Considerations for Development of a Total Organic Carbon Analyzer for Exploration Missions

ICES Paper 2018-185

Chad Morrison – KBRwyle Christopher McPhail – Anadarko Industries Shawn Schumacher – KBRwyle Michael Callahan – Crew and Thermal Systems Division, NASA JSC Stuart Pensinger – Crew and Thermal Systems Division, NASA JSC

Project Background

- TOCA is water monitoring technology critical to health and safety monitoring for regen water.
- There are gaps in the State-of-Art ISS TOCA versus exploration mission architectures/requirement, e.g., size, mass, consumables, sampling
- ECLSS community agrees an exploration-class TOCA is needed development effort added to water monitoring roadmap.
- AES miniTOCA Project intends to advance the technology readiness of an exploration-forward TOCA system through:
 - Phase 0 Technology Feasibility
 - Phase 1 Ground Demonstration Prototype
 - Phase 2 Flight Technology Demonstration (if valued)

TOCA History: How did we get here?

PCWQM – SS Freedom Process Control Water Quality Monitor

ISS TOCA1 – crit 3, for Russian and stored water analysis

Shuttle DTO, 1999

➢ ISS operation: 2001-2002

Project cancelled during post-Columbia return-to-flight

ISS TOCA2 – crit 1SR, required with U.S. Segment Regen ECLSS

Development phase: 2005 – 2007

Certification phase: 2008

ISS operation: 2008-present

TOCA for exploration missions

FY17 trade study started on mini-TOCA

> FY18 trade study, technology evaluation and testing

Mission Concept

The exploration mission concept is largely undefined.

- Mars transit
- Lunar surface
- Orbital outpost

Commonality is that they are NOT low-earth orbit.

- Premium on low launch mass
- Infrequent resupply capability
 - \rightarrow drives high reliability, low maintenance, long life

Deriving Driving Requirements for an Exploration-Class TOCA

Exploration TOCA Design Goals – Functional Performance

	Title	ISS Requirement	New TOCA Goal	Source/Rationale
	Accuracy	+/- 25%	+/- 25%	ISS precedent
	Precision	+/- 25%	+/- 10%	Provide reliable trending of data.
	Range [see next slide]	1 – 25 mg/L TOC	1 - 10 mg/L TOC Challenge: 0.25 - 10mg/L TOC	Exceeds detection of potability limit (5 mg/L)

TOCA History: Total inorganic /organic carbon (TIC/TOC) measurements from multiple water sources

Exploration TOCA Design Goals – Functional Performance

Water Sample Composition:

	Title	ISS Requirement	New TOCA Goal	Source/Rationale
	TIC content	up to 15mg/L TIC	up to 5mg/L TIC	No minerals added in regen water. Equilibrium of CO2 in air @ 2mmHg to water=~4.5ppm _{CO2} .
\bigstar	Conductivity	N/A	<10µS/cm	Water processor specification Not an HSIR or medical requirement
*	рН	N/A	рН 4.5 – 9	HSIR, MPCV70024, section 3.2.2.1 Note: TOCA may eliminate acidification if sample pH is <8 with no buffering capacity.
	Free gas	5%	0.1%	NASA-STD-3001 (although HSIR states 5%)

<u>Note</u>: Water composition may interfere with the analysis using certain technologies.

Exploration TOCA Design Goals – Resource Allocation

	Title	ISS Requirement	New TOCA Goal	Source/Rationale
*	Volume	4160 in ³ (actual)	< 1200 in ³	Notional reduction. Balancing achievable with return on development investment.
	Device Weight	80 lbs (actual)	< 25 lbs	Notional reduction. Balancing achievable with return on development investment.
	System Weight per 5- year ops	N/A	<35lbs	Includes device plus all consumables and unreclaimed water consumption
	Power Consumption	< 175 W avg. < 225 W peak	< 175 W avg. < 225 W peak	ISS precedent. AES vehicles will have reduced power availability than ISS.
	Sample Size	< 150mL	< 150mL	Any water returned to the water balance does not count against the requirement.
	Supply Gases	N2	N2 or O2 are acceptable	Compressed N2 and O2 can be utilized if favorable to overall design trades. Supplied H2 is not available.

Exploration TOCA Design Goals – Crew Time Allocation

*	Title	ISS Requirement	New TOCA Goal	Source/Rationale
	Analysis Time	190 mins	12 hours GOAL: less than 190 mins	No hard requirement. GOAL = less than ISS TOCA
	Analysis Frequency / yr.	N/A	60 analyses / year	Allows > weekly analyses per ops concept
	Crew Time for Analysis	< 15 mins / analysis	< 15 mins / analysis	No more crew time than ISS TOCA. Goal for inline, automated sampling. 1
	Crew Time for Maintenance	< 8 hrs / year	< 8 hrs / year	Includes consumable replacements and calibration.

1 Automated sampling should be traded with size, complexity. The current assumption is that automation reduces size due to large size of crewed interfaces.

<u>Forward Work</u>: Combine total resource and crew time into equivalent system mass calculation for future evaluation.

48th International Conference on Environmental Systems July 2018, Albuquerque, NM

Exploration TOCA Design Goals – Life

	Title	ISS Requirement	New TOCA Goal	Source/Rationale
	TOCA Lifetime	5 years with maintenance	10 years with maintenance	Match the entire life of TBD habitat to eliminate resupply costs. (Device life = ground assembly/certification + mission life)
	TOCA Cycle Life	1200 analyses with maintenance	600 analyses with maintenance	60 samples/year x 10 years
*	Component Shelf Life	1 year	> 3 years	assumes a minimum resupply frequency for maintenance components every 2 years.

Feasibility Studies

Potential sources for exploration TOCA technology include:

- Current ISS TOCA
- Original Crit3 ISS TOCA
- Commercial TOC analyzers (i.e. modify and fly)
- SBIR spaceflight TOC analyzer prototypes
- Future new development options

Why not use the ISS TOCA?

Size of existing TOCA cannot be reduced dramatically unless the electrochemical oxidizer is redesigned due to flow rates required

Advantages

- Proven environmental compatibility, range, accuracy, reliability, safety.
- Detection range: 0 25ppm TOC;
- Accuracy: +/- 25%; Reliability: >4.5 years of operation on ISS
- Maintenance: 1st maintenance and calibration occurred after 3.5 years (238 samples)

Disadvantages

- 80 lbs, 22 x 16 x 12 inches
- Not packaged for "in-line" potable water monitoring.
- Requires resupply and consumable replacement: manual waste water bag replacement every 6 samples; acidic buffer container replacement every 7 month or 46 samples.

ISS TOCA2 Developed 2005-2008 1st unit ops 2009-2013 2nd unit ops 2013-current

TOCA1 technology is also a possibility...

Designed by Sievers with Wyle/NASA

H x W x D, in. 8.9 x 19.3 x 16.3

Weight, lb. 54.1

Max. power, W 69.3 avg.; 93.2 peak

Criticality 3

Range: 0-25ppm TOC

Mission duration spec.:

RME, days90+ required/365 designISS, mos.12ISS evolution50 required/25 design

ISS, analyses 50 required/85 design

- 1. Size is still too large
- 2. 1 year life due to persulfate
- **3.** Tox 2 hazardous chemicals

TOCA1 in use on ISS October 2001

Are COTS TOC Analyzers an Option?

COTS TOC analyzers generally have at least one of the problems below

- Hazardous chemicals are used for acidification and oxidation.
- Reagentless analyzers employ mercury UV lamps.
- Reagentless analyzers are only compatible with purified water sources.
- Infrared CO2 detection requires gas-liquid separation typically employing gravity-dependent sparging.
- Conductivity-based TOC measurement requires an ultra pure water source.
- Additional CO2 separation membrane is required for conductivity detection to eliminate of noncarbon conductivity interferences.
- Non-spaceflight reliability and safety.

Millipore A10 TOC monitor

Hach

A1000

OI /Xylem Aurora UV Combustion or UV Persulfate / NDIR

Sievers M9

Can we utilize previous SBIR development?

- SBIR awards have produced two prototype TOC analyzers that were developed with goals for small size, no hazardous reagents, and microgravity compatibility.
- Prototypes were delivered to NASA in 2007 and 2011.
- NASA priorities at that time did not warrant continued funding to Phase III.
- Lessons learned and design solutions from the previous SBIR prototypes may be useful and are currently being investigated.

Assessment of ISS and Current Commercial Technologies: Summary

- Proposed AES TOCA requirements cannot be met directly by
 - ISS TOCA2
 - ISS TOCA1
 - Commercial TOC analyzers
 - SBIR prototype deliverables
- SBIR components will require additional evaluation and testing.
- Custom commercial work is costly and appears likely to lead to a "one off" device for an ISS demo, not a development of knowledge and capabilities for a sustainable flight project.
- Many subsystem/component technologies within the list above are attractive.
- The current focus is to evaluate available technologies for selection based on performance and cost.

Project Plan Technology Maturation

Technology Matrix Highlights

Acidification	Oxidation	CO2 Detection
Electrolytic anion removal	Mercury UV	Membrane conductivity (aq)
Electrolytic protonation	Excimer UV (172nm)	Raman spectroscopy (aq)
Electrochemical generation from salt	LED UV / catalyst	Laser Spectroscopy (aq) (absorbance or acoustic)
Chemical reagent	Combustion (catalytic 450-850C)	NDIR (gas)
	Boron-doped diamond electrochemical	Laser Spectroscopy (gas)
	Ozone	Methanizer/Flame Ionization (gas)
	Chemical reagent	UV/Vis spectroscopy (aq)
		Pulsed discharge detector (gas)
		Thermal conductivity (gas)

Technology Architectures: ED / UV / MC

Technology Architectures: UV/Raman

Technology Architectures: Combustion / NDIR or Combustion / TLS

Technology Architectures: Combustion(Polyarc[®]) / FID

Project Plan Technology Maturation

48th International Conference on Environmental Systems July 2018, Albuquerque, NM

Acknowledgements

- NASA Advanced Exploration Systems for seeing the need and opportunity to fund this development.
- Coauthors Mike Callahan, Stuart Pensinger, Christopher McPhail, and Shawn Schumacher for contributions throughout this project.
- Project partnerships at NASA-JPL with Aaron Noell, Richard Kidd, Margie Homer, and Murray Darrach.

Jet Propulsion Laboratory California Institute of Technology

48th International Conference on Environmental Systems July 2018, Albuquerque, NM