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(57) ABSTRACT

Hall thrusters with conductive coatings are disclosed. A Hall
thruster comprises magnetic shielding in order to avoid
collisions with the inner walls of its discharge chamber. By
removing the source of erosion, the walls of the chamber can
be removed reducing mass, cost and complexity of the
thruster. A conductive coating, such as an aluminum coating,
is deposited on inner screens between the discharge chamber
and the magnetic poles of the thruster. The magnetic field
within the chamber shields the conductive coating deposited
on the inner and outer screens of the chamber.
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HALL THRUSTER WITH MAGNETIC
DISCHARGE CHAMBER AND CONDUCTIVE

COATING

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to U.S. Provisional
Patent Application No. 62/131,418, filed on Mar. 11, 2015,
and may be related to U.S. patent application Ser. No.
13/768,788, filed on Feb. 15, 2013, the disclosures of both
of which are incorporated herein by reference in their
entirety.

STATEMENT OF INTEREST

The invention described herein was made in the perfor-
mance of work under a NASA contract NNNI2AA01 C, and
is subject to the provisions of Public Law 96-517 (35 USC
202) in which the Contractor has elected to retain title.

TECHNICAL FIELD

The present disclosure relates to space vehicle engines.
More particularly, it relates to a Hall thruster with magnetic
discharge chamber and conductive coating.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated into
and constitute a part of this specification, illustrate one or
more embodiments of the present disclosure and, together
with the description of example embodiments, serve to
explain the principles and implementations of the disclosure.
FIG.1 illustrates the magnetic field lines in a conventional

Hall thruster.
FIG. 2 illustrates a magnetically-shielded configuration

with lines curving over the surface of the boron nitride walls.
FIG. 3 illustrates magnetic field lines in a miniature

magnetically shielded Hall thruster.
FIG. 4 illustrates a thruster without discharge chamber

walls.
FIG. 5 illustrates an annular discharge chamber.

SUMMARY

In a first aspect of the disclosure, a Hall thruster is
described, comprising: an annular discharge chamber having
a rear flat surface, a front flat aperture, an inner annular
surface and an outer annular surface; a gas distributor
adjacent to the rear surface of the annular discharge cham-
ber; an anode adjacent to the rear surface of the annular
discharge chamber; a cathode adjacent to the front aperture
of the annular discharge chamber, the anode and cathode
configured to generate an electric field within the annular
discharge chamber; an inner annular screen adjacent to the
inner annular surface; an outer annular screen adjacent to the
outer annular surface; a conductive coating deposited on the
inner and outer annular screens; magnetic poles configured
to generate magnetic field in the annular discharge chamber,
the magnetic field configured to substantially avoid colli-
sions of charged particles against the conductive coating.

DETAILED DESCRIPTION

Hall thrusters generate thrust through the formation of an
azimuthal electron current that interacts with an applied,

N
quasi-radial magnetic field to produce an electromagnetic
force on the plasma. These thrusters provide an attractive
combination of thrust and specific impulse for a variety of
near-earth missions and, in many cases, they allow for

5 significant reductions in propellant mass and overall system
cost compared to conventional chemical propulsion. The
range of thrust and specific impulse attainable by Hall
thrusters makes them applicable also to a variety of NASA
science missions.

10 The present disclosure describes an improvement to Hall
thruster designs, for example, Hall thrusters with a magnetic
discharge chamber that use a magnetic field configuration
observed to reduce the erosion rate of the walls, as described
in U.S. patent application Ser. No. 13/768,788. The present

15 disclosure also describes a magnetic discharge chamber,
however with a different configuration. Specifically, the
present disclosure describes the use of a different material
such as graphite for the ceramic walls instead of the more
expensive boron nitride (BN) or BNS'02 materials that are

20 currently used.
The problem to be solved with the present disclosure

relates to the presence of ceramic walls in the discharge
chamber. These walls increase cost and complexity for the
thruster although their purpose of confining the plasma

25 discharge has been largely eliminated. In fact, with the
proper application of a magnetic field, the erosion of the
walls is greatly decreased. Therefore, the need for protective
ceramic materials deposited on the walls of the chamber is
greatly decreased.

30 The ceramic walls present in previous designs can repre-
sent a significant excess mass in a large Hall thruster, and
take up valuable space in a miniature Hall thruster. In fact,
in miniature Hall thrusters the volume available for the
plasma discharge and the shaped magnetic fields is small,

35 and this volume is very critical to enable the operation of the
thruster.
The present disclosure eliminates the protective walls of

the discharge chamber entirely. The confining boundaries for
the plasma and the propellant gas flow through the channel

4o are defined by the magnetic circuit, therefore it is not
possible to have walls made of magnetic materials. In other
words, the discharge chamber has magnetic walls that are
part of the magnetic circuit which enables confinement of
the plasma without significant erosion of the chamber walls.

45 This eliminates the need to use expensive ceramic materials
that increase cost and mass of the thruster.
In the magnetically shielded thrusters described herein,

the discharge channel wall constitutes the surface of the
magnetic screen. This surface is now plasma facing, and so

50 can be sprayed with alumina or clad with a thin layer of
another material to provide better thermal properties Elimi-
nating a separate discharge chamber wall reduces the
thruster mass and complexity, which reduces its cost. The
properties of the plasma facing surface can be selected by

55 coating this surface with a thin layer of insulating alumina
or cladding the surface with copper or refractory metals to
improve the thermal properties such as reflectivity and
conductivity. This thin layer is not significantly eroded
because of the magnetic shielding applied in the chamber.

60 Additionally, eliminating the protective discharge cham-
ber walls frees up valuable volume in small thrusters for the
plasma and the magnetic circuit. A magnetic shielding
configuration modifies the shape of the magnetic field in the
thruster near the wall to significantly reduce the plasma

65 contact, which enables the discharge chamber walls to be
changed to cheaper and easier to fabricate materials like
graphite. The present disclosure, additionally, describes a
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different design for the discharge chamber, eliminating the
discharge chamber electrode as a separate element. In other
words, the walls of the magnetic circuit act as the discharge
chamber, including acting as electrodes, without the need of
having a separate electrode. This design eliminates one of
the more difficult structures in the Hall thruster, reducing
mass and cost. The improved design of the present disclo-
sure will be made apparent in the following figures.
FIG.1 illustrates the magnetic field lines in a conventional

Hall thruster. The magnetic field lines (105) in the channel
(115) are intersecting the wall (110). Plasma follows the field
lines to bombard the boron nitride wall. This leads to wall
erosion and the need to have a protective ceramic coating.
The thruster of FIG. 1 illustrates a north pole (120) and a
south pole (125) for the magnetic circuit. The chamber
walls, such as (110), are coated with boron nitride. Outer
(130) and inner (135) screens or shunts are also illustrated.

FIG. 2 illustrates a thruster with walls (220), poles (210)
and screens (215) placed similarly to those of FIG. 1.
However, the shape of the walls is modified to avoid the
presence of magnetic lines crossing the walls at an angle,
which can lead to erosion. Instead, the magnetic lines and
walls are parallel in the zone (205). Therefore, FIG. 2
illustrates a magnetically-shielded configuration with lines
curving over the surface of the boron nitride walls, to reduce
plasma contact and erosion.

FIG. 3 illustrates magnetic field lines in a miniature
magnetically shielded Hall thruster. The small size of min-
iature Hall thrusters makes it extremely difficult to curve the
field lines around the discharge chamber wall (305). The
poles (310), boron nitride walls (315) and screens (320) are
similar to those of FIG. 2.
FIG. 4 illustrates an embodiment of the thrusters of the

present disclosure, specifically a magnetically shielded Hall
thruster with the discharge chamber walls removed. The
thruster comprises magnetic poles (405) placed in a position
similar to that of FIGS. 2 and 3. The screens (410) are also
similarly placed. However, the discharge chamber walls are
absent. Instead, a coating (415), such as an Al coating, is
deposited directly on the screens (410). The chamber also
comprises an anode (420), whose support holding it into
position is not shown in the figure, for clarity.
As known to the person of ordinary skill in the art, Hall

thrusters comprise an annular discharge chamber. Therefore,
the cross section of the thruster as illustrated in FIG. 4 is a
part of the thruster necessary to illustrate the innovative part.
Other parts common to all Hall thrusters are not shown. In
particular, the section of FIG. 4 is the top part of the entire
thruster cross section, as the person of ordinary skill in the
art will understand. An identical bottom section, symmetri-
cal to that illustrated in FIG. 4, will complete the cross
section of the thruster. The entire thruster will have a circular
discharge chamber. For example, as visible in FIG. 5, an
annular discharge chamber (505) spans circularly with a
cross section as visible in FIG. 4, along the line (510) of FIG.
5.

Therefore, in some embodiments, the present disclosure
describes a Hall thruster comprising an annular discharge
chamber having a rear surface with an aperture in the inner
wall defined therein, the aperture allowing a gas such as
Xenon to be flown through as known in the normal operation
of a Hall thruster. The anode and gas distributor will be
situated adjacent to the rear surface of the discharge cham-
ber. The gas distributor will inject an ionizable gas in the
chamber. A cathode neutralizer can provide electrons, and is
normally situated adjacent to the external part of the cham-
ber, which is open to space to allow the flow of propellant

_►,

gas to exit the discharge chamber. The anode and cathode
will be connected to electrical terminals by way of a power
supply and a switch, and will generate an axial electrical
field within the annular discharge chamber, similarly to

5 conventional Hall thrusters. The magnetic poles will form a
magnetic circuit having a magnetic yoke, an inner magnetic
coil and an outer magnetic coil, the magnetic circuit con-
figured to be powered by a power supply and provide a
substantially radial magnetic field across the annular aper-

10 ture of the annular discharge chamber. The magnetic circuit
is configured to provide a magnetic field that provides
magnetic shielding of the discharge chamber. In other
words, the magnetic lines will be configured to avoid

15 collisions, and subsequent erosion, of the discharge cham-
ber. Specifically, the present disclosure describes embodi-
ments without walls but with a conductive coating, such as
an Al coating, deposited directly on the screens as shown for
example in FIG. 4. In these embodiments, the magnetic lines

20 are configured to direct propellant ions away from the
conductive coating and the screens. By avoiding these
collisions, the need of inner walls in the chamber is avoided,
and a subsequent decrease in mass, cost, and complexity can
be realized.

25 The person of ordinary skill in the art will understand that
the screens (415) in FIG. 4 can be annular in order to follow
the shape of the annular discharge chamber. The screens are
disposed between the discharge chamber where the propel-
lant flows, and the magnetic poles.

30 In some embodiments, the annular chamber can have a
rear flat surface, such as (425) in FIG. 4, a front aperture
such as (430), an inner annular surface (435) and an outer
annular surface (440). In FIG. 5, the inner annular surface
(515) and the outer annular surface (520) are also visible.

35 Exemplary ionizable gases comprise xenon, argon and kryp-
ton. The gas propellant may also be formed from vapors of
elements such as bismuth, iodine, zinc and magnesium.
A number of embodiments of the disclosure have been

described. Nevertheless, it will be understood that various
40 modifications may be made without departing from the spirit

and scope of the present disclosure. Accordingly, other
embodiments are within the scope of the following claims.
The examples set forth above are provided to those of

ordinary skill in the art as a complete disclosure and descrip-
45 tion of how to make and use the embodiments of the

disclosure, and are not intended to limit the scope of what
the inventor/inventors regard as their disclosure.

Modifications of the above-described modes for carrying
out the methods and systems herein disclosed that are

50 obvious to persons of skill in the art are intended to be within
the scope of the following claims. All patents and publica-
tions mentioned in the specification are indicative of the
levels of skill of those skilled in the art to which the
disclosure pertains. All references cited in this disclosure are

55 incorporated by reference to the same extent as if each
reference had been incorporated by reference in its entirety
individually.

It is to be understood that the disclosure is not limited to
particular methods or systems, which can, of course, vary. It

60 is also to be understood that the terminology used herein is
for the purpose of describing particular embodiments only,
and is not intended to be limiting. As used in this specifi-
cation and the appended claims, the singular forms "a,"
"an," and "the" include plural referents unless the content

65 clearly dictates otherwise. The term "plurality" includes two
or more referents unless the content clearly dictates other-
wise. Unless defined otherwise, all technical and scientific
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terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which the
disclosure pertains.

What is claimed is:
1. A Hall thruster comprising:
an annular discharge chamber having a rear flat surface, a

front flat aperture, an inner annular surface and an outer
annular surface;

a gas distributor adjacent to the rear flat surface of the
annular discharge chamber;

an anode adjacent to the rear flat surface of the annular
discharge chamber; a cathode adjacent to the front flat
aperture of the annular discharge chamber, the anode
and cathode configured to generate an electric field
within the annular discharge chamber;

a coating, made of copper, deposited on the inner annular
surface and the outer annular surface for thermal dis-
sipation; and

6
magnetic poles configured to generate a magnetic field in

the annular discharge chamber, the magnetic field con-
figured to avoid collisions of charged particles against
the coating by directing magnetic field lines away from

5 the coating;
wherein no protective walls are present between the

coating and the inner annular surface and between the
coating and the outer annular surface.

2. The Hall thruster of claim 1, wherein the gas distributor
is configured to inject an ionizable gas in the annularto 
discharge chamber.

3. The Hall thruster of claim 2, wherein the ionizable gas
is xenon, argon or krypton.

4. The Hall thruster of claim 2, wherein the ionizable gas
15 comprises a vapor of bismuth, iodine, zinc or magnesium.

5. The Hall thruster of claim 1, wherein no boron nitride
is present between the coating and the inner annular surface
and between the coating and the outer annular surface.
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