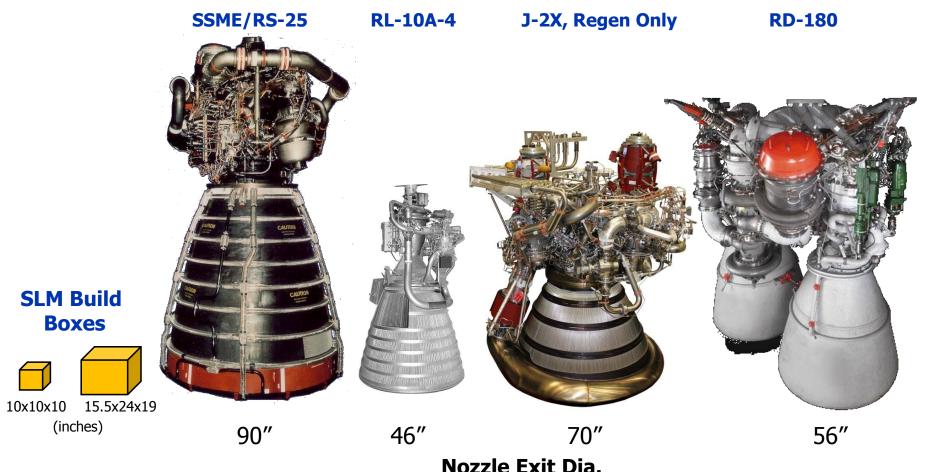

NASA Marshall (MSFC)

MARSHALL SPACE FLIGHT CENTER

Motivation for Channel Wall Nozzle (CWN) Technology

- Channel wall nozzles have been evaluated as a cost savings technology for current and future missions for a variety of engine programs
- NASA has evaluated and worked with vendors and contractors on fabrication of "traditional" large scale channel wall nozzles (CWN) on several programs over the last few decades
- Recent CWN manufacturing technology has been limited based on minimal investments and scale to mature technology
 - Current State of the art focused on brazing technology
 - GKN (formally Volvo) evolved the laser welded sandwich wall technology
 - Other domestic technology has limited public data available


Goal: Evaluate alternate manufacturing techniques to reduce fabrication cycle (and subsequent costs) and improve performance for large scale channel wall nozzles

What about using Selective Laser Melting for Nozzles?

Although new additive manufacturing machines are being introduced, current state of the art is limited in size...

Engine

Overview of Techniques

Liner Fabrication

- Forging
- Spin Forming
- Shear Forming
- Powder Metallurgy
- Freeform AM Deposition
 - Powder-based Laser
 - Wire-based Laser
 - Arc-based Wire
- Multi-Piece SLM
- Platelets
- Explosive Forming
- Coldspray
- Casting
- Vacuum Plasma Spray

Channel Forming/Slotting

- Slitting Saw
- End Milling
- Water Jet Milling
- Electro or Photochemical
- Plunge EDM
- Multi-Piece SLM
- Platelets
- Freeform AM Deposition

Channel Closeout and Jackets

- Pressure Assisted Braze
- Standard Atmosphere Braze
- Multi-Piece SLM
- Vacuum Plasma Spray
- Electroplating
- Coldspray
- Freeform AM Deposition
 - Wire-based Laser
 - Powder-based Laser
 - · Arc-based Wire
- Explosive Bonding
- Ultrasonic
- · Laser Welding
- Diffusion Bonding
- Platelets
- Casting
- Composite Overwrap

Manifold Application

- Wrought and Machined
- Freeform AM Deposition
 - Wire-based Laser
 - Powder-based Laser
 - Arc-based Wire
- · Multi-Piece SLM
- Platelets
- Casting
- Molded Composites

Deposition Techniques for Forming Liner Directed Energy Deposition (DED)

Liner Fabrication

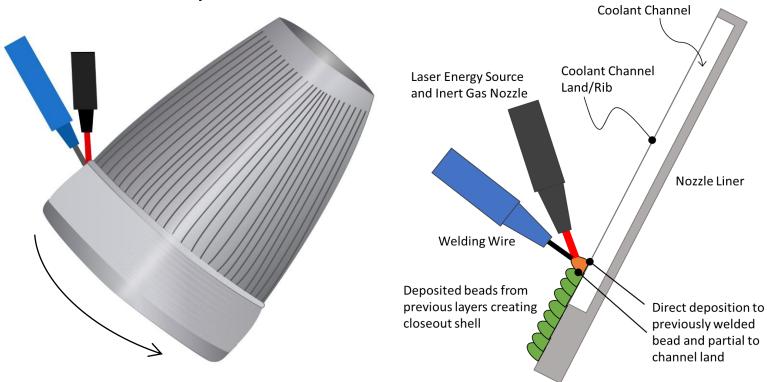
Arc-based Deposition Metal Direct Digital Manufacturing (MDDM)

 Provides high deposition rate (20+ lbs/hr) using wire-based arc welding techniques; near net shape deposition

Water Jet Milling

- Abrasive blind Water Jet Milling technique to form coolant channels (akin to slotting)
 - Low load technique, reduced wall thicknesses
 - Allows for easy milling of difficult materials in a variety of geometries
 - Current development to "mimic" features of slotting

Water Jet Milling, 25% thinner hotwall, no deformation



- Ability to hold +/- 0.001" in subscale applications
- Rougher surface finish that traditional machining, but acceptable during hot-fire and flow testing

Closeout – Laser Wire Direct Closeout

Channel Closeout and Jackets

- Laser Wire Direct Closeout (LWDC) is an additive technique that locally bonds a wire to the channel ribs and provides a structural jacket in place
 - Freeform welding process without need for filler
- Uses laser energy source and off-axis wire
- Complete bond at ribs and previously deposited layers
- No material "drop-thru" into channels

Closeout – Laser Wire Direct Closeout

- Demonstrated on a variety of materials including Inco 625, SS347, Bimetallic (Cu-Inco), Al-6061
- Allows for interim starts-stops and real-time inspection

CWN Techniques Hot-fire Tested

Nozzle #1

CRES 347 Forging

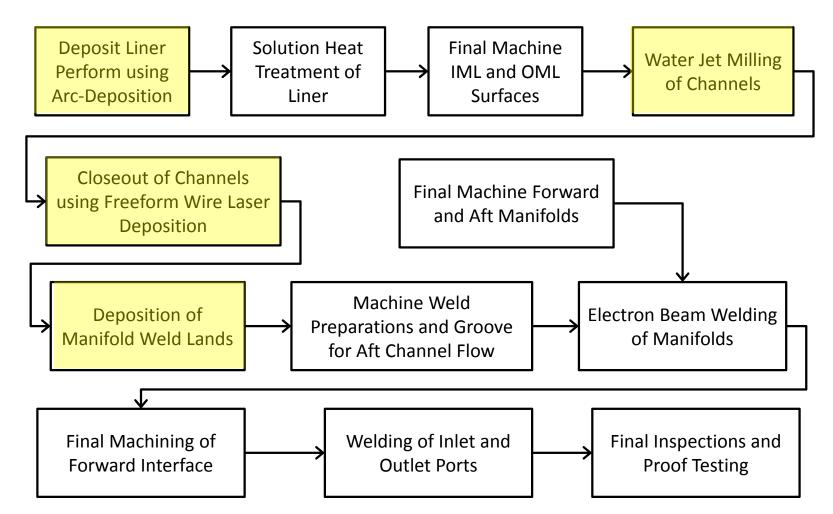
Water Jet Milled Channels

SS247 Laser Wire Direct Closeout (LWDC)

Nozzle #2

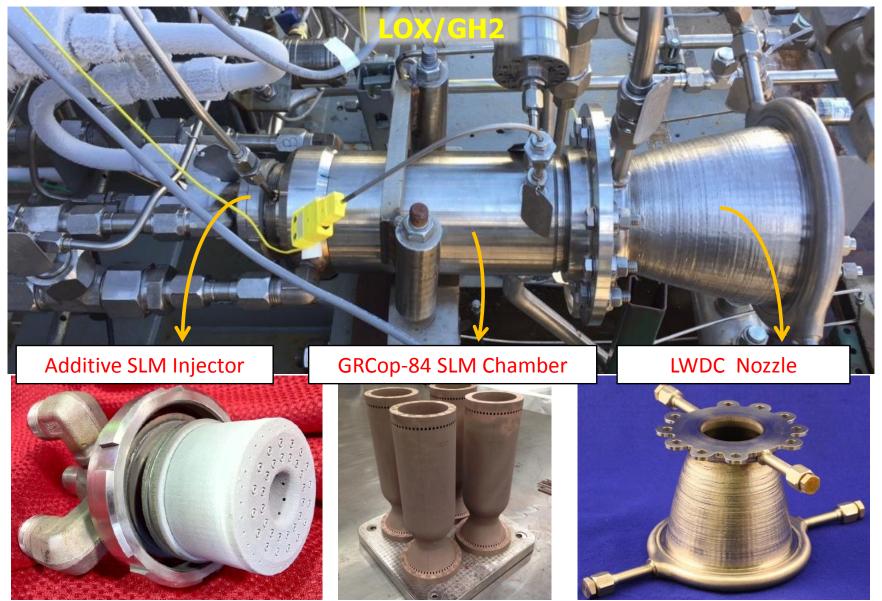
Inconel 625 Arc-Deposited Liner

Water Jet Milled Channels, Thin-wall


Inco 625 Laser Wire Direct Closeout (LWDC)

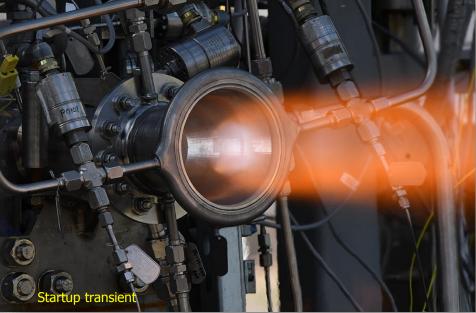

Fabrication Process for LWDC Nozzles

- Process for fabrication of Inco 625 Nozzle #2 shown
- Near net-shape deposition of liner and LWDC closeout significantly reduced machining required



Nozzle #2 - Inco 625 LWDC

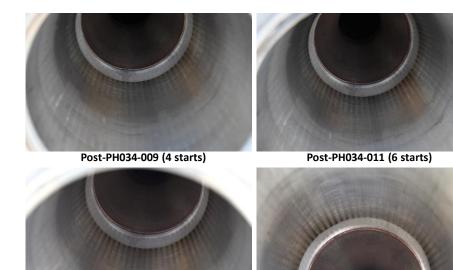
CWN Supporting Test Hardware All-Additive Thrust Chamber Assembly



Hot-Fire Testing of LWDC and DED Nozzles

- Completed hot-fire testing at MSFC TS115, November 2017 (PH034)
- LOX/GH2, Pc=800 psig and MR = 5.6 6.7 (1,200-1,500 lb_f thrust)
- Completed 13 hot-fire tests

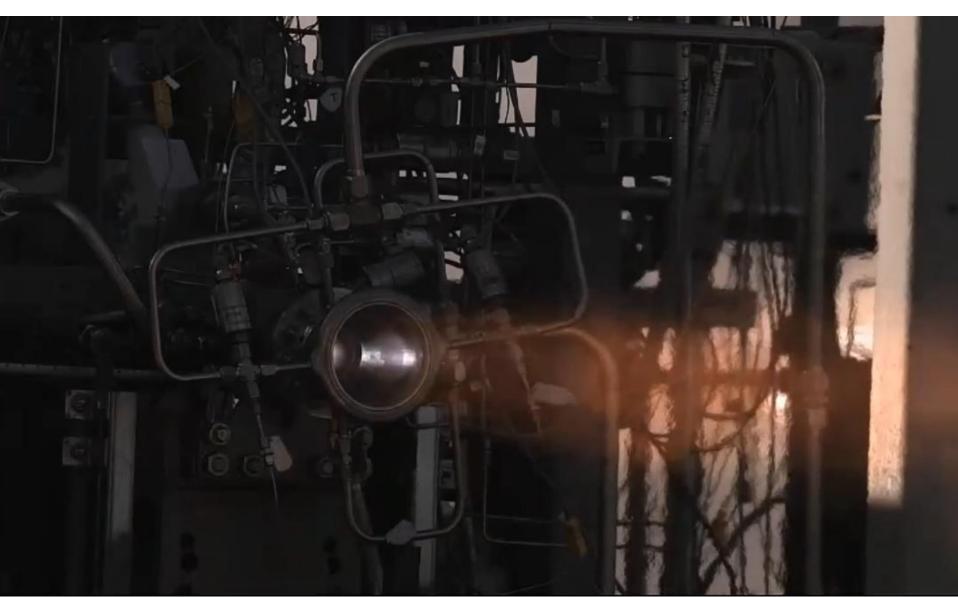
Nozzle Identifier and Technique	Starts	Accumulated Time (seconds)
Nozzle #1 - LWDC SS347	4	160
Nozzle #2 - LWDC Inco 625, Fully AM	9	880



Results of Hot-fire Testing

- ✓ No issues observed with arc-based deposited liner, material behaved as-expected at elevated temperatures and strain ranges
- ✓ Pressure-drop measured during hot-fire testing using water jet milled channels met predictions
- ✓ LWDC closeout performed as-expected during startup and steady state hot-fire loads

Post-PH034-014 (9 starts), 6 o'clock



Nozzle #2, LWDC with Arc-based Additive Liner

Post-PH034-014 (9 starts), 12 o'clock


Video of Hot-Fire Test

NASA

Conclusions

- New manufacturing technologies have been developed and advanced for use in channel wall nozzle applications
 - Deposition techniques offer alternatives for rapid forming liners
 - Material properties confirmed in mechanical test and hot-fire
 - Water Jet Milling offers an alternative to slotting for difficult to machine materials
 - Met pressure drop expectations
 - Laser Wire Direct Closeout (LWDC) offers a new method for closeout of nozzle and chambers
 - Demonstrated subscale hardware and process for fabrication
- NASA is continuing to invest in these technologies through Project Funding, IRAD, Space Act Agreements, SBIR/STTR programs and fabricating larger-scale hardware for testing
- The process is continued to be scaled up and hardware being developed
- Alternate materials being investigated including bimetallic hardware
- Data on techniques and vendors available to industry

Contact: Paul Gradl NASA MSFC 256.544.2455 Paul.R.Gradl@nasa.gov

Acknowledgments

- Cynthia Sprader
- Test Crew at TS115
- Bryant Walker Keystone
- Albert Hammeke Laser Tech
- Dan Alberts Ormond
- Judy Schneider UAH
- Dave Brasher HEMI
- Joe Sims ASRC Federal
- ProCAM
- Ken Cooper
- Jim Lydon
- Zach Jones
- Omar Mireles
- Dave Ellis
- Bob Carter

- Brad Lerch
- Ian Locci
- Jeff Clounch
- Craig Wood
- Steve Wofford
- Carol Jacobs (retired)
- Mike Shadoan
- John Fikes
- Jim Turner
- Gregg Jones
- Chris Protz
- Chance Garcia
- Jessica Wood

References

- Huzel, D. K. and Huang, D. H., Seebass, A. R. (ed.) Modern Engineering for Design of Liquid-Propellant Rocket Engines, Progress in Astronautics and Aeronautics, Vol. 147, AIAA, Washington, DC, (1992).
- Jue, F., and Kuck, F., "Space Shuttle Main Engine (SSME) Options for the Future Shuttle", AIAA-2002-3758, July 2002. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Indianapolis, IN. Bhat, B., Daniel, L. *Aerospace Materials and Applications*, Chapter 12. American Institute of Aeronautics (AIAA). 2018.
- Sutton, G. P., Rocket Propulsion Elements An Introduction to the Engineering of Rockets, 5th ed., John Wiley & Sons, New York, NY, 1986
- Fint, J., Kuck, F. and Sciorelli, F., 2005. "Development of Channel Wall Nozzles for Use on Liquid Propellant Rocket Engine". In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4371).
- Snoddy, J., Sides, S. and Lyles, G.M., 2002. "COBRA Main Engine Project". 1st AIAA/IAF Symposium on Future Reusable Launch Vehicles; 12 Apr. 2002.
- Jue, F. and Kuck, F., 2002, January. "Space shuttle main engine (SSME) options for the future shuttle". In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 3758).
- Sackheim, R.L., 2005. "Future Directions for Space Transportation and Propulsion at NASA". Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607. Jan 01, 2005. Frick, W. R. "Brazing handbook." American Welding Society, Miami (1991).
- Palmnas, U., Sharmanb, R., "GKNs Additive Manufacturing abilities and its applicability on rockets engine". *IAC-16.C4.3.5x35019. 67th International Astronautical Congress (IAC)*, Guadalajara, Mexico, 26-30 September 2016.
- Damgaard. Th., Brox, L., Hallberg, M., and Hallqvist, M. "Full Scale Demonstration of a Laser Welded Channel Wall Nozzle for the Vulcain 2 Engine", AIAA-2006-4369, July 2006.
- L. Brox, K. Lindblad, M. Wir, J. Haggander, M. Hallqvist, and U. Palmnas. "Hot testing of laser welded channel wall nozzles on Vulcain 2 Engine and subscale stage combustion demo". 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conference. (2011-5939). July 31 August 3, 2011.
- Rydén, R., Hallberg, M., Jensen, T., and Krebs, N. "Industrialisation of the Volvo Aero Laser Welded Sandwich Nozzle". 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conference. (2005- 4305). Tuscon, AZ. July 10-13, 2005.
- Protz, C.S., W. C. Brandsmeier, K. G. Cooper, J. Fikes, P. R. Gradl, Z. C. Jones, and C. R. Medina, D. L. Ellis,; and K. M. Taminger. "Thrust Chamber Assembly using GRCop-84 Bimetallic Additive Manufacturing and Integrated Nozzle Film Coolant Ring Supporting Low Cost Upper Stage Propulsion". *Paper presented at 65th JANNAF Propulsion Meeting/10th Liquid Propulsion Subcommittee*, May 21-24, 2018. Long Beach, CA.
- Gradl, P. "Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles". AIAA-2016-4771, Paper presented at 52nd AIAA/SAE/ASEE Joint Propulsion Conference, July 27, 2016. Salt Lake City, UT.
- Gradl, P.R., Greene, S.E., Brandsmeier, W., Johnston, M.I. "Hot-Fire Testing and Large-Scale Deposition Manufacturing Development Supporting Liquid Rocket Engine Channel Wall Nozzle Fabrication". Paper presented at 65th JANNAF Propulsion Meeting/10th Liquid Propulsion Subcommittee, May 21-24, 2018. Long Beach, CA.
- Gradl, P.R., Greene, S.E., Protz, C., Bullard., Buzzell, J., Garcia, C., Wood, J., Cooper, K.G., Hulka, J., Osborne, R. "Additive Manufacturing of Liquid Rocket Engine Combustion Devices: A Summary of Process Developments and Hot-Fire Testing Results". 54th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, (AIAA-2018). July 9-12, 2018. Cincinnati, OH.
- Gradl, P.R., Reynolds, D.C. and Walker, B.H., National Aeronautics and Space Administration (NASA), 2017. Freeform deposition method for coolant channel closeout. U.S. Patent 9,835,114. Issued December 5, 2017
- Gradl, P.R., Brandsmeier, W. Alberts, D., Walker, B., Schneider, J.A. "Manufacturing Process Developments for Large Scale Regeneratively-cooled Channel Wall Rocket Nozzles". *Paper presented at 63nd JANNAF Propulsion Meeting/9th Liquid Propulsion Subcommittee*, December 5-9, 2016. Phoenix, AZ.
- Gradl, P.R., Greene, S. E. "Channel Wall Nozzle Testing: Test Summary Report for Test Program PH034". NASA Marshall Space Flight Center. 2 February 2018.
- Gradl, P., Greene, S.E., Protz, C., Ellis, D.L., Lerch, B., Locci, I.E. "Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications". 53nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum. Atlanta, GA. July (2017).
- Gradl, P.R., Valentine, P.E. "Carbon-Carbon Nozzle Extension Development in Support of In-Space and Upper- Stage Liquid Rocket Engines". 53nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum. Atlanta, GA. July 10-12. (2017).
- Garcia, C.P., Gradl, P.R., Protz, C.S., Wood, J., and Greene, S. E. "Characterizing Performance of Additively Manufacturing Regenerative Cooled Combustion Chambers through Hot Fire Testing". Paper presented at 65th JANNAF Propulsion Meeting/10th Liquid Propulsion Subcommittee, May 21-24, 2018. Long Beach, CA.
- Gradl, P.R., Greene, S.E., Brandsmeier, W. "Channel Wall Nozzle Manufacturing and Hot-Fire Testing using a Laser Wire Direct Closeout Technique for Liquid Rocket Engines". 54th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, (AIAA-2018-4860). July 9-12, 2018. Cincinnati, OH.