts and algorithms

associated with a roll-up. Instead, it is to illustrate that the same tools used to model complex

systems can be used to model a game as simple as Monopoly. It is also worth noting that a roll-up,

a modeling pattern that can be applied to many different types of systems, necessitates the use of

several other previously-discussed modeling techniques. As such, parametric modeling is an

excellent method to gain experience in several of the pillars of SysML. Additionally, since most

games feature some sort of scoring system, it is almost always possible to build parametric models

of games, further highlighting their worth as MBSE learning tools.

This metric is useful not only for practice in creating roll-ups, but also because a player’s total

value has other important implications specific to the Monopoly model. For instance, earlier

discussion mentioned that certain requirements (or, in the case of the Monopoly model, rules) are

“satisfied” by elements or metrics external to the requirement. A parametric construct similar to

the example described above, with aggregation of all the money across all players and the bank,

could be used to satisfy the requirement that the quantity of money in circulation at a given point

must remain constant. The roll-up pattern is one example of several parametric approaches that

adds to the complexity of the model and enables more interesting aspects of the game to be

conceptualized and modeled in SysML.

Discussion of Further Model Content

While the samples above did not capture use cases, interface definition, state machines, or

sequences, each of these constructs could be utilized to more fully describe the game.

● Use Cases: Monopoly requires a player also take on the role of Banker, whose use cases

might include such functions as distributing money and real estate or levying fees. Regular

players key functions include making money, paying fees, and building real estate.

● Interfaces: Interfaces exist between players and the bank (as money and real estate are

passed back and forth), between players, and between board spaces, which constrain the

possible movement of players.

● State Machines: Monopoly has few technical game states, such as constraints on players

when they are in jail, but should the modeler consider the human element of the game,

additional states could be captured to represent a player in “spite mode,” who will not

accept any monetary offer for a property simply to prevent another player from owning it.

● Sequences: Over the course of gameplay, players exchange requests for money, submit

bids, and exchange responses.

Limitations of the Approach

While modeling games may improve a learner's ability to accurately utilize SysML and gain

insights into various modeling approaches, the premise does not provide full coverage of all

practical concerns in transitioning to a model-based approach to systems engineering. The basic

model of a game will not, without additional direction to the learner, provide an opportunity for

the learner to consider the implications of the iterative nature of system design, nor the motivation

to incorporate additional metadata or attributes to support the systems development lifecycle or

configuration management. Similarly, given there is no motivation other than accurately

describing the execution of the game, learners would not develop skills in strategically defining

and prioritizing the model’s scope, depth, or organization.

Both of these drawbacks could be mitigated by providing teams with different modeling “purpose

prompts,” and directing the learners to prioritize modeled content, format, and depth in

consideration of their prompt. Providing different learners or teams with different prompts, but

using the same subject matter (the selected game), could further enrich the discussion of the art of

modeling, as learners compare the impacts of various modeling decisions made in light of differing

priorities. Some rudimentary configuration management techniques could be introduced if the

selected game subject matter had a legacy feature, where each play permanently changes the board

and/or rules of the game: the modeling prompt could direct modelers to record the board or rules

update as a change request and ensure appropriate metadata is captured in the process.

Unless the learner works for a game development company, this approach has an additional

challenge in that the subject matter itself is not immediately relevant to the learner in their

workplace. A formal study would be necessary to assess whether this proposed learning approach

results in significant improvements in modeling capabilities that might outweigh the delay in direct

application of the skills to the project.

Feasibility Assessment Summary

The authors organized a short feasibility assessment with six members of the National Aeronautics

and Space Administration Glenn Research Center’s (NASA GRC) MBSE Working Group to

assess the hypothesis for further study. Before the modeling exercise, the participants were asked

to: 1) rate their modeling expertise (on a scale from “I’ve never modeled before” to “expert”); 2)

list how many SysML courses they had taken previously (on a scale from 0 to 3 or more); and 3)

describe their confidence in their ability to model activities with different levels of abstraction or

nesting (on a scale from “not confident at all” to “extremely confident”). The six participants were

given the following model prompt: “Create a behavioral model of the game Monopoly using

activity diagrams and associated elements. Generate model content that includes at least two levels

of activity abstraction or nesting (decomposition).” The participants were divided into pairs and

given the option of working in a modeling tool or simply drawing their activity diagrams on paper.

After 15 minutes of development time, the participants submitted their drawings or sample model

to the assessment organizer to review as a group.

The assessment organizer asked each group to review their model with the group and discuss why

they took their selected modeling approach. Following the brief model overview, the organizer

invited the other participants to ask questions or provide feedback to the presenting team. Each of

the three models covered the steps to set up and play the game, but each team added details in

different areas: the first group detailed the game set-up processes; the second group elaborated the

steps that define a player’s turn; and the third group took a more algorithmic approach that included

counters for dice values, board position, and number of turns. This model variety facilitated a rich

discussion between the participants, which included questions about the SysML notation, correct

application of the language, and use of the modeling tool. At the conclusion of the discussion, the

organizer asked the participants to again assess their confidence in modeling activities with

different levels of abstraction, and evaluate how confident they were, with more time to do

exercises similar to this, that their understanding of SysML would increase.

At the end of the feasibility assessment, the organizer shared the premise of this paper with the

participants, and invited discussion about the value of the exercise they had just completed with

this context. The participants noted that the majority of their discussion had focused on comparing

modeling approaches and model purpose, and there was very little discussion of the subject matter,

Monopoly. The organizer asked the participants to describe what they did or did not like about the

approach, and gave an opportunity to express any additional comments, questions, or concerns.

Finally, the organizer asked participants how likely they would be to recommend this hypothesis

for further study (on a scale from “1- not at all” to “5-very likely”).

Feasibility Assessment Results

Of the six participants, one had never modeled before, three rated themselves as novice

practitioners, and two rated themselves as seasoned practitioners. The participants had taken an

average of 2.3 SysML courses previously. Five of the six participants reported an increase in

confidence in their ability to model activities with different levels of abstraction after conducting

the exercise, while the sixth participant (self-designated a seasoned practitioner) reported they

remained extremely confident both before and after the exercise. When asked to assess their

confidence that their understanding of SysML would increase after further exercises similar to this

feasibility assessment, two participants indicated they were “somewhat confident” (the middle

rating), three said they were “quite confident” (the fourth-highest rating), and one said he was

“extremely confident” (the fifth and highest rating). On average, the participants rated their

likelihood to recommend the hypothesis for further study a 4.25, on a scale from 1 to 5.

Participants cited the ease of understanding the subject matter and its potential to be described in

varying levels of detail as aspects of the approach they liked. Most comments from participants

regarding what they did not like about the approach were related to the very short nature of the

exercise and the fact that it did not include any instruction prior to the group exercise. One

participant noted the difference between modeling a subject one understands very well, compared

to the real world, where projects are working to define a system that has never been created before.

The individual commented: “Modeling a known system can help you learn a tool and SysML, but

it won’t really help you learn how to engineer a new system while capturing it in a model (which

is difficult to teach).”

While this feasibility assessment was not conducted in a rigorous scientific manner, the authors

believe the effort did establish that the local MBSE community at NASA GRC is supportive of

further research and application of this approach.

Forward Work and Future Applications

In each of the existing Monopoly samples, additional detail could be added to further develop more

advanced modeling skills. One could capture more attributes of the game or enhance traceability

between elements. This increase in detail would aid modelers in developing skills in properly

abstracting concepts and maintaining consistency and traceability between levels of abstraction.

Additional value properties and constraints could be added to enable game simulation, and thus

develop skills in setting up more complex analyses, or interfacing the system model with other

mathematical modeling tools. Report templates or other communication tools could be written to

enable the outcome of such simulations to be generated from the model and transformed into a

more traditional document summary.

INCOSE could host tool vendor, chapter, and/or university demonstrations or competitions, where

teams would showcase their approach to modeling a game and discuss challenges and benefits of

specific modeling approaches or tool capabilities. Should multiple teams address the same game,

alternative modeling approaches would more readily be assessed and the lessons learned applied

to real world modeling problems.

Organizations could give different teams different objectives for building the model, and compare

differences in modeling approaches to help learners appreciate the ‘art’ of modeling. For example,

a model that is built with the intent to simulate game play and the accumulation of wealth may

devote more precision and effort to the behavioral language elements, such as state machines or

activities, than a model built to describe the rules of the game.

Lastly, game designers could consider developing models of their games tied to relevant

simulations, to test their selected arrangement of game mechanisms. Variants of the mechanisms

and attributes could be simulated to more quickly arrive at the most engaging balance of

complexity, with reduced reliance on human game testers and their subjective feedback.

For the game geeks among systems engineers, perhaps models may be a more instructive way to

learn both the rules of the game and winning strategies than traditional paper instructions

(documents!).

Acknowledgements

Monopoly subject matter used with permission. Hasbro does not sponsor or endorse the contents

of this paper. The authors would like to recognize the NASA GRC MBSE Working Group for

their technical review of this paper and willingness to participate in a feasibility assessment of this

modeling approach. The authors also thank Kyle Wolff for applying his love for games to the

review of this paper.

References

Andersson, H., Herzog, E., Johansson, G. & Johansson, O., 2010, ‘Experience from introducing

Unified Modeling Language/Systems Modeling Language at Saab Aerosystems’, Systems

Engineering 13, 369–380.

Delligatti, L., 2014, SysML Distilled: A Brief Guide to the Systems Modeling Language, Pearson

Education, Crawfordsville.

Ferreira, P., 2001, ‘Tracing Complexity Theory’, ESD.83 Research Seminar in Engineering

Systems, Massachusetts Institute of Technology.

Friedenthal, S., Moore, A., Steiner, R., 2015, A Practical Guide to SysML, Third Edition: The

Systems Modeling Language, Elsevier, Waltham.

Geekdo n.d., Board Game Geek, viewed 5 November 2017,

from https://boardgamegeek.com/wiki/page/mechanism/.

Hallqvist, J. & Larsson, J., 2016, ‘Introducing MBSE By using Systems Engineering Principles’,

INCOSE International Symposium 26, 512–525.

Jingles, R., 2013, ‘What Lessons Can Your Kids Learn from Playing Monopoly? My Chat with

Philip E. Orbanes, Author of Monopoly, Money, and You’, in Reaching for Greatness,

viewed 3 November 2017, from http://www.reachingforgreatnessguide.com/blog/.

Kismet, M., 2017, ‘The Top Ten Board Games of all Time’, in Hobby Lark, viewed 3 November

2017, from https://hobbylark.com/board-games/.

Vipavetz, K., Murphy, D. & Infeld, S., 2012, ‘Model-Based Systems Engineering Pilot Program

at NASA Langley’, AIAA SPACE 2012 Conference & Exposition.

Voirin, J.-L., Bonnet, S., Normand, V. & Exertier, D., 2015, ‘From initial investigations up to

large-scale rollout of an MBSE method and its supporting workbench: the Thales

experience’, INCOSE International Symposium 25, 325–340.

Biography

Matt Corrado is an undergraduate Aerospace Engineering student at Georgia

Tech. He has been engaged with MBSE since he started doing research in Georgia

Tech's Aerospace Systems Design Laboratory, and he has since moved on to

apply his MBSE skills to projects at several different organizations and

laboratories. As an intern at NASA Glenn Research Center in the Summer of

2017, Matt helped to build models and simulations for the Solar Electric

Propulsion project, and he has since been contributing to electric propulsion

experiments in Georgia Tech's High-Power Electric Propulsion Laboratory. Matt

plans to graduate with a Bachelor's Degree in the Fall of 2019 and pursue graduate studies the

following Spring.

Kathryn Trase received a Bachelor of Science in Industrial and Systems

Engineering from The Ohio State University in 2011. She has been with the

NASA Glenn Research Center for seven years. Kathryn has led MBSE

implementation in the Radioisotope Power Systems Program, Asteroid Robotic

Redirect Mission, and Solar Electric Propulsion testbed. She currently supports

the Orion Program. She is a member and former chair of NASA Glenn’s MBSE

Working Group and 2017 Past-President of the Cleveland-Northeast Ohio

Chapter of INCOSE.

https://boardgamegeek.com/wiki/page/mechanism/
http://www.reachingforgreatnessguide.com/blog/
https://hobbylark.com/board-games/

