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Additive Manufacturing (AM) Overview

• Additive Manufacturing (AM) is an emerging 
technology with a focus on complex metallic 
component fabrication
– Enables complex shapes and internal features that were not 

possibly with traditional manufacturing techniques

– Significant schedule and overall lifecycle cost reductions 

• To date at the NASA Marshall Space Flight Center 
(MSFC), combustion devices component hardware 
ranging in size from 100 - 35,000 lbf has been 
designed and manufactured using AM and many 
of these pieces have been hot-fire tested.   
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Metal AM Processes:
Powder Bed Based 

• Selective Laser Melting (SLM) 
– Basic Process: Uses a layer-by-layer 

powder-bed approach in which the 
desired component features are 
sintered and subsequently solidified 
using a laser. Used widely in 
combustion devices applications.

– Advantages: Allows for high 
resolution, fine features, including 
complex internal designs to be 
fabricated, such as cooling channels

– Disadvantages: The scale for SLM is 
limited and does not provide a 
solution for all components

• Electron Beam Melting
– Basic Process: Similar to SLM, but uses 

an electron beam instead of a laser. 
Not frequently used in combustion 
devices applications. 

– Advantages: Build is performed under 
vacuum, which can be useful for 
reactive materials such as titanium 
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SLM Fabrication Process Overview.
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Metal AM Processes: 
Directed Energy Deposition (DED)

Freeform fabrication technique focused on near net shapes as a forging or 
casting replacement and also near-final geometry fabrication. Can be 
implemented using powder or wire as additive medium. 
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Blown Powder Deposition / Hybrid

Melt pool created by laser and off-axis 

nozzles inject powder into melt pool; installed 

on gantry or robotic system

Electron Beam Deposition (wire)

An off-axis wire-fed deposition technique using 

electron beam as energy source; completed in 

a vacuum.

Laser Wire Deposition

A melt pool is created by a laser and uses an 

off-axis wire-fed deposition to create freeform 

shapes, attached to robot system

Arc-Based Deposition (wire)

Pulsed-wire metal inert gas (MIG) welding 

process creates near net shapes with the 

deposition heat integral to a robot
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Overview of Additive Manufacturing 
Component Focuses 
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AM Thrust Chamber Injectors:
Overview 

• MSFC has developed a total of 10 unique AM 
injectors between 2012-2018
– Materials: Inco 625, Inco 718, Monel K-500
– Element Types: swirl coax, shear coax, FOF
– Number of Elements: ranging from 6 to 62
– Diameters: ranging from 1.125” to 7.5” 
– Hot fire tests performed on 7 of these 10 AM 

injectors

• To date, all MSFC injector designs have been 
manufactured with a powder-bed process.  

• Advantages of AM application to injectors:
– Reduction of reducing part count, braze/weld 

operations, cost, and schedule
– Allows non-conventional manifolding schemes and 

element designs

• Challenges of AM fabrication of injectors: 
– Feature size resolution (particularly radial to the 

build direction)
– Excessive surface roughness 
– Removing powder prior to heat treatments (even 

stress relief) is both necessary and challenging
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100lbf LOX/Propane Nanolaunch

Injector. Built 2012. Tested 2013. 

1.2K LOX/Hydrogen Injector 

First Tested in June 2013. 

>7200 seconds hotfire

20K LPS Subscale Injector. 

Tested August 2013 

Methane 4K Injector with printed 

manifolds, parametric features. 

Tested Sept 2015.

LOX/Methane Gas Generator 

Injector, Tested Summer 2017
35K AMDE Injector with Welded 

Manifolds, Tested 2015



Additive Manufacturing of Liquid Rocket Engine Combustion Devices     |     54th AIAA/SEA/ASEE Joint Propulsion Conference 2018

AM Thrust Chamber Injectors: 
Test Evaluations 

• Pathfinder approach for comparing AM against conventionally machined injectors 

– To evaluate structural and performance capabilities of AM in liquid rocket injector applications, two 
early test programs were initiated at NASA MSFC to directly compare the operating characteristics of 
conventionally manufactured 20 Klbf LOX/H2 swirl coaxial element injectors to those of similarly 
designed SLM manufactured injectors.

– Results of hot-fire testing showed characteristic exhaust velocity efficiencies for the two different 
manufacturing techniques to be within measurement error.  

• Follow-on efforts included successful hot fire test firings of a range of element types (swirl 
coaxial, shear coaxial, impinging), propellant combinations (LOX/H2, LOX/CH4, LOX/C3H8), and 
thrust classes (100 lbf to 35K lbf) to validate AM use in these applications. 
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Water Flow of the AMDE Injector LOX Circuit; Hot Fire Test of the AMDE Injector. Four Thrusters with 1200 lbf Shear Coaxial Injectors.

Stable performance of AM Injectors and Efficiency Approaching Traditional (98-99%)
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AM Combustion Chambers:
Overview 

• MSFC has developed over 10 unique AM chambers between 2013-2018
– Materials: Inco 625, Inco 718, GRCop-84, C-18150, Monel K-500 

– Propellants: LOX/GH2, LOX/LCH4, LOX/RP-1

– Additive Process: SLM and SLM/DED

– Over 110 starts and 6100+ seconds of hot fire test. 

• Chambers have been fabricated using SLM powder bed AM technique, with a few 
test articles incorporating DED techniques for a bimetallic end product.   
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Total Accumulated Hot-fire Time on Copper-alloy Chambers = >6100 sec

20172016 2018

META4

26 sec

1.2K Workhorse

2365 sec

MET1

25 sec

LOX/RP1 Faceplate

25 sec

LCUSP 3.0

45 sec

1.2K Commercial 

Liners

2500 sec

LCUSP 2.2

102 sec

META4 #2

134+ sec

Feasibility Hardware

2013 – 2015



Additive Manufacturing of Liquid Rocket Engine Combustion Devices     |     54th AIAA/SEA/ASEE Joint Propulsion Conference 2018

AM Combustion Chambers: 
Methane Engine SLM Chamber Development

• Inco 625 Pathfinder:  Included pressure and 
temperature ports along the length of one 
coolant channel to gather critical data for 
thermal models. 

• META4:  Full-length, regeneratively cooled 
GRCop-84 chamber developed for LOX/LCH4 in-
space applications; fabricated in two sections 
and welded together due to SLM build height 
limitations

• META4X4:  Second iteration of META4 concept; 
same thrust level but smaller package with a 
bolted center interface in place of a welded joint 

• MET1:  Scaled down approach from META4 for 
smaller in-space missions or for clustering 
together to provide multiples of 1 Klfb thrust; 
could be printed in one build with no mid-
section interface 
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AM Combustion Chambers:
Workhorse SLM Chamber Development 
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• NASA MSFC built a series of SLM workhorse chamber liners 
to allow liners to be rapidly tested and changed in a 
simplified test bed to demonstrate various materials. 
– Objective of liner tests was to complete cyclic testing on material 

and demonstrate SLM lifecycle. Liners were successfully tested and 
did not show indications of erosion even with wall temperatures 
over 1,000 °F.  

– A total of three chambers were tested: two manufactured from 
GRCop-84 using different SLM build parameter settings and one 
from C-18150. 

– Designed for water-cooling, LOX/GH2 and 1,200 – 1,500 lbf. 

– Chambers were fabricated at MSFC and from commercial vendors. 
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AM Combustion Chambers:
Bimetallic AM Combustion Chambers 

• The Low Cost Upper Stage-Class Propulsion 
(LCUSP) project developed SLM fabrication of 
GRCop84 and DED Electron Beam Free Form 
Fabrication (EBF3) with Inco 625 manufacturing 
technologies to produce a combustion 
chamber at a lower cost and schedule. 
– Chamber was designed and fabricated by MSFC, 

GRC, and LaRC, and hot-fire tested at MSFC. 
– LOX/LH2, nominal thrust of 35,000 lbf.
– Demonstrated key manufacturing technologies in a 

relevant environment, taking the AM LCUSP 
chamber and the one piece AM cooled nozzle to 
100% of design conditions.

11

LCUSP Unit Between EBF3 Deposition Steps



Additive Manufacturing of Liquid Rocket Engine Combustion Devices     |     54th AIAA/SEA/ASEE Joint Propulsion Conference 2018

AM Channel-Cooled Nozzles:
Overview

• NASA is investigating AM methods for targeting increased scale required for 
current NASA and commercial space program channel wall nozzle applications. 

• Channel-cooled nozzles present a unique manufacturing challenge due to the 
scale and complexity required at these scales.
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90” 46”
Nozzle Exit Diameters

70” 56”

SSME/RS-25

J-2X, Regen Only
RD-180

RL-10A-4

Current AM 

Build 

Boxes

10x10x10 16x24x19
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• NASA is evolving scale of nozzle hardware through additive new 
additive manufacturing technologies
– Current SLM technology limited to ~16-inches (400mm)
– Developing new processes using DED processes

• Blown Powder Deposition, Laser Wire Closeout, Arc-based Deposition
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AM Channel-Cooled Nozzles:
Evolution to Large-scale

Hot-fire testing of “maximum” scale SLM Inco 625 nozzle on LCUSP chamber

Large Scale DED Techniques for Forming Nozzles and Chambers
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AM Channel-Cooled Nozzles:
Development at MSFC

• Several AM methods are being 
investigated for forming the inner liner, 
producing the coolant channels, and 
fabricating the manifolds and 
combinations of channels and manifolds: 
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Liner Formed using Arc-

Deposition Additive
Laser Wire Direct Closeout

Arc-based additive deposition and LWDC integrated into channel wall nozzle for hot-fire.

DED Blown Powder Nozzle and DED 

Nozzle during feasibility hot-fire test.

Nozzle Component Description Propellants
Additive 
Process Material Starts

Hot-fire 
Time (sec)

1,200 lbf LWDC Regen Nozzle, PH034 LOX/GH2 LWDC SS347 4 160

1,400 lbf LWDC Regen Nozzle, Additive Liner, PH034 LOX/GH2 LWDC Inco 625 9 880

Integrated Nozzle Film Coolant Ring (INFCR), PF086 LOX/GH2 SLM Inco 625 12 147

1,200 lbf DED Regen Nozzle, PH034 LOX/GH2 DED Inco 625 1 15

800 lbf Radiatively-cooled Nozzle, PD020C LOX/GH2 SLM Inco 718 1 30

TOTAL 23 1232

– Laser Wire Direct Closeout (LWDC)

– Arc-Based Wire Deposition

– Blown Powder Deposition (BPD)

– Selective Laser Melting (SLM)
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AM Augmented Spark Igniters

• AM of Augmented Spark Igniters (ASI) has 
been targeted as a potential upgrade for 
the RS-25 engine. The use of hybrid 
DED/CNC process allows for the bimetallic 
copper and nickel alloy design to be 
fabricated through an AM process. 
– Approach offers the advantage of smooth, 

machined finishes in locations that are not 
possible with SLM
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Photos taken during the BPD build process of the prototype RS-25 ASI.

Bi-metallic prototype of the RS-25 ASI, built using hybrid 

manufacturing. 

ASI Description Propellants
Additive 
Process Material

Start
s

Regen-cooled ASI, AR-1 LOX/LH2 SLM Inco 625 11

Regen-cooled ASI, AM-3 LOX/LH2 SLM Inco 625 16

Baseline ASI, AR-B-1 LOX/LH2 SLM Inco 625 15

Baseline ASI, AR-B-2 LOX/LH2 SLM Inco 625 21

Regen-cooled ASI, API-1 LOX/LH2 SLM Inco 625 13

Hybrid, Bi-metallic ASI LOX/LH2 Hybrid Inco 625 / C18150 33

TOTAL 109
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Summary

• Numerous combustion devices components – injectors, combustion 
chambers, channel-wall nozzles, and augmented spark igniters – have 
been designed and built using AM and hot-fire tested over the past 8 
years at NASA MSFC.
– Component level and integrated system level testing in a variety of 

propellants have been conducted and performance derived from these tests.

– AM technologies – specifically SLM and DED – have been found to be readily 
applicable for combustion devices components.

• NASA is continuing to evolve these technologies on a path towards 
flight systems
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Nanolaunch Injector Water Flow Test META4X4 Chamber Hot-Fire Test LWDC Nozzle #1 Hot-Fire Test
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Contact: Paul Gradl

NASA MSFC

256.544.2455

Paul.R.Gradl@nasa.gov
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