https://ntrs.nasa.gov/search.jsp?R=20180005683 2019-08-31T15:05:47+00:00Z

Utilizing the MADe Modeling Tool

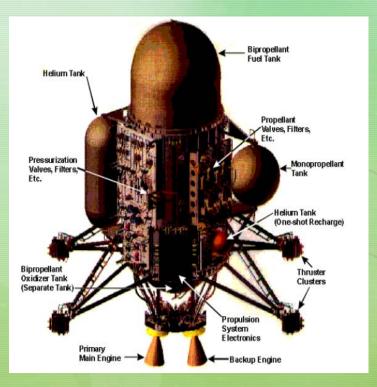
1

Youngjo Lim & Tony Odita Morgan State University

Advisor: Dr. Guangming Chen Morgan State University

Co-Advisors: Luis Gallo & Mahdi Alimardani NASA Goddard Space Flight Center

Research Goals


Reliability Analyses (FMEA, FMECA, Reliability Predictions, FTA, CIL)

- Efficiently re-usable.
 - Library of common Spacecraft subsystems and components
- Develop standardized formats
- Relate to systems engineering models.
- Verify consistency.

Why use MADe?

- What is it?
 - A modeling tool that allows users to generate a variety of analyses across different engineering domains.
 - Currently has 3 modules (SRA, RAM, PHM).
- What can it do?
 - Design & Safety: FMEA, FMECA, FTA
 - Reliability & Availability Engineering: RBD Analysis
- Why is it useful to us?
 - Pre-formatted reports
 - One file vs Multiple files
 - Vast and available resources (palette, library)
 - Versatile.

Real Life Applications in Aerospace

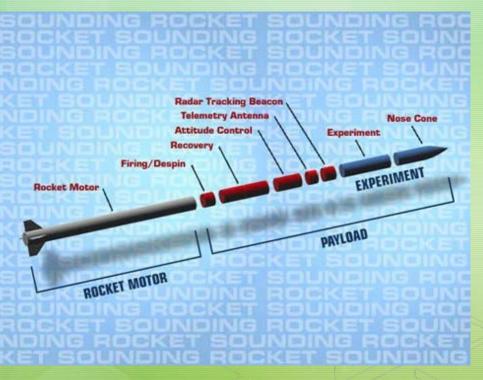


Figure 1: Propulsion System

Figure 2: Sounding Rocket System

Schematic Diagram

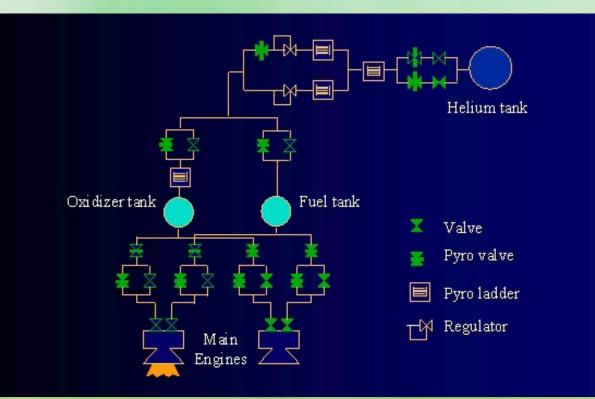



Figure 3: Propulsion System

Models in MADe

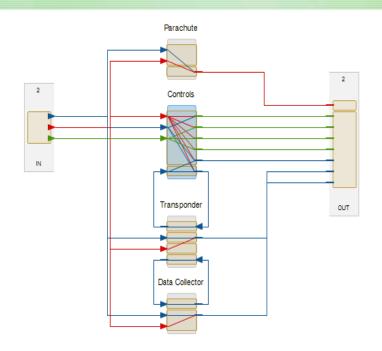
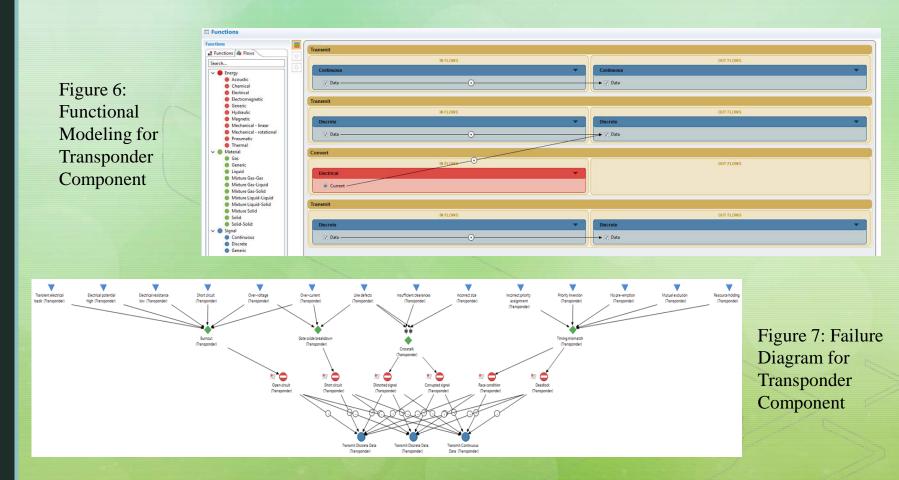



Figure 4: Propulsion System

Figure 5: Payload Subsystem of Sounding Rocket System

Features of MADe

Features of MADe cont'd

Y Failure Conditions - Circuit breaking of the Transponder X				😵 Criticality & Reliability Editor			
Failure Conditions Assign one or more Failure Conditions for Circuit breaking of the Transponder.				Researt Selection	Citizaliy y	Fanction Fore Litheology Sender Forthe Meal Facey Profes	¥
Compensating Provisions Detection Methods Failure Conditions Name Definition				 > ∎ Innit: > ⊕ Ergina: ✓ ⊕ Figlina! 		bifically of Detection	
	Degraded output Failure to cease operation	When an item produces an output flow but not of the required magnitude for ide When an item fails to cease functioning upon demand to do so.		 A BASE A Count S Control: 			1 3
	Failure to operate Intermittent operation	When an item fails to function upon demand to do so. When an item functions normally and then fails to function at regular or irregular				Courses	15
	Loss of output Premature Operation	When an item fails to provide output during operation. When an item functions earlier than it is prescribed to.			ortinuous-Data mi		8 10
	Other	Any other conditions of failure.		y in Felzy Dugari		lexity	12
						1 1 1 1 3 t 1 3	0 8 10
						low Cozaresce	15
Narrative							s 10
						Severity	120
OK Cancel						1 1 1 4 5 6 7 1	3 10

Figure 8: Additional Information on Failure Diagram

Figure 9: Criticality & Reliability Editor

Generated Reports

0.9999950 INHERENT AVAILABILITY

INDENTURE LEVEL

MTTF (HRS)

98,168,49

0.9999900

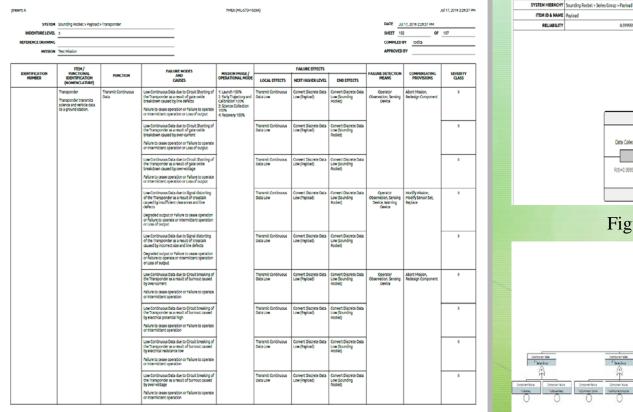
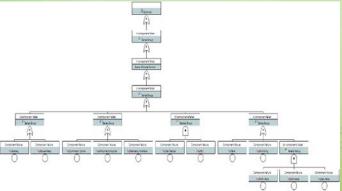


Figure 10: FMEA Report

PAGE 102 OF 107


 Series Group
 2 1

 Deta Colector
 Transponder
 Corticis
 Persohute

 Rity-0.3099055
 Rity-0.3099055
 Rity-0.5099055
 Rity-0.5099055

 Rity-0.3099050
 Rity-0.5099050
 Rity-0.5099050
 Rity-0.5099050

Figure 11: RBD Report

Figure 12: Fault Tree Analysis

У made

Challenges/Lessons Learned

- Navigation/Complexity Issues
- Continued development of Reliability Analyses in Aerospace.
- High importance in meeting regulation standards.
- Broaden the scope of describing and understanding component failures and faults due the library of failure causes and mechanisms.
- Modeling tool's vast potential.

References

Doody, D & Stephan, G. (1995, December). Basics of Space Flight Learners' Workbook. *Jet Propulsion Laboratory, California Institute of Technology*. Retrieved from https://er.jsc.nasa.gov/seh/spaceflt.pdf

Marconi, E. M. (2007, November 22). What is a Sounding Rocket? *NASA's John F. Kennedy Space Center and Wallops Flight Facility*. Retrieved from https://www.nasa.gov/missions/research/f_sounding.html

Williams, B & Nayak, P. (n.d.). *Model Based Autonomous Systems* [PowerPoint slides]. Retrieved from https://courses.cs.washington.edu/courses/csep573/98sp/lectures/lecture3/sld026.htm

Acknowledgements

The authors would like to thank the following people for their support.

- Nancy Lindsey
- Mahdi Alimardani
- Luis Gallo
- Guangming Chen

GSFC Risk & Reliability Branch Chief
GSFC Reliability Engineer
GSFC Reliability Engineer
Ph.D., MSU Professor, Graduate
Program Coordinator and Director of SEMI