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HIGH FIDELITY COLLISION PROBABILITIES ESTIMATED USING 
BRUTE FORCE MONTE CARLO SIMULATIONS 

Doyle T. Hall*, Stephen J. Casali*, Lauren C. Johnson*, Brent B. Skrehart* 
and Luis G. Baars* 

The NASA Conjunction Assessment Risk Analysis team has implemented new 

software to estimate the probability of collision (Pc) for Earth-orbiting satellites. 

The algorithm employs a “brute force Monte Carlo” (BFMC) method which dif-

fers from most other methods because it uses orbital states and covariances prop-

agated from their orbit determination epoch times using the full set of the Astro-

dynamics Support Workstation’s higher order theory models, including the High 

Accuracy Satellite Drag Model.  This paper describes the BFMC algorithm, pre-

sents comparisons of BFMC Pc estimates to those calculated using other methods, 

and discusses the implications for conjunction risk assessment. 

INTRODUCTION 

The NASA Conjunction Assessment Risk Analysis (CARA) team estimates probabilities of colli-

sion for a specific set of high value Earth-orbiting satellites. The CARA processing system first 

detects candidate close encounters up to ten days in advance using a screening-volume approach 

based on the latest available satellite tracking data and orbit determination (OD) state and covari-

ance solutions.1,2 For each candidate conjunction, CARA assesses the collision risk using a set of 

well-established semi-analytical Pc estimation methods3,4 which are relatively computationally ef-

ficient because they employ several simplifying assumptions, including linear trajectories.  Unfor-

tunately, such methods can potentially fail to provide accurate Pc estimates for specific conjunction 

geometries, including long-term or repeating encounters between closely spaced objects.4  These 

specific conjunctions can be addressed using Monte Carlo (MC) simulations.5   

The CARA team has implemented software to calculate Pc estimates employing a “brute force 

Monte Carlo” or BFMC algorithm.  The method can be computationally intensive because it uses 

high fidelity Special Perturbations (SP) orbital propagation6 within an MC approach that has been 

described in detail previously.7  Specifically, the most advanced mode of the BFMC software re-

peatedly performs the following algorithmic steps: 1) sample SP states from their probability den-

sity functions (PDFs) of the primary and secondary satellites at their respective OD epoch times; 

2) use these sampled SP states to propagate high fidelity estimates of the state vectors of two sat-

ellites forward in time throughout the entire period of interest for collision risk assessment, explic-

itly checking if the intervening distance ever becomes less than the combined “hard-body” radii of 

the two satellites; and 3) if so, register that a simulated collision has occurred at the time of first 

contact between the two spheres defined by those radii.  These steps need to be repeated until 

sufficient simulated collisions have been registered to provide a Pc estimate to a desired accuracy.   
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The BFMC algorithm differs from most other Pc estimation methods in two ways.  First, it uses 

complete SP orbital states and covariances, enabling high fidelity trajectory propagation.  Second, 

in its most advanced mode of operation, BFMC uses only the SP states and covariances estimated 

at the OD epoch times, instead of relying on states and covariances predicted at the nominal time 

of closest approach (TCA) for the conjunction.  The SP states comprise six equinoctial orbital ele-

ments, supplemented by two additional state parameters that account for the effects of orbital per-

turbations, including atmospheric drag and solar radiation pressure.6,7 

Because BFMC employs SP states and equinoctial orbital elements natively, it can be used for 

studying Pc inaccuracies introduced by using Cartesian or other state representations.7  BFMC also 

incorporates the latest version of the Jacchia-Bowman atmospheric density model8 plus the associ-

ated Dynamic Calibration Atmosphere (DCA) for the High Accuracy Satellite Drag Model 

(HASDM)9 and exactly matches the currently operational SP software configuration of the Astro-

dynamics Support Workstation (ASW).10,11  Great care has been taken to ensure that all SP propa-

gations are performed using the most recent and accurate input data, including the latest updates 

available for orbital states and atmospheric parameters.  

This paper describes the BFMC algorithm in detail, presents comparisons of the high fidelity 

BFMC Pc estimates to those calculated using other methods, and discusses the implications for 

satellite conjunction risk assessment. 

PREVIOUS WORK 

Collision probabilities between tracked Earth-orbiting satellites have been discussed extensively 

during the past few decades, including methods that use semi-analytical approaches as well as more 

computationally intensive Monte Carlo approaches. 

Semi-Analytical Collision Probability Methods 

Many authors have formulated and discussed semi-analytical Pc methods (see references 3, 4, 12-

18, and references therein).  In 1992, Foster and Estes3 introduced a method that employs three 

simplifying assumptions: 1) the relative satellite motion can be approximated as linear during the 

conjunction, 2) the uncertainties on the relative satellite positions during the conjunction can be 

approximated using a single, constant covariance matrix, and 3) the uncertainties on the satellite 

velocities can be neglected altogether.  These assumptions make the mathematical problem signif-

icantly more tractable, and ultimately allow Pc values to be approximated semi-analytically using 

2-dimensional (2D) numerical integration.3,4 In 2000, Akella and Alfriend9 also employed these 

assumptions and reformulated the theory to demonstrate that the collision probability can be alter-

natively be expressed as an integral over time 

𝑃𝑐 = ∫ 𝑅𝑐(𝑡) 𝑑𝑡
𝜏𝑏

𝜏𝑎
                                                            (1) 

where the integrand 𝑅𝑐(𝑡) represents a collision probability rate (also see reference 15), which can 

itself be calculated using 2D numerical integration.  In a linear-motion encounter, only one close 

approach (CA) occurs, meaning that 𝑅𝑐(𝑡) has a single peak in time, so the integration limits can 

be taken as 𝜏𝑎 = −∞ and 𝜏𝑏 = ∞.  Akella and Alfriend12 show that the infinitely-bounded time 

integral part of the expression above can be performed analytically, ultimately yielding an expres-

sion for Pc with the same form as originally presented by Foster and Estes.3 

Most conjunctions between tracked satellites can be approximated accurately using the “2D Pc” 

methods of Foster and Estes3 and Akella and Alfriend.12  However, some conjunctions do not sat-
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isfy all three of the 2D Pc assumptions stated above, and must be addressed using a different ap-

proach.4,5  Several authors have formulated semi-analytical approaches relaxing the 2D Pc assump-

tions.4,13-18  This analysis focuses on using MC methods for this purpose. 

Monte Carlo Collision Probability Methods 

Collision probabilities can be estimated using MC simulations.5,7  These can be computationally 

intensive because they require repeatedly performing the following steps: 1) sample the orbital state 

PDFs of the primary and secondary satellites; 2) use the sampled states to propagate state vectors 

throughout the risk assessment period, determining if the distance between the objects ever be-

comes less than a combined hard-body protection radius; and 3) if so, register that a simulated 

collision has occurred.19  These steps need to be repeated until enough collisions have been regis-

tered to provide sufficiently accurate statistical results, which may require a large number of sam-

ples depending on the conjunction.  Step 2 requires the most computation, especially for propaga-

tion schemes that use complex dynamical models.   

In 2011, Sabol et al.7 described an MC approach using high fidelity SP orbital propagation, which 

employs a complex and accurate special perturbations dynamical model.6,10,11  That analysis de-

scribes two important aspects of the SP MC approach. First, using a Cartesian orbital state repre-

sentation in the simulations should be avoided because it inaccurately models satellite state uncer-

tainties  a drawback not suffered when using an SP state representation expressed in equinoctial 

orbital elements supplemented by additional state parameters.7,20-22  Second, SP state sampling and 

propagation can be performed in two distinctly different ways.7  States can be sampled from PDFs 

estimated at the OD epoch times for the primary and secondary satellites, and then propagated 

forward in time throughout a collision risk assessment period.  Alternatively, states can be sampled 

from PDFs predicted for a conjunction’s nominal TCA and propagated forward and backward from 

that point in time.  In this analysis, these two sampling/propagation approaches will be referred to 

as “from-epoch” and “from-TCA,” respectively. 

BRUTE FORCE MONTE CARLO COLLISION PROBABILITY ALGORITHM 

The BFMC algorithm presented here extends the method originally developed by Sabol et al.7 so 

that it can be applied to actual conjunctions experienced by CARA’s set of protected primary sat-

ellites.  The BFMC software has two fundamental modes of operation, corresponding to the from-

epoch and from-TCA sampling/propagation approaches discussed above.  The from-epoch ap-

proach represents BFMC’s most advanced Pc estimation mode, and is described in detail first, fol-

lowed by a description of the from-TCA approach. 

Special Perturbations Orbital States and Covariances 

An SP orbital state is represented by an 81 column vector, 𝐗 = [𝑛, 𝑎𝑓 , 𝑎𝑔, 𝜒, 𝜓, 𝜆𝑀 , 𝐵, 𝑆]𝑇, with 

the first six elements denoting the satellite’s equinoctial orbital elements, and the last two a ballistic 

coefficient plus a solar radiation pressure parameter.6,23-25  The ASW OD process2,6,10,11 analyzes 

multiple tracking observations of a satellite to estimate a mean state, 𝐗̅0, at an OD epoch time, 𝑡0.  

(This analysis uses a subscript “0” to denote quantities associated with an OD epoch, but only when 

required for clarity.)  The epoch 𝑡0 typically coincides with the time of the latest tracking observa-

tion incorporated into the OD analysis. 

The actual state for a satellite at epoch differs from the estimated mean state because of measure-

ment and modeling uncertainties, 𝐗0,actual = 𝐗̅0 + 𝐱0, and the OD process also provides an esti-

mate of the 88 covariance matrix, 𝐏0 = 〈𝐱0𝐱0
𝑇〉.2,6,10,24,25  The epoch state uncertainty PDF can be 
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approximated using a “single-Gaussian” representation,22 𝜌0(𝐗0; 𝐗̅0, 𝐏0) = 𝒩(𝐗0 − 𝐗̅0, 𝐏0), 

where 𝒩denotes a multi-variate normal (MVN) function 

𝒩(𝐱, 𝐏) = [det (2𝜋𝐏)]−1/2  [exp (−
𝐱𝑇𝐏−1𝐱

2
)]                                   (2) 

The epochs, mean states and covariances (𝑡0, 𝐗̅0, 𝐏0) can be derived from the Vector Covariance 

Message (VCM) produced by the ASW OD processing system.10,11 

The SP epochs, mean states and covariances for the primary and secondary objects involved in a 

conjunction are denoted here as (𝑡1,0, 𝐗̅1,0, 𝐏1,0) and (𝑡2,0, 𝐗̅2,0, 𝐏2,0), respectively. (This analysis 

uses subscripts “1” and “2” to denote quantities associated with the primary and secondary, but, 

again, only when required for clarity.)  Typically, the two OD epochs do not coincide, 𝑡1,0 ≠ 𝑡2,0, 

and both typically precede the nominal conjunction TCA by 0.5 to 10 days in CARA processing.  

Because VCMs for both the primary and secondary object are used as inputs for from-epoch pro-

cessing, BFMC’s from-epoch mode is also referred to as “VCM mode.” 

Special Perturbations Propagation 

SP states can be propagated to predict high fidelity future Earth-Centered Inertial (ECI) reference 

frame satellite position vectors,6 denoted symbolically here as 𝐫(𝑡; 𝑡0, 𝐗0, 𝓓), where 𝓓 represents 

an ensemble of model and environmental data sets required for SP propagation. (The contents of 

𝓓 are described in more detail later.) Similarly, SP mean states and covariances can be propa-

gated6,23-25 and denoted symbolically as  𝐗̅(𝑡; 𝑡0, 𝐗̅0, 𝓓) and 𝐏(𝑡; 𝑡0, 𝐗̅0, 𝐏0, 𝓓), respectively.  Note, 

in this analysis some or all of the function arguments listed to the right of semicolons may be 

suppressed for brevity.   For example, a position vector might be expressed in one of the following 

three ways: 𝐫(𝑡) = 𝐫(𝑡; 𝑡0, 𝐗0) = 𝐫(𝑡; 𝑡0, 𝐗0, 𝓓). 

Sampled Orbital States 

Samples can be drawn from an MVN PDF by applying Eigen-decomposition to the covariance 

matrix26 

𝐏 = 𝐕𝚲𝐕𝑇                                                                  (3) 

where 𝐕 is a unitary matrix containing orthogonal eigenvector columns, 𝐕𝑖, and 𝚲 is a diagonal 

matrix of associated eigenvalues, Λ𝑖.  The kth sampled state, 𝐘𝑘, can be generated using 

𝐘𝑘 = 𝐗̅ + ∑ [𝜚𝑖
𝑘𝐕𝑖√Λ𝑖 ]𝑖                                                        (4) 

where {𝜚𝑖
𝑘} represents a set of independent normal deviates27 (such as those returned by 

MATLAB’s randn function). This sampling method fails for non-positive definite (NPD) covari-

ances, for which min(Λ𝑖) < 0, because it produces states with non-zero imaginary components.  

Previous analysis indicates26 that such NPD covariances have a variety of causes, and typically 

possess just one negative eigenvalue that is only slightly negative relative to the largest eigenvalue.  

NPD SP state epoch covariances, 𝐏0, occur very rarely in CARA processing; NPD propagated co-

variances, 𝐏(𝑡; 𝑡0, 𝐗̅0, 𝐏0), occur somewhat more often, especially for long propagation intervals 

𝑡 − 𝑡0.  BFMC avoids NPD-induced sampling failures by replacing Λ𝑖 in eq. (4) with max(0, Λ𝑖).26 

Simulated Collisions 

BFMC’s from-epoch, VCM mode simulates collisions by using sampled primary and secondary 

SP states to propagate state vectors forward in time from their OD epochs, explicitly checking if 

the intervening distance between the two objects ever becomes less than a threshold miss distance, 

𝐻. (Ideally, 𝐻 represents the combined hard-body radii of the two objects, if both are known, but 
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also can represent an imposed hard-body protection distance.)  BFMC repeats this process for a 

large number of sampling trials, 𝑘 = 1 … 𝑁𝑠.  For each trial, BFMC generates independently sam-

pled SP states for the primary and secondary objects, 𝐘1,0
𝑘  and 𝐘2,0

𝑘 , respectively.  The current BFMC 

implementation does not reuse any state samples or propagations during the simulation; such reuse 

can increase the efficiency of MC calculations significantly, but also can lead to underestimated 

confidence intervals.28 

The time-dependent intervening distance between the two objects for the kth trial can be written 

𝑟2,1
𝑘 (𝑡) = |𝐫2(𝑡; 𝑡2,0, 𝐘2,0

𝑘 ) − 𝐫1(𝑡; 𝑡1,0, 𝐘1,0
𝑘 )|                                     (5) 

For a risk assessment interval 𝜏𝑎 < 𝑡 ≤ 𝜏𝑏, the CA distance and time for the kth trial can be found 

numerically as follows: 

𝑟𝑐𝑎
𝑘 = min

𝜏𝑎<𝑡≤𝜏𝑏

[𝑟2,1
𝑘 (𝑡)]           and          𝑡𝑐𝑎

𝑘 = arg min
𝜏𝑎<𝑡≤𝜏𝑏

[𝑟2,1
𝑘 (𝑡)]                          (6) 

If 𝑟𝑐𝑎
𝑘 ≥ 𝐻, then no collision could have occurred during the interval. However, if 𝑟𝑐𝑎

𝑘 < 𝐻 and 

𝑟2,1
𝑘 (𝜏𝑎) ≥ 𝐻, then a collision must have occurred.  In general, BFMC registers a simulated colli-

sion for the kth trial if and only if there exists a “time of first contact” or 𝑡𝑓𝑐, which is carefully 

defined here as the earliest time that simultaneously satisfies the following three conditions: 

𝑟2,1
𝑘 (𝑡𝑓𝑐) = 𝐻        and        𝑟̇2,1

𝑘 (𝑡𝑓𝑐) < 0       and       𝜏𝑎 < 𝑡𝑓𝑐 ≤ 𝜏𝑏                     (7) 

The first condition requires the two hard-body spheres to be in contact, the second that the objects 

be approaching one another, and the third that the contact occurs during the specified risk assess-

ment interval.  Trials that do not possess such a first contact time represent “misses” in which no 

collision occurs during the risk assessment interval.  Each trial that does have a first contact time 

constitutes a simulated collision or “hit”, which is registered as occurring at the time of first contact.  

The computed number of hits for all trials can be denoted 𝑁𝑐(𝜏𝑎 , 𝜏𝑏), or just 𝑁𝑐 for brevity. 

BFMC From-Epoch or VCM Mode Collision Probabilities 

Dividing the number of hits by the number of sampling trials yields the best-estimate collision 

probability from the MC simulation 

𝑃̃𝑐 = 𝑃̃𝑐(𝜏𝑎 , 𝜏𝑏) = 𝑁𝑐(𝜏𝑎 , 𝜏𝑏) 𝑁𝑠⁄                                                (8) 

If 𝑃̃𝑐 ≪ 1 and 𝑁𝑐 ≫ 1, then the 95% confidence interval on this estimate can be approximated as 

𝑃̃𝑐 ± [1.96 √𝑁𝑐 𝑁𝑠]⁄ , but a more accurate, asymmetric confidence interval can be estimated for all 

𝑁𝑐 ≥ 0 using the Clopper-Pearson method29,30 (e.g., MATLAB’s binofit function) or other meth-

ods.31 

Because of the careful definition of the first contact time, 𝑡𝑓𝑐, this collision probability algorithm 

can be applied to arbitrarily short or long time intervals, 𝜏𝑎 < 𝑡 ≤ 𝜏𝑏, and will always yield a num-

ber of hits in the range 0 ≤ 𝑁𝑐 ≤ 𝑁𝑠, and a best-estimate probability in the range 0 ≤ 𝑃̃𝑐 ≤ 1.  For 

temporally-isolated conjunctions, BFMC should be applied to a time interval that closely brackets 

the single peak in probability rate, but remains sufficiently wide to obtain an accurate total proba-

bility estimate.19,32  However, for closely-spaced orbiting objects, which can have long-duration 

and/or repeating conjunctions,18,19,33 the interval can be extended to span an arbitrarily large number 

of probability rate peaks.  This means that BFMC’s VCM mode is general enough to perform self-

consistent, multi-day risk assessments even for this difficult class of satellite interaction.  The 

CARA team continues to analyze how to use BFMC optimally to estimate probabilities for such 

extended, multi-encounter interactions.  This analysis, however, restricts application of BFMC to 
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temporally-isolated conjunctions for which a time interval 𝜏𝑎 < 𝑡 ≤ 𝜏𝑏 can be defined that closely 

brackets a single peak in probability rate (as shown in the bottom panels of Figures 1 and 4). 

BFMC From-Epoch or VCM Mode Collision Probability Rates  

Because the algorithm presented above can be used for time intervals of arbitrary duration, it can 

also be applied to a sequence of very short time intervals, or bins, that jointly span the entire risk 

assessment period.  This allows MC collision probability rates to be estimated as follows.  Equally 

spaced time bin mid-points can be defined as 𝑇𝑗 = 𝜏𝑎 + (𝑗 − 1/2)∆𝑇, where 𝑗 = 1 … 𝑁𝑏𝑖𝑛 and 

∆𝑇 = 2 𝛿𝑇 = (𝜏𝑏 − 𝜏𝑎) 𝑁𝑏𝑖𝑛⁄ . The computed number of hits within the jth bin can be denoted 

𝑁𝑐(𝑇𝑗 − 𝛿𝑇, 𝑇𝑗 + 𝛿𝑇), allowing the collision rate at any time during the risk assessment interval 

𝜏𝑎 < 𝑡 ≤ 𝜏𝑏 to be estimated by averaging over each bin: 

 𝑅̃𝑐(𝑡) = (𝑁𝑠 ∆𝑇)−1[𝑁𝑐(𝑇𝑗 − 𝛿𝑇, 𝑇𝑗 + 𝛿𝑇)]        for      𝑇𝑗 − 𝛿𝑇 < 𝑡 ≤ 𝑇𝑗 + 𝛿𝑇                 (9) 

It is straightforward to show that integrating 𝑅̃𝑐(𝑡) from 𝜏𝑎 to 𝜏𝑏 yields 𝑃̃𝑐 . 

 

Figure 1. Estimated cumulative Pc (top panels) and Pc rate (bottom panels) from BFMC’s 

VCM mode (left panels) and CDM mode (right panels), for a conjunction between NASA’s 

Aqua satellite and a debris object. 

Figure 1 shows plots of BFMC collision probabilities and probability rates estimated using equa-

tions (8) and (9), respectively, for a conjunction between NASA’s Aqua satellite and a debris ob-

ject.  Specifically, the top left panel shows VCM mode 𝑃̃𝑐(𝜏𝑎, 𝑡) estimates, and the bottom left 

panel shows VCM mode 𝑅̃𝑐(𝑡) estimates. Orange dots show estimates for each bin and the light 

orange shaded region represents associated 95% confidence uncertainty intervals.29  Figure 1 also 

shows 2D Pc estimates3,12 which agree well with the BFMC estimates, as is the case with the vast 

majority of the temporally-isolated conjunctions analyzed here (discussed in more detail later). 
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BFMC From-TCA or CDM Mode Collision Probabilities and Rates 

The discussion above focuses on the from-epoch sampling/propagation approach used by BFMC’s 

VCM mode.  This section explains BFMC’s other principal mode, which uses a from-TCA ap-

proach that is significantly less computationally intensive.  Because all input data required for from-

TCA processing can be derived from a Conjunction Data Message (CDM),19,26,33 this is also called 

“CDM mode.”  

BFMC’s VCM mode samples 81 SP state vectors from estimated OD-epoch PDFs and uses those 

states to calculate position vectors with high-fidelity SP propagation.  BFMC’s CDM mode differs 

in two fundamental ways.  First, it samples 61 equinoctial element state vectors from marginalized 

PDFs predicted at the conjunction’s nominal TCA.  Second, it propagates orbital states using com-

putationally efficient Keplerian 2-body equations of motion.  As explained earlier, an SP mean state 

predicted at TCA is denoted 𝐗̅(𝑡 = TCA; 𝑡0, 𝐗̅0, 𝓓). The first six elements of this 81 vector repre-

sent the best-estimate prediction for the mean equinoctial state, denoted here as the 61 vector 𝐗̅′.  

(In this analysis, primes denote TCA, equinoctial state quantities).  Similarly, the 88 SP covari-

ance matrix predicted at TCA is denoted 𝐏(𝑡 = TCA; 𝑡0, 𝐗̅0, 𝐏0, 𝓓).  The upper-left 66 part of this 

matrix represents the marginalized equinoctial state covariance, denoted here as 𝐏′.  

TCA equinoctial element states and covariances for the primary and secondary objects, (𝐗̅1
′ , 𝐏1

′) 

and (𝐗̅2
′ , 𝐏2

′ ), respectively, can be derived from a CDM.  Predicted position vectors propagated 

from these TCA equinoctial states using 2-body equations of motion6,23,24 are denoted here as 𝐫1
′(𝑡) 

and 𝐫2
′(𝑡), respectively.  At this point, the algorithm for BFMC’s CDM mode can be formulated in 

the same way as described in the previous sections, but with these CDM mode quantities substituted 

for their original VCM mode counterparts.  Specifically, the nominal TCA for the conjunction 

should be substituted for both epoch times 𝑡1,0 and  𝑡2,0; the position vector 𝐫1
′(𝑡) should be substi-

tuted for 𝐫1(𝑡); 𝐗̅1
′  for 𝐗̅1,0; 𝐏1

′ for 𝐏1,0; etc.   

Because the CDM mode employs 2-body propagation, it must be restricted to relatively short risk 

assessment intervals 𝜏𝑎 < 𝑡 ≤ 𝜏𝑏 near the conjunction’s nominal TCA, because it neglects orbital 

perturbations that can affect the orbital motion over longer time scales. For this reason, CDM mode 

can only be applied to temporally-isolated conjunctions with durations4,32 that are very short rela-

tive to the minimum orbital period of the two objects.19  This restriction does not apply to BFMC’s 

VCM mode, because it employs only high fidelity SP propagation.  CDM mode risk assessment 

time intervals could conceivably be extended if a higher-fidelity propagator were used, as would 

be required for extended or repeating events.  However, any situations in which the CDM mode 2-

body approach would be inadequate can already be addressed by BFMC’s VCM mode. 

The right panels of Figure 1 show 𝑃̃𝑐(𝜏𝑎 , 𝑡) and 𝑅̃𝑐(𝑡) estimates produced by BFMC’s CDM mode.  

Figure 1 demonstrates that the VCM and CDM modes produce statistically equivalent results for 

this conjunction.  This CDM vs VCM mode equivalence has been found to hold for all temporally-

isolated conjunctions analyzed so far, as discussed in detail later.  Figure 1 also demonstrates that, 

for this Aqua satellite conjunction, both BFMC estimates agree well with the 2D Pc approximation: 

VCM-Pc  CDM-Pc  2D-Pc  10-2.  This BFMC vs 2D Pc equivalence has been found to hold for 

the vast majority of temporally-isolated conjunctions analyzed here, but a small fraction show sta-

tistically significant differences, also discussed in detail later. 

BRUTE FORCE MONTE CARLO SOFTWARE IMPLEMENTATION 

The main BFMC software module encodes the sampling, propagation, and collision simulation 

algorithms described above, implemented in compiled FORTRAN that links with ASW software 

libraries.10   In addition, a set of pre-processing modules collect and assemble the input data required 
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for BFMC operation, and a set of post-processing modules produce analysis summaries and plots.  

The pre- and post-processing modules predominantly comprise MATLAB codes. 

Input Data Required for CDM Mode 

The input data required for BFMC’s CDM mode can be derived from the CDMs themselves.  For 

archived conjunctions, pre-existing CDMs originally created by the ASW system can be retrieved 

from CARA’s database. For a current conjunction, with a TCA predicted in the near future, a new 

CDM can be created using the quantities {𝑡1,0, 𝐗̅1,0, 𝐏1,0, 𝑡2,0, 𝐗̅2,0, 𝐏2,0, 𝓓}. 

Input Data Required for VCM Mode 

BFMC’s VCM mode requires a much larger set of inputs than CDM mode.  First, it requires VCMs 

for both the primary and secondary objects.  In addition, it requires a large ensemble of model and 

environmental data sets, represented collectively using the symbol 𝓓, to enable the high fidelity SP 

propagations for both the primary and secondary objects.  𝓓 includes up to a 7070 array of coef-

ficients describing Earth’s gravitational field,6 a large set of time-dependent HASDM atmospheric 

density model8,9 parameters, lunar and solar gravitation parameters, solar radiation parameters, etc.6  

Some of these data sets reside in text files assembled during BFMC pre-processing, and then pro-

vided as input to the main BFMC module.  Specifically, in addition to the primary+secondary 

VCMs themselves, BFMC’s VCM mode requires the following input text files: 

1. A file containing an archive of time constants, leap seconds, UT1-UTC, (UT1-UTC), and 

polar motion data, listed at 10 day spacing. 

2. A file containing solar extreme ultraviolet heating parameters required for the SP Jacchia-Bow-

man atmospheric density modeling.8 

3. A file containing atmospheric density model DCA correction data with 3 hour spacing.9  

4. A file containing a compilation of dynamic consider parameters required for SP processing, 

listed by satellite number, as well as HASDM compatible ballistic coefficients.  (The dynamic 

consider parameter is used to model ASW drag parameter uncertainties related to satellite 

frontal area variations, solar activity, and perigee height.) 

The CARA team captures data to populate these four files at regular intervals from the ASW data 

processing system, in order to assemble a nearly complete chronological history.   

Notably, to compare BFMC CDM mode and VCM mode calculations in order to check for con-

sistency, the same exact data sets 𝓓 must be used as input for both.  This means that the data 𝓓 

used to create a pre-existing CDM, must be successfully retrieved from the database and incorpo-

rated into the four files described above.  Unfortunately, CARA’s database for these four files is 

not comprehensive, because the periodic updates it employs do not include all of the transient up-

dates that occur within the ASW system. In order to verify that the correct data 𝓓 have been gath-

ered for archive conjunction analysis, the main BFMC module calculates the nominal conjunction 

TCA plus the associated states and covariances for both the primary and secondary objects.  These 

must reproduce the associated quantities derived from the original, pre-existing CDM to within 

predetermined numerical tolerances in order to verify that the proper data sets 𝓓 have indeed been 

assembled.  This “check-out” procedure must be passed in order to compare BFMC CDM mode 

and VCM mode Pc values legitimately. 

It is worthwhile to note that this check-out procedure need only be performed explicitly for pre-

existing CDMs, such as those retrieved from CARA’s archive.  It would not need to be done for a 

current conjunction with a TCA predicted in the near future (as encountered in operational pro-

cessing, for instance) because the best data 𝓓 required for both CDM creation and VCM mode 

execution would naturally be available to the processing system at the time of execution. 
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Accounting for Cross Correlated Orbital State Estimates 

The BFMC algorithm presented above assumes that the OD-epoch state uncertainty PDF covari-

ances for the primary and secondary objects (𝐏1,0, 𝐏2,0) are statistically independent.  However, 

because of the way OD processing is performed,2,6 estimated orbital state covariances can be cor-

related due to the use of common force-model parameters, common tracking system biases, etc.34  

Such correlations can affect Pc estimates.34,35  The BFMC processing system naturally lends itself 

to correcting for cross correlation effects caused by common force-model parameters  in partic-

ular, those within the global atmospheric density model used for both state estimation and state 

prediction.8  A companion BFMC paper presented at this conference by Casali et al.35 formulates 

a method that uses the atmospheric data collected and assembled within 𝓓 to account for such cross 

correlations in the state prediction portion of the process.  For most conjunctions, accounting for 

such prediction-phase cross correlation effects has a relatively small effect on Pc estimates.  How-

ever, for conjunctions involving satellites experiencing appreciable atmospheric drag, Pc values can 

be increased or decreased significantly.35  The current analysis assumes for simplicity that the co-

variances (𝐏1,0, 𝐏2,0) have negligible cross correlation, focusing on the comparison of different MC 

Pc estimation methods rather than eradicating cross correlation effects in the calculation. 

Measurements of Computation Speeds 

Because BFMC’s CDM mode employs efficient 2-body propagation, it computes more quickly 

than the VCM mode, which employs high fidelity SP propagation.  Performance measurements 

using a 24 CPU core Linux workstation indicate that BFMC’s main module running in CDM mode 

can calculate at a rate of about ℛCDM ≈ 105 sampling trials per second using a single core.  VCM 

mode single-core computation rates depend inversely on the summed propagation times for the 

primary and secondary as follows 

ℛVCM ≈ (10
trials  PROPday

CPUsec
) [(TCA − 𝑡1,0) + (TCA − 𝑡2,0)]

−1
                       (10) 

So for an isolated conjunction in which both OD epochs precede the nominal TCA by twelve hours, 

i.e., (TCA − 𝑡1,0) + (TCA − 𝑡2,0) = 1 PROPday, about 10 VCM mode trials can be calculated per 

second using a single core.  Using 20 cores in parallel increases this to about 200 trials per second. 

Table 1. Approximate BFMC execution times for a workstation using 20 CPU cores, esti-

mating Pc values to an accuracy of about 20% with 95% confidence. 
 

Pc = 10-4 Pc = 10-5 Pc = 10-6 Pc = 10-7 

CDM Mode 0.5 seconds 5 seconds 50 seconds 8.3 minutes 

VCM (1 PROPday) 1.4 hours 14 hours 5.8 days 58 days 

VCM (10 PROPdays) 14 hours 5.8 days 58 days 580 days 

 

Estimating Pc values to an accuracy of about 20% with 95% confidence usually requires 𝑁𝑐 ≈ 100 

hits (which also yields a 1 accuracy of about 10%).  For a conjunction with Pc = 10-4, this requires 

𝑁𝑠 ≈ 106 sampling trials, which can be computed using CDM mode with 20 cores in about 0.5 

seconds.  Table 1 lists such “20-core, 100-hit” BFMC execution times for 10-4  Pc  10-7. The 

majority of important CARA conjunctions have total propagation times less than 10 days. 

The measurements indicate that BFMC’s CDM mode executes sampling trials about 104–105 times 

faster than the VCM mode, depending on the conjunction.  This relative CDM/VCM mode speed 
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ratio likely applies to other computer hardware systems as well, in addition to the specific multi-

core Linux workstation used for this study. 

Cloud Based Implementation 

Table 1 indicates that CDM mode computations using 20 CPU cores in parallel can easily execute 

quickly enough to allow risk assessments to be performed, as well as to allow associated remedia-

tion maneuvers/activities to be planned and performed.  However, VCM mode computations might 

require too much execution time to allow such risk assessments, especially for the smaller Pc values 

in Table 1.  This could be addressed by employing a larger number of CPUs executing in parallel, 

perhaps by using a commercial or government cloud computing system. Such cloud systems offer 

significantly more processors (referred to here as “nodes”) than can be obtained using a typical 

workstation, but can also have significant monetary usage costs. 

To investigate this, the CARA team has implemented a cloud-based version of BFMC.  Measured 

single-node cloud execution rates for BFMC’s main module are similar to the single-core rates 

reported above for the Linux workstation.  This means that a 2000 node cloud system could de-

crease the BFMC run times listed in Table 1 by roughly a factor of ~100.  However, even this may 

not be fast enough.  For instance, for a conjunction predicted five days in advance 

with (TCA − 𝑡1,0) = (TCA − 𝑡2,0) = 5 PROPdays, a 2000 node VCM mode calculation seeking a 

20% accuracy estimate for Pc = 10-7 would require ~5.8 days, which would not be complete before 

the TCA (and would also be extremely expensive).  On the other hand, 2000 nodes could execute 

a Pc = 10-6 estimate in ~14 hours, likely fast enough for risk analysis, but still very expensive. 

Although cloud computing could significantly speed processing, using BFMC’s advanced VCM 

mode systematically to estimate Pc values smaller than about 10-5 becomes decreasingly feasible 

due to both scheduling and cost constraints.  The VCM mode could be made more efficient by 

reusing state samples and propagations during the simulation, which would require a modified 

method of estimating the Pc estimation confidence intervals28 as well as extensive software recon-

figuration.  However, the current form of BFMC’s VCM mode can still be used to provide valuable 

truth data in order to determine the limitations of other less computationally intensive Pc estimation 

methods, including BFMC’s CDM mode and the 2D Pc approximation, as discussed below. 

ANALYSIS OF ARCHIVED CONJUNCTIONS 

This section presents an analysis of a large number of historical conjunctions archived in CARA’s 

database, first comparing CDM mode and VCM mode Pc estimates, then subsequently comparing 

CDM mode Pc estimates to 2D Pc approximations.3,12  As mentioned previously, this analysis re-

stricts these comparisons to temporally-isolated conjunctions, for which the risk assessment time 

interval 𝜏𝑎 < 𝑡 ≤ 𝜏𝑏 closely brackets a single peak in probability rate. 

Comparisons of CDM Mode and VCM Mode Pc Estimates 

Figure 2 shows a comparison of Pc estimates calculated using BFMC’s CDM and VCM modes, for 

373 high Pc conjunctions processed by the CARA system between 2017-05-01 and 2018-03-18. 

The top panel shows a logarithmic plot of CDM mode Pc estimates (horizontal axis) vs VCM mode 

Pc estimates (vertical axis); the bottom panel shows the logarithm of the VCM/CDM mode Pc ratio. 

Error bars show the asymmetric 95% confidence intervals estimated using the Clopper-Pearson 

method.29,30  During this 10.5 month period, CARA processed a total of ~430,000 conjunctions, 

including 500 with 2D-Pc > 1.510-3.  Among those 500, however, only the subset of 373 plotted 

in Figure 2 had retrievable VCM mode input data sets 𝓓 that passed the “check-out” procedure 

described previously.   
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A binomial proportion test can be used to test the hypothesis that BFMC’s CDM mode and VCM 

mode produce the same Pc estimates, i.e., to test the null hypothesis that two binomial proportions 

are equal.36  Applying this test to each of the 373 cases plotted in Figure 2 indicates that none 

violates the null hypothesis with a statistical test p-value  10-3.  In other words, no points deviate 

from the 45 dashed line in the upper panel of Figure 2 at this high level of statistical confidence.  

Additional testing of selected conjunctions using much larger numbers of sampling trials (e.g. Fig-

ure 4) also indicates that the CDM and VCM modes produce statistically equivalent Pc estimates. 

 

Figure 2. Comparison of BFMC CDM and VCM mode Pc estimates for 373 conjunctions.   

In summary, no compellingly large deviations have been detected between BFMC’s CDM mode 

and VCM mode Pc estimates in all of the comparison testing performed so far for temporally-

isolated conjunctions, which comprise the vast majority processed by the CARA system.  This 

close alignment occurs because BFMC’s CDM mode samples equinoctial element orbital states, 

which resist non-Gaussian behavior due to implicit curvilinear construction.7,20,22  On the other 

hand, from-TCA MC approaches that sample Cartesian states19 instead of equinoctial element states 

can occasionally produce erroneous Pc values that differ appreciably from BFMC VCM mode es-

timates. 

Comparisons of CDM Mode Pc Estimates and 2D Pc Approximations 

Figure 3 compares Pc estimates calculated using BFMC’s CDM mode to 2D Pc approximations, 

for 28,652 CARA conjunctions that occurred between 2017-05-01 and 2018-03-18.  These con-

junctions were selected using a single criterion, 2D-Pc > 10-7, and represent events that span a large 

range of propagation times.  The top panel shows a logarithmic plot of 2D Pc (horizontal axis) vs 

CDM mode Pc estimates (vertical axis). The bottom panel shows the logarithm of the Pc ratio. 

Conjunctions shown in black do not violate the null hypothesis test36 that the two Pc estimates are 

equal at the p-value  10-3 significance level.  However, those highlighted in yellow do violate the 
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hypothesis at this significance level, and those in red at the higher level of p-value  10-6.  Overall, 

Figure 3 contains 99 yellow and 52 red points, which are both much greater than the numbers 

expected from purely statistical variations, even though they represent a very small fraction of the 

original 28,652 conjunctions. This provides evidence that BFMC’s CDM mode yields different 

results than the 2D Pc approximation, at least for a small fraction of the temporally-isolated con-

junctions analyzed in this study.  Major deviations occur in both directions, CDM-Pc << 2D-Pc and 

CDM-Pc >> 2D-Pc, with the latter type causing more concern because, for these conjunctions, the 

widely-employed 2D Pc approximation significantly underestimates the actual risk as indicated by 

the BFMC simulation.  (Note, two of the conjunctions in Figure 3 with CDM-Pc << 2D-Pc corre-

sponded to zero hits registered in the BFMC simulations; these are represented using downward 

pointing triangles with a single-sided error bar directed upward.) 

 

Figure 3. Comparison of BFMC CDM mode and 2D Pc estimates for 28,652 conjunctions.  

The blue arrow highlights the Van Allen satellite conjunction shown in Figures 4 and 5. 

Many of the conjunctions with CDM-Pc >> 2D-Pc in Figure 3 have one or more of the following 

three characteristics: 1) involve object(s) with highly eccentric orbits, 2) have long epoch-to-TCA 

propagation time(s) of 10 days or more, and 3) have a relatively long interval between the nominal 

TCA and the time of peak probability rate.  Many also correspond to two specific CARA supported 

missions, the Van Allen A and B satellites, both of which have highly eccentric orbits.  The blue 

arrow in Figure 3 highlights a Van Allen conjunction possessing all three of these characteristics, 

including extended propagation times of TCA − 𝑡1,0 ≈ 11 PROPday for the primary Van Allen 

satellite, and TCA − 𝑡2,0 ≈ 20 PROPday for the secondary debris object, as well as a relatively long 

delay of about 4.5 seconds between TCA and peak probability rate.  Figure 4 plots the cumulative 

Pc and Pc rate for this conjunction estimated using both VCM and CDM modes, with 𝑁𝑠 = 107 

sampling trials.  The BFMC estimates are statistically equivalent, VCM-Pc  CDM-Pc  510-5, 

but both exceed the 2D-Pc  1.610-7 approximation by a factor of about 300.  
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The CARA analysis team continues to investigate the specific causes and circumstances of the 

infrequent but large BFMC-Pc vs 2D-Pc differences like those shown in Figures 3 and 4.  Again, 

many coincide with conjunctions involving highly eccentric orbits, extended propagation times, or 

long separations between TCA and peak probability rate. 

 

Figure 4. Estimated cumulative Pc (top panels) and Pc rate (bottom panels) from BFMC’s 

VCM mode (left panels) and CDM mode (right panels), for a conjunction between one of 

NASA’s Van Allen satellites and a debris object. 

Comparisons of BFMC and 2D Pc Close Approach Distributions 

Some insight into the infrequent conjunctions observed to have large BFMC-Pc vs 2D-Pc differ-

ences can be gained by examining the distribution of close approach events that occur in the MC 

simulations.  Figure 5 illustrates CA distributions for the same Van Allen conjunction shown in 

Figure 4, produced by MC simulations using 𝑁𝑠 = 2.1 × 106 samples.  Each dot in Figure 5 rep-

resents a CA position that occurs during one MC sampling trial.  Specifically, for the kth trial, the 

relative CA position can be plotted on a “conjunction b-plane” which is perpendicular to the relative 

CA velocity, as explained in more detail in Appendix A.  (This conjunction b-plane is very similar 

to the “b-plane” used to plan and analyze planetary spacecraft encounters.37)  Dots in Figure 5 show 

b-plane coordinates for each trial (𝑋𝑐𝑎
𝑘 , 𝑌𝑐𝑎

𝑘 ), which are related to the CA distance 𝑟𝑐𝑎
𝑘  as follows 

(𝑟𝑐𝑎
𝑘 )2 = (𝑋𝑐𝑎

𝑘 )
2

+ (𝑌𝑐𝑎
𝑘 )

2
                                                    (11) 

So a dot for an MC trial with zero CA miss distance, 𝑟𝑐𝑎
𝑘 = 0, would be located at the origin of a 

conjunction b-plane plot (and would also represent a hit).  The two right panels on Figure 5 illustrate 

the CA distribution for a BFMC VCM mode simulation of the Van Allen conjunction (which look 

similar to those produced by the CDM mode).  The left panels illustrate the CA distribution for a 

“2D Pc MC” simulation which employs the 2D Pc assumptions by using linear trajectories and 

performing TCA ECI Cartesian state sampling neglecting velocity uncertainties.19  The top panels 

show the CA distribution for all MC trials, which extend over b-plane distances of several hundred 

km for this conjunction. The bottom panels zoom-in to expand the view so that the Van Allen hard-

body protection radius of 𝐻 = 53 m (plotted as the green circle) can be seen more easily. Blue dots 
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show misses (i.e., trials with 𝑟𝑐𝑎
𝑘 ≥ 𝐻) and red dots show hits (𝑟𝑐𝑎

𝑘 < 𝐻).  Curvature in the extended 

BFMC CA distribution can be seen clearly in the upper right panel, but is notably absent in the 2D 

Pc distribution in the upper left.  The curvature in the BFMC distribution is also accompanied by 

many more hits (i.e., red dots in the lower right panel) than in the 2D Pc distribution (lower left). 

 

 

Figure 5. B-plane CA distributions for the Van Allen satellite conjunction shown in Figure 4.  

Curvature in the BFMC CA distribution can be seen in the upper right panel, but is absent 

in the 2D Pc MC distribution in the upper left. 

Evidently, the 2D Pc CA distribution in the upper left panel Figure 5 lacks curvature because of the 

linearized-trajectory and other 2D Pc approximations, which are not invoked in the BFMC simula-

tion.  For this conjunction, the BFMC CA distribution appears to “curve toward” the hard-body 

region, leading to a larger number of hits and ultimately BFMC-Pc >> 2D-Pc.  For other conjunc-

tions with BFMC-Pc << 2D-Pc, similar plots show that the BFMC CA distribution appears to “curve 

away” from the hard-body protection region. 

CONCLUSIONS 

CARA’s analysis using the Brute Force Monte Carlo simulation method to estimate collision prob-

abilities for satellite conjunctions provides the following conclusions: 

1. BFMC’s from-epoch, VCM mode represents the most advanced and general method of esti-

mating conjunction Pc values available to the CARA team, because it employs full eight di-

mensional SP states (six equinoctial elements supplemented with ballistic and solar radiation 

parameters) sampled at OD epoch times, estimates drag with the dynamically-calibrated 

HASDM atmospheric model, and performs high fidelity propagation for all sampling trials.  It 

also provides a method to model and correct for state cross correlation effects.  Because of this, 

BFMC’s VCM mode provides valuable truth data to use when studying other Pc estimation and 

approximation methods. 
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2. The VCM mode algorithm can be applied to all risk assessment time scales, so that collision 

probabilities as well as probability rates can be estimated for single, temporally-isolated con-

junctions (as has been done in this analysis), or for the much more difficult class of long-dura-

tion, temporally-repeating conjunctions that can occur between closely-spaced orbiting objects 

(now being investigated by the CARA team). 

3. VCM mode execution rates depend inversely on the summed propagation times for the primary 

and secondary.  For a summed propagation time of 1 day, a single modern CPU can compute 

about 10 VCM mode sampling trials per second. 

4. Slow execution rates may prevent BFMC’s VCM mode, as currently implemented, from being 

used systematically to estimate Pc values smaller than about 10-5 for conjunction risk assess-

ment, even when using large (and expensive) cloud-based computing systems.  The VCM mode 

could potentially be made significantly more efficient by reusing state samples and propaga-

tions during the simulation, which would require a modified method of estimating Pc confi-

dence intervals. 

5. BFMC’s from-TCA, CDM mode computes sampling trials approximately 104 to 105 times 

faster than the VCM mode, depending on the conjunction.  This is achieved by employing six 

dimensional equinoctial element states sampled at the conjunction’s nominal TCA, and utiliz-

ing relatively efficient Keplerian 2-body propagation. 

6. BFMC’s CDM mode is restricted to relatively short risk assessment time intervals near the 

conjunction’s nominal TCA, because it uses 2-body propagation that neglects orbital perturba-

tions that affect the motion over longer time scales.  CDM mode can only be applied to single, 

temporally-isolated conjunctions with durations that are very short relative to the minimum 

orbital period of the two objects. 

7. When comparing Pc estimates between BFMC’s CDM and VCM modes, great care must be 

exercised to ensure that same model and environmental data sets, 𝓓, have been used for both 

calculations.  Specifically, to enable comparisons for a pre-existing CDM, a “check-out” pro-

cedure must be passed to ensure that the correct data files for 𝓓 have been assembled. 

8. No major statistical deviations have been detected between BFMC’s CDM and VCM mode Pc 

estimates for 373 temporally-isolated conjunctions with 2D-Pc > 1.510-3 analyzed in this 

study, all of which were extracted from CARA’s database of actual events and passed the re-

quired check-out procedure.  This close alignment reflects the fact that the CDM mode samples 

equinoctial orbital states instead of Cartesian states. 

9. A small fraction of temporally-isolated conjunctions show statistically significant deviations 

between BFMC’s CDM mode Pc estimates and the 2D Pc approximation, based on analysis of 

28,652 archived conjunctions with 2D-Pc > 10-7. 

10. Many of the infrequent conjunctions found to have major BFMC-Pc vs 2D-Pc differences in-

volve highly eccentric orbits, extended propagation times, or long separations between the TCA 

and the time of peak probability rate. 

11. Close approach distance distributions provide insight into the infrequent conjunctions that have 

major BFMC-Pc vs 2D-Pc differences. Specifically, BFMC “conjunction b-plane” CA distri-

butions can possess a curvature that is notably absent in 2D Pc distributions.   

FUTURE WORK 

The CARA team continues to study the optimal use of applying the BFMC VCM mode to extended 

or repeating conjunctions, such as those to occur between closely spaced objects or those in geo-

synchronous/geostationary orbit.  Research also continues into the causes and characteristics of the 

observed BFMC-Pc vs 2D-Pc differences, with the goal of developing a robust and efficient set of 

tests that indicate the conditions for which the 2D Pc method provides an adequate approximation. 
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Ideally, this study will be based on the examination of a very large (~1,000,000) number of con-

junctions, and investigate conjunction parameters that have been used in the past (e.g., relative 

velocity, conjunction duration) as well as new possibilities (e.g., the difference between the TCA 

and the time of peak Pc rate, or the time of minimum Mahalanobis distance). 

APPENDIX A: DEFINITION OF THE CONJUNCTION B-PLANE 

For the kth MC trial, the CA relative position and velocity of the primary and secondary can be used 

to define a “conjunction b-plane reference frame.”  The z-axis of this reference frame aligns with 

the CA relative velocity, given by the ECI unit vector 

𝐙̂𝑐𝑎
𝑘 =

𝐯2(𝑡𝑐𝑎
𝑘 )−𝐯1(𝑡𝑐𝑎

𝑘 )

|𝐯2(𝑡𝑐𝑎
𝑘 )−𝐯1(𝑡𝑐𝑎

𝑘 )|
                                                             (12) 

The (x,y) plane of this reference frame constitutes the b-plane itself.  The (x,y) axes can be oriented 

in a variety of ways, but are defined here so that the b-plane’s y-axis aligns as closely as possible 

to the ECI frame’s z-axis, 𝐳̂, as follows 

𝐗̂𝑐𝑎
𝑘 =

𝐙̂𝒄𝒂
𝒌  × 𝐳̂

|𝐙̂𝒄𝒂
𝒌  × 𝐳̂|

          and          𝐘𝑐𝑎
𝑘 = 𝐙̂𝑐𝑎

𝑘 × 𝐗̂𝑐𝑎
𝑘                                     (13) 

Other (x,y) axis orientations could be defined by aligning to the local radial direction, or to the 

relative position vector of the mean states at the nominal TCA. 

The CA relative position vector, 𝐫2(𝑡𝑐𝑎
𝑘 ) − 𝐫1(𝑡𝑐𝑎

𝑘 ), can be transformed into the conjunction b-plane 

frame, yielding the following three Cartesian coordinates 

𝑋𝑐𝑎
𝑘 = 𝐗̂𝑐𝑎

𝑘 ∙ [𝐫2(𝑡𝑐𝑎
𝑘 ) − 𝐫1(𝑡𝑐𝑎

𝑘 )]                                                   (14) 

𝑌𝑐𝑎
𝑘 = 𝐘𝑐𝑎

𝑘 ∙ [𝐫2(𝑡𝑐𝑎
𝑘 ) − 𝐫1(𝑡𝑐𝑎

𝑘 )]                                                   (15) 

𝑍𝑐𝑎
𝑘 = 0                                                                     (16) 

MC CA distributions can be illustrated on X-Y scatter plots, as shown in Figure 5, by plotting a dot 

at the coordinates (𝑋𝑐𝑎
𝑘 , 𝑌𝑐𝑎

𝑘 ) for each sampling trial, 𝑘 = 1 … 𝑁𝑠.  Figure 5 shows hits as red dots 

and misses as blue dots.  The entire CA distribution on the b-plane can extend for very large dis-

tances (top panels), so an expanded or zoomed-in view (bottom panels) may be required to visualize 

better the hard-body protection radius, 𝐻, plotted as a green circle in Figure 5. 

SYMBOLS AND ACRONYMS 

𝑎𝑓 = the 2nd equinoctial orbital element 

𝑎𝑔 = the 3rd equinoctial orbital element 

𝐵 = Ballistic coefficient SP state parameter 

𝓓 = collected ensemble of model and environmental data sets required for SP propagation 

𝐻 = the combined primary+secondary hard-body radii, or the hard-body protection distance 

𝑖 = index for state vectors; 𝑖 = 1 … 8 for full SP states; 𝑖 = 1 … 6 for equinoctial element states 

𝑗 = index for time bins, 𝑗 = 1 … 𝑁𝑏𝑖𝑛 

𝑘 = index for MC sampling trials, 𝑘 = 1 … 𝑁𝑠 

𝑛 = The 1st equinoctial orbital element, the mean motion 

𝒩 = a multi-variate normal (MVN) function 

𝑁𝑏𝑖𝑛 = the total number of time bins used to span the risk assessment interval 𝜏𝑎 < 𝑡 ≤ 𝜏𝑏 

𝑁𝑐(𝑡𝑎 , 𝑡𝑏) = the number of MC collisions or hits registered during the time interval 𝑡𝑎 < 𝑡 ≤ 𝑡𝑏 

𝑁𝑠 = the total number of MC sampling trials conducted in the simulation 

𝐏 = SP state uncertainty covariance matrix 
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𝐏0 = SP state uncertainty covariance matrix at the OD epoch time 

𝐏1,0 = SP state uncertainty covariance matrix at the OD epoch time for the primary object  

𝐏2,0 = SP state uncertainty covariance matrix at the OD epoch time for the secondary  

𝐏1
′ = Equinoctial element state uncertainty covariance matrix for the primary object at TCA 

𝐏2
′  = Equinoctial element state uncertainty covariance matrix for the secondary object at TCA 

Pc = collision probability 

𝑃̃𝑐(𝑡𝑎, 𝑡𝑏) = Pc estimated from an MC simulation for the time interval 𝑡𝑎 < 𝑡 ≤ 𝑡𝑏 

𝑆 = Solar radiation pressure SP state parameter 

𝐫 = ECI position vector propagated from OD epoch using SP propagation 

𝐫1 = ECI position vector for the primary object propagated from OD epoch using SP propagation 

𝐫2 = ECI position vector for the secondary object propagated from OD epoch using SP propagation 

𝐫1
′ = ECI position vector for the primary propagated from TCA using 2-body equations of motion 

𝐫2
′  = ECI position vector for the secondary propagated from TCA using 2-body equations of motion 

𝑟2,1
𝑘  = distance between the primary and secondary objects for the kth sampling trial 

𝑟̇2,1
𝑘  = time derivative of 𝑟2,1

𝑘  

𝑟𝑐𝑎
𝑘  = CA distance between the primary and secondary objects for the kth sampling trial 

𝑅𝑐 = collision probability rate 

𝑅̃𝑐= 𝑅𝑐 estimated from an MC simulation 

ℛCDM = BFMC CDM mode single-CPU computation rate [trials/CPUsec] 

ℛVCM = BFMC VCM mode single-CPU computation rate coefficient [(trials PROPday)/CPUsec] 

𝑇𝑗 = midpoint time for the jth time bin 

𝑡 = time 

𝑡0 = OD epoch time 

𝑡1,0 = OD epoch time for the primary object  

𝑡2,0 = OD epoch time for the secondary object  

𝑡𝑐𝑎
𝑘  = CA time for the kth sampling trial 

𝑡𝑓𝑐 = time of first contact 

𝐯1 = ECI velocity vector for the primary object propagated from OD epoch using SP propagation 

𝐯2 = ECI velocity vector for the secondary object propagated from OD epoch using SP propagation 

𝐕 = matrix of eigenvectors 

𝐕𝑖 = the eigenvector occupying the ith column of 𝐕 

𝐱 = SP state deviation vector 

𝐱0 = SP state deviation vector at the OD epoch time 

𝐗 = SP state vector 

𝐗0 = SP state vector at the OD epoch time 

𝐗0,actual = the actual SP state vector at the OD epoch time, 𝐗0,actual = 𝐗̅0 + 𝐱0 

𝐗̅ = mean SP state vector 

𝐗̅0 = mean SP state vector at the OD epoch time 

𝐗̅1,0 = mean SP state vector at the OD epoch time for the primary object  

𝐗̅2,0 = mean SP state vector at the OD epoch time for the secondary object  

𝐗̅′ = mean equinoctial element vector at a conjunction’s nominal TCA 

𝐗̅1
′  = mean equinoctial element vector for the primary object at a conjunction’s nominal TCA 

𝐗̅2
′  = mean equinoctial element vector for the secondary object at a conjunction’s nominal TCA 

𝑋𝑐𝑎
𝑘 = 𝑋𝐶𝐴

𝑘  = x-axis component of the CA distance in the conjunction b-plane for the kth MC trial 

𝐗̂𝑐𝑎
𝑘  = ECI x-axis unit vector of the conjunction b-plane reference frame for the kth MC trial 

𝐘𝑘 = the kth sampled state 

𝐘1,0
𝑘  = the kth sampled state for the primary object at the OD epoch time 



 18 

𝐘𝑠,0
𝑘  = the kth sampled state for the secondary object at the OD epoch time 

𝑌𝑐𝑎
𝑘 = 𝑌𝐶𝐴

𝑘  = y-axis component of the CA distance in the conjunction b-plane for the kth MC trial 

𝐘𝑐𝑎
𝑘  = ECI y-axis unit vector of the conjunction b-plane reference frame for the kth MC trial 

𝐳̂ = [0, 0, 1]𝑇 = ECI z-axis unit vector 

𝐙̂𝑐𝑎
𝑘  = ECI z-axis unit vector of the conjunction b-plane reference frame for the kth MC trial 

 

𝜒 = The 4th equinoctial orbital element 

𝛿𝑇 = ∆𝑇/2 = time bin half width 

∆𝑇 = time bin width or duration 

(UT1-UTC) = difference between coordinated and universal time 

𝜆𝑀 = The 6th equinoctial orbital element, the mean longitude 

𝚲 = diagonal matrix of eigenvalues 

Λ𝑖 = the eigenvalue occupying the ith diagonal element of 𝚲 

𝜓 = The 5th equinoctial orbital element 

𝜌0 = the epoch state uncertainty PDF 

𝜚𝑖
𝑘 = a normally-distributed random deviate for the ith component of the kth sampled state 

𝜏𝑎 = beginning time of a risk assessment interval 

𝜏𝑏 = ending time of a risk assessment interval 

 

ASW = Astrodynamics Support Workstation 

BFMC = brute force Monte Carlo 

CA = closest approach 

CARA = Conjunction Assessment Risk Analysis 

CDM = Conjunction Data Message 

CPU = computational processing unit 

CPUsec = one CPU second 

DCA = Dynamic Calibration Atmosphere 

ECI = Earth-Centered Inertial 

HASDM = High Accuracy Satellite Drag Model 

MC = Monte Carlo 

MVN = multi-variate normal 

NPD = non-positive definite 

OD = orbit determination 

PDF = probability density function 

PROPday = one day of high fidelity SP propagation 

SP = Special Perturbations 

TCA = time of closest approach 

UT1 = Universal Time corrected for polar motion 

UTC = Coordinated Universal Time 

VCM = Vector Covariance Message 
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