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Abstract 

The performance of the finite element alternating (FEAM) method for two-dimensional crack 
problems is studied with respect to a polynomial pressure distribution fitted to the crack face 
stresses.  The FEAM alternates between the analytical solution of crack in an infinite plate 
subjected to arbitrary polynomial distribution and a finite element solution of an uncracked body 
to satisfy the required boundary conditions in the crack problem.  In this paper, the FEAM is 
applied to embedded crack and edge crack problems.  For embedded crack problems, all of the 
constant, linear, and quadratic ( 0,1,  or 2N  ,  respectively) pressure distributions yield very 
accurate results with this algorithm with 4 to 5 iterations.  The edge crack problems, on the other 
hand, require much higher order polynomials distributions (N=5 to 6) to yield accurate solutions.  
For slant edge crack problems, the mode-I stress-intensity factors have better accuracy than the 
mode-II stress-intensity factors for the same convergence tolerance.  

Introduction 

Stress-intensity factors are fundamental parameters to predict fracture strength and fatigue 
life of structural components. Several methods are available in the literature to estimate the stress-
intensity factors of cracked structural components. Several well-documented stress-intensity 
factor handbooks [1-4] are also available. However, for many structural components and loading 
conditions, the stress-intensity factors are not readily available. Finite Element Method (FEM) is 
the most widely used method to calculate the stress-intensity factors for complicated crack 
geometries.  FE methods to estimate the stress-intensity factors without actually modeling the 
crack configurations are very attractive. The literature shows that the Finite Element Alternating 
Method (FEAM) is a powerful and efficient method [5] to estimate the stress-intensity factors in 
three- [5,6] and two-dimensional [7,8] structural components without actually modeling the crack 
configuration.  The FEAM uses two solutions to solve the fracture mechanics problem. The first 
solution is a numerical solution such as FEM to analyze the uncracked body subjected to the same 
loading conditions as the original crack problem and the second solution is a basic continuum 
solution (also referred to as analytical solution in this paper) for a cracked infinite plate or solid 
(see Figure 1). The FEAM is based on the Schwartz-Neumann alternating method [4-8] and 
alternates between two solutions, FEM and continuum to satisfy the boundary conditions of the 
problem [5-8].  The iterations are continued until the required level of accuracy is achieved. The 
continuum solution is an exact elasticity solution for a crack in an infinite plate subjected to 
arbitrary polynomial tractions at the crack faces. The normal and tangential tractions, p , on the 
crack faces are assumed to be of a general polynomial form [7,8].  For the finite element part of 
the method, the structural component is modeled without modeling the crack, and analyzed for 
the given applied loading and boundary conditions.  Since there are no singularities modeled in 
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the uncracked body, the stresses and strains can be obtained accurately without a need for a finely 
meshed finite element model.  The method exploits the advantages of the continuum solution for 
extracting stress intensity factors, and of the finite element model of the uncracked body without 
a singularity.  

The FEAM in reference 8 used fifth order polynomial pressure distributions for the normal 
and the tangential directions over the crack faces in the analytical solution part of the algorithm. 
The use of a higher order polynomial for the pressure distribution in the reference solution, 
generally increases the computation time and yields accurate solutions. However, it is not clear if 
it is possible to obtain accurate solutions with only a simple (lower order polynomial) pressure 
distribution over the crack face. The objective of this paper was to study the effect of the order of 
the pressure distributions over the crack face on accuracy of the stress-intensity factors and the 
computational efficiency of the FEAM. The method was applied to several mixed mode crack 
problems for which accurate reference solutions are available in the literature, to assess the 
efficiency of the method for the simple pressure distributions.  

The paper is organized as follows: First, the FEAM is explained.  Various steps involved 
in the algorithm are presented. Next, convergence criteria for stopping the algorithm are 
discussed.  Later, various computational aspects of the FEAM are presented.  Then the method is 
applied to various crack problems where accurate stress-intensity factors are available in the 
literature and the performance of the method is discussed.   

 
 

Figure 1. Crack in an infinite plate subjected to normal and tangential forces. 
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FINITE-ELEMENT ALTERNATING   METHOD 

 
FEAM alternates between two solutions to satisfy the boundary conditions of the 

problem under consideration [5-8].  The original crack configuration of a plate with a 
crack of length 2a along 0y   is shown schematically in Figure 2a.  F o r  solution 1, 
the finite-element method was used; the uncracked body was modeled and analyzed for 
the applied loading.  For solution 2, the continuum solution for an infinite plate with 
a crack subjected to arbitrary normal a n d  tangential p r e s su r e  distributions over the 
crack face was used.  The procedure is schematically illustrated in Figure 2.  It is required 
to select the coordinate axes for the continuum solution such that line 0y    
corresponds to the line on which the crack is present in the original problem.   

 
 
 

 
 

Figure 2. Procedure used in the finite element alternating method. 
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The following steps are involved in the FEAM:  
 

Step 1.  Construct a finite element model without actually modeling the crack in the structure.  
 

Step 2. Finite element analysis is performed to obtain the finite element stresses everywhere 
in the plate for the external applied loading and boundary conditions. Because of the mixed-
mode configurations considered here, both the normal and tangential tractions will be present 
along the 0y   line. 

 
Step 3. If either normal or tangential or both tractions are not negligible, go to Step 4. If 

both the normal and tangential tractions are negligibly small (i.e. smaller than a prescribed 
tolerance level), stop the algorithm and calculate the sum of the stress-intensity factors 
computed so far from the continuum solution. 

 
Step 4. To free the tractions on the crack faces, normal tractions ( )Yp and tangential 

tractions ( )Xp  along the 0y   line computed in Step 3 must be erased. To erase these 

tractions, the negative of crack-face normal tractions ( . . )R
Y Yi e p p   and crack face 

tangential tractions ( . . )R
X Xi e p p   are applied to the analytical solution. The tractions 

R
Yp  and R

Xp  can be expressed in polynomial form for a Nth order polynomial as 
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                                                      (2)    

and                                                                   
                                     

       x   is the distance measured from the center of the crack. 
 

The coefficients  A  and  B  in eq. (1) are calculated using a least square procedure 

 [5] as 
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In Equation 4, CN  is the number of elements over the crack and jl  is the length of the thj

finite-element along the crack line. The integrals in these equations are computed  by using Gaussian 
quadrature because discrete values of ( )R

Yp x and ( )R
Xp x are available from the finite- element 

method for each of the CN  elements over the crack line. 
 
Step 5. Once the coefficients  A  and  B  are determined from eq. (3), the stress-intensity 

factors for the current r t h  iteration a r e  c a l c u l a t e d  
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where ( )w nk   are the stress-intensity factor weights given in Table 1.  

Step 6. The crack-face normal   R
Yp  and tangential  R

Xp  tractions obtained in Step 

4 create tractions on all the finite element model boundaries of the plate. The stresses at any 
point ݖ ൌ ݔ ൅  on any boundary for each of the polynomial functions can be obtained		ݕ݅
as 

 
 

 

                                                                  ,M A L B                   (6)                                

where 
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                                                             , , .X Y XY      

 

 

Table 1. Stress-intensity factor weights for a crack in an infinite plate subjected to 

normal ( )Yp  and tangential pressure ( )Xp distributions of the form 
n

x

a
 
 
 

[7]. 

n    w n
k  

0 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1/ 2  

1/ 2  
3 / 8  

3 / 8  
5 /16  

5 /16  
35 /128  

35 /128  
   The positive and negative signs in this table refer to the 
crack tips at x = ±a, respectively.  The negative values are 
meaningful only in the presence of additional forces, which 
prevent crack closure. 

 

  

In Equation (6), the matrices  M  and  L  relate the stresses at any point ݖ ൌ ݔ ൅  on ݕ݅

the boundary to the unit values of the polynomial normal and tangential pressure distribution 
over the crack faces, respectively. The matrices [ ]M  and [ ]L  are obtained using the stress 
function in the continuum solution due to polynomial pressure distribution over the crack 
faces [7,8]. 

 
Once the stresses on the boundary are obtained, the tractions, XT  and YT , in the x- 

and y-directions respectively can be calculated us ing  
 

                                                             ,T q             (7)                                

where  
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In Equation 8, Xn  and yn  are direction cosines of the normal to the boundary with respect 

to x- and y- axis, respectively. 

Step 7. To satisfy the traction-free boundary conditions o n  the  external b o u n d a r i e s , 
the tractions created due to the residual pressures on the crack tip in Step 6 need to be 
erased. Therefore, the negative of these transactions are considered as the applied tractions 
for the finite-element model for the uncracked plate.  These tractions can be expressed as 
nodal forces for each of the elements on the external boundaries as 

 

         n tr r r
Q G A G B           (9) 

 

 

where 

ሾܩ௡ሿ௥ ൌ 	 නሾΦሿ்

௟೘

	ሼݍሿሾܯሿ݀ݏ 

                                              ሾܩ௧ሿ௥ ൌ ׬	 ሾΦሿ்௟೘
	ሼݍሿሾܮሿ݀(10)         ݏ                              

In equation (10), ml  refers to the thm  element under consideration; [Φሿ	are the element shape 

functions; and  q is the direction cosine matrix defined in equation (8). The matrices  M

and  L are defined in equation (6). 

 
The nodal forces ሾܳሿ௥	are assembled to form a global load vector and treated as applied 
forces on the uncracked body. This is the start of the next iteration.  These iterations are 
continued until the crack face tractions in Step 3 are negligibly small compared to the first 
iteration. In the converged solution, the mode I and mode II stress-intensity factors are simply 
the sum of the stress-intensity factors from all the iterations.  
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Computational aspects of the FEAM 
 

In the finite element part of the method, 8-noded isoprametric quadratic elements were used 
to model the uncracked body.  Some computational aspects that make the method efficient are 
briefly discussed. 

 
Decomposition of the global stiffness matrix:  In the FEAM, the uncracked body is analyzed 

by the finite element method several times (as many times as the number of iterations required 
for convergence of stress–intensity factors) with a different load vector obtained from the 
continuum solution each time.  Therefore, the finite element stiffness equations can be written as 

 

     0 1 2 0 1 2[ ] , , , , , ,K u u u Q Q Q                                      (12) 

             
 

where [K] is the assembled stiffness matrix and {ur} is the displacement vector corresponding 
to the load vector {Q r} for the r th iteration.  Equation (12) can be efficiently solved by finding 
the Cholesky factors of the stiffness matrix [K] soon after the stiffness matrix is assembled.  
This decomposition needs to be performed only once.  Thereafter, the displacements {ur} can 
be obtained inexpensively because the back substitutions consume far less computing effort 
than the decomposition of the stiffness matrix.  Because of this feature and that the crack length 
under consideration need not end at an element boundary (see Figure 4 in reference 4), several 
crack lengths can be analyzed with a single finite element model for the uncracked body in a 
single run. 
 
 Boundary Tractions:  In step 7 of the method, the nodal forces on each element on all 
the boundaries are obtained.  This computation can be efficiently performed by calculating the 
[G] matrices in Eq. (10) for all elements on the boundaries before the start of the first iteration.  
In each iteration, only one matrix multiplication in Eq. (9) is required for each element on the 
boundaries. 
 

Stress Averaging:  In general, stresses computed by the FEM from the elements in the 
uncracked body along and on either side of the ‘crack line’ will not be equal.  The stresses 
computed at the 2x2 Gaussian points at either side of the ‘crack line’ are extrapolated to the 
‘crack line’, and the stresses are averaged (see Figure 3). 
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Figure 3. 2X2 Gaussian points near the crack line used for element stress computation. 

 
 

Fictitious Pressures: The analytical solution used in the FEAM is based   on the embedded 
crack in an infinite plate.  The embedded crack has two crack tips.  However, in edge crack 
problems, only one crack tip exists.  Hence to use FEAM for edge crack problems, a fictitious 
crack is usually assumed with crack tip at x = - a, as illustrated in Figure 4.  While for 0 x a 
the residual pressures are computed from the finite element solution, the residual pressures over 
the fictitious part of the crack, 0,a x    need to be defined.  In this paper, four different 
pressure distributions were used over the fictitious part of the crack.  These are shown in Figure 
4, ( )I linear extrapolation from x a and 0 to x x a   , ( )II constant overെܽ ൑ ݔ ൑ 0, ( )III
distribution in the region 0a x    is mirror image of distribution over 0 x a  , and ( )IV
distribution linearly approaching zero at x a  .   The single edge crack problem is studied 
with these four fictitious pressure distributions. 
 
 
 

 
Figure 4. Pressure distribution extrapolation for the fictitious part of the edge cracks. 
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Results and Discussion 
 

In this section, the performance of the current FEAM algorithm was evaluated by comparing 
the results with those available in the literature.  First, embedded crack problems were 
considered.  Then edge crack problems, followed by problems with cracks emanating from 
stress concentrations such as a circular hole were analyzed.  As mentioned previously, the FEM 
part of the method used only idealization of the uncracked body.  The uncracked configurations 
use - 8-node isoprametric elements. In all the problems studied, a value of Young’s modulus, 

,E equal to 710 psi  and a Poisson ratio of 0.3were used.  References 7 and 8 established that 
the FEAM works equally well with various types of loadings, including tensile, bending and 
parabolic loadings. Hence, in this paper for all problems studied, only a remote uniform tensile 
loading S  is considered.  
 
   

Embedded Crack problems: 
 
Figure 5 shows a plate with a straight center cracked (CCT) and a plate with an embedded slant 
crack oriented at 45 degrees to the x axis. Both configurations were subjected to remote 
tensile loading.   
 
CCT Configuration: Because of the double symmetries of the problem, a quarter model of the 
uncracked CCT plate can be used.  The finite element model shown in Figure 6(a) had 173 
nodes and 48 quadratic 8-node elements. Nodes at 0x   were prescribed u-displacements equal 
to zero and nodes at y = 0 were prescribed v-displacements equal to zero.  The boundaries on x 
= W and y = H were made stress free in the algorithm.  
 
The CCT specimen was also modeled using the half symmetry in the problem. Figure 6(b) 
shows a half a symmetry model of the CCT specimen with 405 nodes and 120 elements. For all 
nodes at line 0x  , the u-displacements were prescribed zero.  One node at 0x   and y H   
in the finite element model was prescribed 0v  .  The boundaries on y = H and –H and x = W 
were made stress free in the algorithm. 
 
Table 2 shows the normalized stress-intensity factor, FI, for an (a/W) = 0.5 configuration with 
these two models for various values of the maximum degree of polynomial, N, used in the 
algorithm.  Also included in the table the number of iterations required to obtain a difference in 
stress-intensity factor within one percent between two consecutive iterations. Excellent 
agreement was obtained with reference values from reference 4.  This suggests that for CCT 
configurations, any value of N= 0, 1, 2 or 3 is capable of producing accurate stress-intensity 
factors with about 5 to 6 iterations. 
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Figure 5. Embedded crack configurations. 
 

 
 

Figure 6. Finite element models used for CCT and SECT configurations   . 
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Table 2.  Normalized stress-intensity factors, FI, for a center cracked (CCT) plate for 
polynomials used to fit the pressure distributions. 

( / 0.5, / 2.5, / ( )I Ia W H W F K S a    

 
Degree of 

Polynomial, N 
Number of 
Iterations 

FEAM   

IF   

Reference Value 
(Murakami [4]) 

IF   

Quarter Plate 
Model 

Figure 6(a) 
173 Nodes  

48 Elements 

0 
1 
2 
3 
4 

5 
6 
6 
6 
6 

1.184 
1.186 
1.186 
1.188 
1.180 

1.187 

Half Plate 
Model  

Figure 6(b) 
405 Nodes 

120 Elements 

0 
1 
2 
3 
4 

6 
6 
7 
5 
6 

1.184 
1.186 
1.187 
1.187 
1.186 

1.187 

 

 

Embedded slant crack configuration:   

Figure 7 shows the finite element model used for the embedded 45 degree slant crack 
configuration.  The finite element model had 277 nodes and 80 elements. In order to preclude 
rigid body modes, the u - displacements were set equal (prescribed) to zero at two different nodes 
and at one of these nodes, v - displacement was also prescribed to be zero.  All external boundaries 
were made stress free in the algorithm.  The problem has two crack tips and hence the algorithm 
computes the stress-intensity factors at both the crack tips.  The stress-intensity factors are, as 
expected, computed to be identical.  Table 3 presents the stress-intensity factors for various values 
of maximum degree of polynomial, N, used in the fit and the number of iterations required.  As 
this is a mixed mode fracture problem, both FI and FII are computed and presented in Table 3. 
Accurate reference values from reference 4 are included in the table.   The stress-intensity factors 
remain nearly the same as the value of N is increased from 0 to 4 with about 4 iterations.  The 
results in Tables 2 and 3 for embedded crack configuration show that the pressure distributions 
using constant, linear, or quadratic polynomial FEAM gave accurate stress-intensity factors with 
about 4 iterations. 



13 
 

 

Figure 7. Finite Element models used for embedded slant crack configuration. 

 

Table 3.  Normalized stress-intensity factors, IF  and ,IIF for an embedded slant cracked plate 

for polynomials used to fit the pressure distributions. ( / 0.5a W   , / 2H W   45   , 

ூܨ	 ൌ ,	ሻ	ܽߨூ/ሺܵඥܭ ூூܨ	 ൌ   .ሻ	ܽߨ/ሺܵඥ	ூூܭ

Degree of 
Polynomial, N 

Number of 
Iterations 

*FEAM   
Reference Value 
(Murakami [4]) 

IF   IIF   IF  IIF   

0 
1 
2 
3 
4 

5 
4 
4 
4 
4 

0.607 
0.604 
0.599 
0.599 
0.598 

0.541 
0.539 
0.541 
0.541 
0.541 

0.612 0.546 

* Full plate modeled with 277 nodes and 80 elements. 
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Tables 4 and 5 compare the stress-intensity factors evaluated with N=0, 1, and 2 for various values 
of (a/W) from 0.3 to 0.6 for the CCT and embedded slant crack conjurations, respectively.  
Reference values from the literature [4] are included in these tables.  For both configurations 
excellent agreement is observed with a maximum error of about 3 percent for mode-I and 1.2 
percent for mode-II for an embedded slant crack with (a/W) = 0.6. 

 

 

Table 4.  Comparison of Normalized stress-intensity factors, FI, for a CCT plate for various 

crack lengths (H/W=2.5, 	ܨூ ൌ  ሻ	ሻ	ܽߨ/ሺܵඥ	ூܭ

/a W  

*( )IF FEAM   
Reference Value 

(Murakami [4]) 

IF   N=1 N=2 N=3 

0.3 1.058 1.058 1.058 1.058 

0.4 1.108 1.109 1.109 1.112 

0.5 1.186 1.187 1.187 1.187 

0.6 1.301 1.303 1.304 1.304 

* Half plate modeled with 405 nodes and 120 elements. 
 

Table 5.  Comparison of normalized stress-intensity factors, FI and FII, for an embedded slant 

cracked plate for various crack lengths. (H/W=2,  45   ூܨ	 , ൌ ,	ሻ	ܽߨூ/ሺܵඥܭ ூூܨ	 ൌ /	ூூܭ

ሺܵඥܽߨ	ሻ 

  

/a W   

*FEAM   
Reference Solution 

(Murakami [4]) 

IF  IIF  
IF  IIF  

1N  2N   3N   1N   2N   3N   
0.3 0.538 0.537 0.537 0.515 0.514 0.514 0.541 0.516 

0.4   0.569 0.567 0.564 0.526 0.525 0.526 0.572 0.529 

0.5  0.608 0.599 0.599 0.541 0.538 0.541 0.613 0.546 

0.6   0.660 0.656 0.641 0.560 0.554 0.560 0.616 0.567 

* Full plate modeled with 277 nodes and 80 elements 
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Edge Crack Problems: 

 

 

Figure 8. Single edge crack (SECT) plate configurations. 

Two edge crack configurations are presented in Figure 8. Figure 8(a) shows a zero-degree Single 
Edge Crack Tension (SECT) and Figure 8(b) shows a 45  degree slant edge crack subjected to 
remote tensile loading. 

Single edge crack:  The single edge crack in Figure 8(a) can be analyzed with the two finite 
element models presented in Figure 6.  When using the model in Figure 6(a) one-half of the edge-
crack problem is analyzed.  As such, the v-displacements at y = 0 were prescribed zero and one 
node, such as the one at (0, H) was prescribed u = 0.  The boundaries on x = 0 and x = W and y 
= H are made stress free.  A fictitious pressure distribution of a constant value (distribution-II) in 
Figure 4 is used in the algorithm. 

The normalized stress-intensity factors obtained with various values of N are presented in Table 
6 for a crack length of (a/W) = 0.5.  Compared to the embedded cracks, this edge crack problem 
needs a higher order polynomial distribution to yield accurate results.  Also, the stress-intensity 
factors do not show monotonic convergence.  For a value of N=6 the FEAM gave a value which 
is about 1 percent of the accurate value from the literature.  All other results from N=2 to 5 had 
stress-intensity factors that are less accurate than that with N = 6.   

 

 

 

(a) Single edge cracked (SECT) plate (b) Slant edge cracked plate
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Table 6.  Normalized stress-intensity factors, FI, for a single edge cracked plate for polynomials 

used to fit the pressure distributions. (a/W=0.5, H/W=2.5, 	ܨூ ൌ   ሻ	ሻ	ܽߨூ/ሺܵඥܭ

Degrees of 
Polynomial, N 

Number of  
Iterations 

*FEAM   

IF   

Reference Value 
(Murakami [4]) 

IF   

2 
3 
4 
5 
6 

24 
20 
20 
19 
19 

3.075 
2.934 
3.155 

             2.913 
2.862 

2.827 

* Half plate modeled with 173 nodes and 48 elements.  

 

Next, the same single edge crack problem was analyzed by modeling the entire plate.  The finite 
element model presented in Figure 6(b) was used.  The displacement u = 0 was prescribed zero 
at nodes at (0, -H) and (0, H) and v = 0 was prescribed at the node (W, -H).    These boundary 
conditions restrain all rigid body modes.  The boundaries on x=0, x=W and y= H, y=-H were 
made stress free. Table 7 presents the normalized stress-intensity factors obtained for a crack 
length of (a/W) = 0.5 for various assumed pressure distributions, I-IV, shown in Figure 4, and for 
values of N ranging from 4 to 6 for each of these distributions.  Pressure distributions I and II 
were used in references 5 and 6 for corner cracks in 3D solids, and in reference 7 and 8 for edge 
cracks in plates.  As mentioned previously, edge cracks have only one crack tip and the FEAM is 
based on a continuum solution of a crack in an infinite plate (and hence with two crack tips).  As 
such, when dealing with edge cracks, one needs to deal with a pressure distribution in the 
rangeെܽ ൑ ݔ ൑ 0.  The solution for the stress-intensity factors should be independent of any 
choice of the pressure distributions. In that context, the distributions III and IV shown in Figure 
4 were developed.  Distribution - III was assumed to be symmetric and the distribution on 0 ൑
ݔ ൑ ܽ is repeated on െܽ ൑ ݔ ൑ 0.	Distribution- IV was a linear distribution from x = 0 with a 
zero value at x = -a.  The results in Table 7 show that distributions I and II have nearly the same 
accuracy. Distribution III, because of its symmetry, does not allow odd powers in the distributions 
and hence gave exactly same value for N=4 and N=5.  Distribution – IV was an extreme case and 
yet yielded results with only a 4 percent error with N=6.  The extrapolated linear distribution 
(Distribution-I) and constant distribution (Distribution –II) are within 3 percent of the reference 
values.  Therefore, for all edge crack problems, a simple constant pressure distribution with 6N   
is recommended. 
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Table 7.  Comparison of normalized stress-intensity factors, FI, for a single edge cracked plate 

for various fictitious pressure distributions. (a/W=0.5, H/W=2.5, 	ܨூ ൌ  ሻ		ሻ	ܽߨூሺܵඥܭ

Fictitious 
Pressure 

Distributions 
(Figure 4) 

Maximum 
Degree of 

Polynomial, N 

Number of 
Iterations 

*FEAM   

IF   

Reference  
Value 

(Murakami [4])  

IF  

I 
4 
5 
6 

17 
16 
16 

3.095 
2.915 
2.895 

2.827 

II 
4 
5 
6 

21 
19 
19 

3.221 
2.949 
2.914 

III 
4 
5 
6 

25 
25 
25 

2,849 
2.849 
2.742 

IV 
4 
5 
6 

25 
23 
24 

3.483 
3.020 
2.951 

* Full plate modeled with 405 nodes and 120 elements. 
 

Table 8 presents the normalized stress–intensity factors for various crack lengths, (a/W) = 0.3 to 
0.6, for an edge cracked plate.  The results were compared with accurate values from reference 4.  
Very good agreement was observed, except for the long edge crack at (a/W) = 0.6.  A finer mesh 
is probably needed to obtain better accuracy.  As seen in Table 8, the number of iterations needed 
to obtain a converged solution increases with the crack length.  It can be concluded that the single 
edge crack problem requires more iterations to obtain a solution compared to the embedded crack 
problems. 

 

Table 8.  Comparison of Normalized stress-intensity factors, FI, for a SECT plate for various 

crack lengths (H/W=2.5, N=6, 	ܨூ ൌ  . Constant pressure distribution was used	;		ሻ	ܽߨ/ሺܵඥ	ூܭ

 

/a W  
Number  

of Iterations 

*FEAM  

IF    

Reference Value 
(Murakami [4]) 

IF   

0.3 
0.4 
0.5 
0.6 

9 
12 
19 
15 

1.705 
2.132 
2.914 
4.349 

1.655 
2.108 
2.827 
4.043 

* Full plate modeled with 405 nodes and 120 elements. 
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Slant edge crack ():  The next problem considered was a slant edge crack with 45  

and remote tensile loading.   A crack length (a/W) = 0.5 was considered. The finite element 
model used is presented in Figure 9.  The displacement u = 0 was prescribed at nodes at (0, -
H1) and (0, H2) and v = 0 is prescribed at the node (W, -H1). These boundary conditions restrain 
all rigid body modes. All external boundaries were made stress free.  A constant pressure 
distribution (distribution-II) was used. Table 9 presents the normalized stress-intensity factors 
for various values of N ranging from 2 to 6.  Accurate values from Reference 4 were included 
for comparison.  Accurate values are obtained with N = 5 and 6 for both mode-I and mode-II 
values. 
 
 
Table 9.  Normalized stress-intensity factors, FI and FII, for a slant edge cracked plate with 
(a/W) = 0.5 for polynomials used to fit the pressure distributions. (H1/W = 1, H2/W = 1.5, 

450, 	ܨூ ൌ ூூܨ	 ,	ሻ	ܽߨூ/ሺܵඥܭ ൌ   ሻ ); Constant pressure Distribution II	ܽߨ/ሺܵඥ	ூூܭ
 

Degree of 
Polynomial N 

*FEAM  
Figure 6(b) 

Reference Value 
(Murakami [4]) 

IF   IIF   IF   IIF   

2 
3 
4 
5 
6 

1.156 
1.207 
1.138 
1.193 
1.190 

0.609 
0.586 
0.603 
0.606 
0.594 

1.191 0.600 

* Full plate modeled with 595 nodes and 180 elements.  
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Figure 9. Finite elements models used for embedded slant crack configuration. 

 
 

Table 10 presents the normalized stress–intensity factors for various crack lengths,
( / ) 0.3  0.6a w to , for the slant edge cracked plate.  The results were compared with the 

reference values from reference 4.  A value of 6N   was used. Very good agreement (about one 
percent deviation) was observed for all mode I stress-intensity factors.  The mode II values were 
less accurate with a deviation of about 5 percent. 

 

The single edge crack (SECT) problem with a crack at 0    was a more difficult problem 
compared to slant edge crack with 45   .  For larger crack lengths, large bending was observed 
in the SECT plate. The 8-node quadratic elements were not well suited for pure bending 
problems.  Also, when the crack is straight ( 0 )    on the axis of symmetry, the shear stresses 

xy should be zero. The finite element solution of the full plate cannot produce zero shear stresses; 
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the solution computes small (but non-zero) stresses in comparison to the normal stresses y .  To 

avoid the spurious tractions on the external boundaries, due to these small shear stresses, the shear 
stresses computed from the top and bottom elements were averaged.  This modification works 
well for small crack lengths, but as crack length becomes larger, the errors increase and need to 
be mitigated by more iterations, as evidenced in Table 7.  Notice that this situation does not occur 
for a slant edge crack at 45   from Table 8.  This is because the shear stresses along the crack 
are non-zero and are of comparable value to the normal stresses. 

 

Table 10.  Comparison of normalized stress-intensity factors, FI and FII, for a slant edge cracked 

plate for various crack lengths. (H1/W = 1, H2/W = 1.5, 450, 	ܨூ ൌ ,	ሻ	ܽߨூ/ሺܵඥܭ ூூܨ	 ൌ /	ூூܭ

ሺܵඥܽߨ	ሻ  ; Pressure distribution is constant (II), N=5) 

/a W  
*FEAM  

Reference Value 
(Murakami [4]) 

IF   IIF   IF   IIF   

0.3 
0.4 
0.5 
0.6 

0.877 
1.017 
1.193 
1,471 

0.477 
0.532 
0.606 
0.709 

0.879 
1.010 
1.191 
1.436 

0.450 
0.505 
0.574 
0.674 

* Full plate modeled with 277 nodes and 80 elements.  
 

 

 

 

Edge Crack emanating from a circular hole:   

An edge crack emanating from a circular hole with radius R  in an infinite plate and loaded 
with remote uniform stress is shown in Figure. 10.  The reference solution [4] available for this 
problem is for an infinite plate. A plate with / 1.0H W    and / 24W R   was selected to 
represent the configuration. The crack inclination angle was selected as 30  degrees.  The finite 
element model for the uncracked plate is shown in Figure 11. The model consists of 1860 nodes 
and 590 8-node elements. Since the FEM model is for an infinite plate, the traction created by the 
continuum solution vanishes at infinity. Hence, there was no need to erase the tractions from the 
continuum solution on the outer boundaries.  The tractions were erased only at the hole boundary.  
The crack length / 0.5c R   was considered. Please note that the distance c  is the projected length 
of the crack along the x axis (see Figure 10). 
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The stress intensity factors obtained from the FEAM analysis and from reference solution are 
presented in Table 11 for various values of N . For polynomial values 2 to 5, the Mode I stress 
intensity factors were predicted within two percent and the Mode II stress intensity factors are 
predicted within one percent from the reference solution. 

 

 

Figure 10.  Slant edge crack from a circular hole in a plate configuration. 

 

 

Figure 11. Finite elements model used for slant edge crack from circular hole in a plate. 
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Table 11.  Comparison of normalized stress-intensity factors, FI and FII, for a slant edge crack 

from a circular hole plate. (H/W = 1, 24W R  300, 	ܨூ ൌ ,	ሻܿߨூ/ሺܵඥܭ ூூܨ	 ൌ /	ூூܭ

ሺܵඥܿߨ	ሻ 
 

/c R  
Maximum 
Degree of 

Polynomial, N 

*FEAM  
Reference Solution 

(Murakami (4)] 

IF  IIF   IF  IIF  

0.5 

2 
3 
4 
5 
6 

1.544 
1.447 
1.482 
1.521 
1.560 

0.512 
0.493 
0.511 
0.508 
0.545 

1.519 0.506 

* Full plate modeled with 1860 nodes and 590 elements. 
 
 

Concluding Remarks 

    The finite element alternating method (FEAM) was presented to analyze two-dimensional 
fracture problems. The FEAM alternates between an analytical solution and a finite element 
solution to satisfy the boundary conditions for a specific fracture problem. The analytical solution 
for arbitrary normal and tangential pressure distributions on the faces of the crack in an infinite 
plate was used as the fundamental solution. In the finite element part, the uncracked plate was 
modeled and analyzed subjected to various loadings. Details of the algorithm and its 
computational and numerical implementations have been discussed. 

In this paper, the accuracy of the stress-intensity factors obtained by the use of FEAM 
with various pressure distributions have been studied.  The FEAM was applied to various 
embedded and edge cracked plate problems. The study showed that for embedded crack problems, 
simple constant, linear, or quadratic polynomial distributions, (polynomial of order N=0, 1, or 2), 
produced accurate stress-intensity factors.  About four to five iterations were necessary to obtain 
accurate stress-intensity factors.  For edge crack problems, higher order polynomial distributions 
(N=5 or 6) were needed to obtain accurate stress-intensity factors.  As expected, the edge crack 
configurations needed more iterations to obtain accurate values compared to the embedded crack 
problems.  One reason for needing the higher order distributions was probably due to extensive 
bending that was seen in the edge crack problems. Furthermore, the accuracy of the mode-I stress-
intensity factors was better than the mode-II values. 

The FEAM method gave accurate stress-intensity factors for several embedded and edge 
crack problems. The FEAM algorithm can be used to evaluate stress-intensity factors of complex 
crack problems and to develop crack length vs stress-intensity factor curves. 
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