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Abstract—In this paper, a new empirical indicator for predict-
ing the peak opening loads of supersonic parachutes is pre-
sented. The proposed indicator is proportional to twice the
free-stream dynamic pressure and the projected area of the
parachute, which is equivalent to estimating the opening load
as a percentage of the free-stream momentum flux through the
projected area at the moment of peak inflation. The form
of this expression is motivated by a classical control volume
analysis of the aerodynamic forces acting on a parachute during
inflation, under the simplifying assumptions of quasi-static and
one-dimensional flow. For parachute geometries and flight
conditions typical of Mars Entry, Descent, and Landing systems,
the largest contribution to the total drag is shown to be a
momentum flux term that is associated with the entrainment of
atmosphere within the inflating parachute volume. Using this
new method, empirical constants are calculated from existing
flight reconstruction data and are shown to have a smaller
standard deviation than similar constants determined using the
customary indicator form, which is based on the steady-state
subsonic drag and proportional to the parachute reference area.
These empirical constants are also compared to an analytic
estimate, derived from the control volume analysis, and shown to
have excellent agreement across a wide range of Mach numbers
and dynamic pressures for several parachute geometries. While
opening loads estimated using both methods produce similar re-
sults at low supersonic Mach numbers typical of past inflations,
the proposed method predicts notably larger loads at higher
Mach numbers, those above Mach 2.0, due to the omission of
any Mach Efficiency Factor. Several current Mars EDL projects
have adopted this new indicator.
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1. INTRODUCTION
The United States has successfully landed seven robotic
systems on the surface of Mars. The earliest of which were
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Figure 1. In 2012, the High-Resolution Imaging Science
Experiment (HiRISE) camera captured this image of

Curiosity while descending on parachute at Mars. Image
Credit: NASA/JPL-Caltech/Univ. of Arizona

the twin Viking landers (VL1 and VL2) in 1976. Twenty
one years later, Mars Pathfinder (MPF) landed the Sojourner
rover in 1997. This was followed in 2004 by the twin Mars
Exploration Rovers (MER-A and MER-B) Spirit and Oppor-
tunity and in 2008 by the Mars Phoenix Lander (PHX). The
latest landing, in 2012, was Mars Science Laboratory (MSL),
carrying the Curiosity rover. A common denominator for all
of these landings has been the Viking-derived Entry, Descent,
and Landing (EDL) system architecture, which features a
single mortar-deployed Disk-Gap-Band (DGB) supersonic
parachute (See Figure 1). These parachutes perform the vital
function of slowing the entry vehicle from supersonic termi-
nal velocities to subsonic speeds, before too much altitude is
lost. [1]

Not surprisingly, a key design parameter for these parachutes
is the peak opening load and a key development activity
is the structural qualification. Full-scale subsonic wind-
tunnel tests, low-altitude drop tests, and/or high-altitude flight
tests are needed to verify that the mechanical strength of
the system is sufficient to survive the stresses applied at
the design load with sufficient margin, as well as through
subsequent repeated area oscillations. [2][3] In parallel,
accurate predictions of the peak flight load are needed to
ensure that the system will remain within the established
operating conditions with a high degree of certainty. Indepen-
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dently, the canopy inflation behavior and drag performance
are typically qualified by similarity to heritage high-altitude
test flights, such as the Viking Balloon Launched Decelerator
Test (BLDT) flights AV-2 and AV-4. [4]

However, the 2015 failure of a supersonic parachute during
the Low Density Supersonic Decelerator (LDSD) second
Supersonic Flight Dynamics Test (SFDT-2) [5] has since
raised questions about the adequacy of the historically ac-
cepted methods by which these parachutes have been de-
signed and tested in the past. In particular, the similarity
and conservatism of stresses applied to the canopy during
subsonic testing, as opposed to those applied in a supersonic
flowfield have been questioned, prompting the creation of the
Advanced Supersonic Parachute Inflation Research Experi-
ment (ASPIRE) test program to supersonically qualify the
Mars 2020 parachute on a high-altitude sounding rocket. In
parallel, more accurate predictions of the peak loads were
needed to support targeting of the ASPIRE test conditions
and to bound the expected Mars 2020 flight loads.

In response, the Mars 2020 project has developed a new
empirical opening load indicator for supersonic parachutes.
The proposed indicator, Equation 1, is proportional to twice
the free-stream dynamic pressure, q∞, and the projected area
of the parachute, Sproj , which is equivalent to estimating
the opening load, Fpeak, as a percentage of the free-stream
momentum flux through the projected area at the moment of
peak inflation. Thus we refer to this indicator as “momentum-
based” and the proportionality constant, kP , as the “momen-
tum constant”.

Fpeak = 2kP q∞Sproj (1)

2. BACKGROUND
The questions raised by the LDSD failure have prompted a
renewed interest within the Mars EDL community to better
understand the physics and predict the loads associated with
supersonic parachute inflation. Yet, inflation dynamics of
a parachute in a supersonic flow field is a very complex,
transient, and chaotic system (See Figure 2 for an illustration
of the complex geometries experienced during inflation),
making analytical or even computational solutions extremely
difficult. As Lingard explains, “it necessitates the solution
of unsteady, separated, compressible flows about a flexible,
porous body with non-uniform upstream flow conditions.” [6]
Even the most advanced Fluid-Structures Interaction (FSI)
class of Computational Fluid Dynamics (CFD) codes are still
considered unreliable in predicting or bounding the forces
and stresses experienced in flight, though significant progress
is being made. [7][8]

Various methods for modeling parachute inflation have been
proposed in the literature. [9][10][11][12][13] These methods
generally attempt to predict the evolution of the drag force
throughout the inflation process (See Figure 3 for an example
of typical load profile) and tend to fall into three categories:
those that impose an inflation time, those that impose an
inflation distance, or those that balance the forces in the radial
direction. The wide variety of these methods again attests to
the difficulty and complexity of the problem.

Figure 3. Reconstructed parachute force, FP , as a function
of time since mortar-fire, ∆tMF , from the Mars Science
Laboratory (MSL) Entry, Descent, and Landing (EDL).

Image Credit: Cruz et al. [14].

Many of these methods employ the concept of conservation
of momentum and the authors emphasize the importance of
the momentum transfer to the entrained atmosphere. Potvin
even proposes a model based on the complete transfer of
momentum to the entrained flow. [12]

In this paper, rather than attempting to precisely describe the
geometry and internal pressures acting on the surface of the
canopy, we instead take a more classic and macroscopic view
of the problem. By applying the principles of conservation
of mass and momentum to a control volume, we eliminate
the need to describe exactly what is occurring within that
control volume and must only account for the flux of mass
and momentum entering and leaving the volume. The re-
sulting expressions for the forces acting on the parachute,
albeit simplified, provide some physical insight into the prob-
lem. These insights motivate the new empirical formulation
for predicting peak opening loads, which we describe as
momentum-based. We will compare the new indicator with
the customary, standard approach and show that this new
formulation agrees well with existing flight data.

3. EFFECTIVE DRAG COEFFICIENT, CXCD

In this section, we provide a comparative baseline using the
customary approach of estimating the opening load from an
effective drag coefficient, which is the product of a constant
over-inflation factor, CX , and the steady-state drag coeffi-
cient, CD. As shown in Equation 2, the steady-state drag
coefficient at supersonic conditions is a function of Mach
number only and is estimated by scaling the subsonic, incom-
pressible, drag coefficient, CD0, by a Mach Efficiency Factor
(MEF), kMEF .[15] Figure 4 shows the Mach dependency of
this factor, which peaks at approximately Mach = 1.5 and de-
creases sharply for larger Mach numbers. For MSL the over-
inflation factor was estimated as CX = 1.407. Thus, the in-
stantaneous peak opening load at M = 1.7 (kMEF = 1.181)
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Figure 2. Three images extracted from high speed video of the parachute inflation sequence on the ASPIRE SR-01 test flight.
The parachute is a 21.5 m MSL-heritage Disk-Gap-Band parachute. Image Credit: NASA/JPL-Caltech.

would be estimated by assuming an effective supersonic
drag coefficient that was 66.2% higher than the steady-state,
incompressible drag coefficient.

Fpeak = CXCDq∞Sref
where :

CD = kMEFCD0

(2)

Figure 4. Mach Efficiency Factor (MEF) model for Mars
Science Laboratory (MSL) Disk-Gap-Band (DGB)

parachute.

In practice, the steady-state drag coefficient, CD0 and the
MEF, kMEF , are estimated from wind-tunnel data. [16]
Then the over-inflation factor, CX , is estimated from the
empirically determined product of CXCD as shown in Table
1.

Table 1 provides reconstructed flight data from each of the
seven Mars landings, along with a few high-altitude Earth

Table 1. Standard Empirical Constants Derived from
Reconstructed Flight Data. CXCD =

Fpeak
q∞Sref

Mission Fpeak (kN ) q∞ (Pa) Sref (m2) CXCD

AV-2 40.0 221.4 204.85 0.882
AV-4 72.0 408.4 204.85 0.861
VL1 50.2 319.6 204.85 0.767
VL2 49.8 329.0 204.85 0.739
MPF 35.5 588.0 126.68 0.477
MER-A 51.13 718.8 156.15 0.455
MER-B 58.73 762.2 156.15 0.493
PHX 44.9 466.0 109.36 0.881
MSL 153.8 474.0 363.05 0.894
SFDT-2 386.9 557.0 736.81 0.943

Peak opening load, Fpeak, is the maximum aerodynamic force.
Dynamic pressure, q∞, is estimated for the time at peak load.
Sample statistics: µCXCD = 0.739. σCXCD = 0.192.

flight tests.2 This table provides the reconstructed opening
loads, Fpeak, and dynamic pressure at full-inflation, q∞,
along with the reference area, Sref , for each canopy. From
these data we can estimate the product CXCD.

These data, plotted graphically in Figure 5, exhibit a good
bit of variability. The sample standard deviation from Table
1 is σ = 0.192., which is approximately 26% of the mean
value, µ = 0.739. The primary reason for this variability is
the various parachute geometries, all of which have different
steady-state drag coefficients. AV-1, AV-2, VL1, VL2, PHX,
and MSL are all Viking-geometry DGBs; MPF is a modified
Viking DGB with a 2x band width; MER-A and MER-B are
DGBs with a 1.6x Viking band width; and SFDT-2 is a ring-

2Significant uncertainty exists in many of the values contained in this table.
Opening loads reported in the literature often don’t specify the assumptions
under which the value was reconstructed. Also, parachute deployment
conditions are often reported only at mortar-fire, rather than at full-inflation.
3Opening loads for MER-A and MER-B are likely underestimated due to the
low sampling frequency (8 Hz) of the telemetered flight data. [17]
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Figure 5. Standard empirical drag coefficients, CXCD,
plotted versus Mach number. Data from Table 1.

Table 2. Proposed Empirical Constant Derived from
Reconstructed Flight Data. kP =

Fpeak
2q∞Sproj

Mission Fpeak (kN ) q∞ (Pa) Sproj (m2) kP

AV-2 40.0 221.4 110.36 0.819
AV-4 72.0 408.4 110.36 0.799
VL1 50.2 319.6 110.36 0.712
VL2 49.8 329.0 110.36 0.686
MPF 35.5 588.0 39.02 0.774
MER-A 51.14 718.8 58.50 0.608
MER-B 58.74 762.2 58.50 0.658
PHX 44.9 466.0 58.92 0.818
MSL 153.8 474.0 195.60 0.829
SFDT-2 386.9 557.0 425.58 0.816

Peak opening load, Fpeak, is the maximum aerodynamic force.
Dynamic pressure, q∞, is estimated for the time at peak load.
Sample statistics: µkP = 0.752. σkP = 0.080.

sail design.

4. MOMENTUM CONSTANT, kP
As we did for CXCD in the previous section, we estimate
our new empirical constant, kP , from the same available
flight data. These data are provided in Table 2, and shown
graphically in Figure 6.

The only difference is that we now normalize the observed
opening load by 2Sproj , rather than Sref . Since, for a hemi-
spherical parachute, the reference projected area is approxi-
mately twice the projected area, we find that the numerical
values of kP and CXCD are similar. However, note that
the sample standard deviation, σ = 0.080, is significantly
reduced. This result implies that peak opening load scales
more closely with projected area, Sproj , than it does with
reference area, Sref – at least for this class of parachute.

4Opening loads for MER-A and MER-B are likely underestimated due to the
low sampling frequency (8 Hz) of the telemetered flight data. [17]

Figure 6. Proposed empirical momentum constants, kP ,
plotted versus Mach number. Data from Table 2.

5. RESULTS OF A CONTROL VOLUME
ANALYSIS

The following section briefly presents the results a control
volume analysis, which was performed for the purpose of
deriving simplified expressions for the forces acting on a
supersonic parachute during inflation. In subsequent sec-
tions, these expressions will then be used to motivate our
chosen form for the opening load indicator and to provide
a reasonable analytic estimate of the magnitude of the pro-
portionality constant, kP . In this analysis, the principles of
conservation of mass and momentum where applied to an
imaginary volume enclosing the parachute in order to find the
net aerodynamic force acting on the parachute, Fdrag .

This analysis was conducted, under the simplifying assump-
tions of quasi-static and quasi-one-dimensional flow, in the
same manner in which the thrust of a jet engine is often
derived, as in [18]. Equation 3, is the classic equation for
the thrust of a ramjet engine. The first term, ṁexituexit, is
called the “gross thrust” and is the flux of exhaust product
momentum leaving the nozzle. The second term, ṁinu∞, is
called the “ram drag” and is the flux of free-stream momen-
tum entering the inlet. The last term, (pexit − p∞)Sexit, is
called the “pressure correction”, which accounts for the static
pressure acting on the nozzle exit plane.

Fthrust = ṁexituexit − ṁinu∞

+ (pexit − p∞)Sexit
(3)

As Anderson points out [18], it is important to note that the
physical mechanism by which the working fluid reacts with
our system is by exerting pressure and shear stress on the
internal and external surfaces. However the net result of this
interaction is that momentum is transferred on a molecular
level from the working fluid to the system as a result of the
elastic collisions occurring between the fluid particles and the
threads of the parachute fabric. We use this fact to compute
the aerodynamic force from the change in momentum of the
atmosphere as it travels through our control volume, since the
momentum gained or lost by the fluid must be balanced by an
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equal and opposite change in the momentum of the system.
We use this approach because it is more simple and more
practical than attempting to solve for the precise distribution
of pressure over the entire surface area of the parachute.

We start with presenting a free-body diagram of our system,
Figure 7, which depicts the forces and accelerations acting on
the parachute. From this we write Equation 4, which is New-
ton’s 2nd Law, where ~Ftension is the external tension force
applied by the parachute suspension system onto the canopy,
~Fdrag is the net aerodynamic force acting on the parachute,
and ~Fbuoy is the buoyancy force due to the displacement
of free-stream atmosphere by denser entrained atmosphere
within the volume of the parachute. The vector sum of these
forces is equal to the product of sensed acceleration and the
mass of the system, which includes both the physical mass of
the parachute, mchute, along with the mass of the entrained
atmosphere, mentr.

~Ftension + ~Fbuoy + ~Fdrag = (mchute +mentr)~asens (4)

The magnitude of the buoyancy force is equal to the weight
of the displaced fluid, Fbuoy = ρ∞Ventrg, and the axial com-
ponent of this force is ρ∞Ventrgsinγ̄. This force acts against
the weight of the entrained atmosphere, ρeaVentrgsinγ̄, so
that the net buoyancy is small. For supersonic inflations at
Mars (or Mars-like conditions for high-altitude Earth tests),
where the atmospheric density, ρ∞, is quite low, the magni-
tude of the buoyancy term is often neglected, but is included
here for completeness.5 The effect of the buoyancy can also
be neglected when the flight path angle is horizontal, γ̄ = 0,
as is the case in typical wind-tunnel testing. Thus, when
neglecting both the buoyancy and entrained mass, and noting
that the parachute is designed to be a deceleration device (i.e.
asens < 0), Equation 4 reduces to Equation 5.

Ftension ≈ Fdrag −mchute |asens|
when :

Fbuoy ≈ 0

mentr � mchute

asens < 0

(5)

The above equation is important for two reasons. First, note
that the tension is equal to the drag (i.e. Ftension = Fdrag)
only when the acceleration is exactly zero, as is the case in a
wind-tunnel experiment. In that case, the aerodynamic force
Fdrag can be directly measured by recording the reaction
forces in load measuring devices placed in the suspension
system or on the sting. Otherwise, when the parachute is
decelerating, the tension force that would be measured by
load pins is less than the aerodynamic force (i.e. Ftension <
Fdrag) by an amount equivalent to the inertial load on the
parachute: mchute |asens|. This effect can be significant,
amounting to thousands of pounds of force. Secondly, the
mere fact that these loads are different creates confusion

5Note that this buoyancy term may be large and non-negligible in the case of
very large parachutes operating in thick atmospheres, such as for low-altitude
Earth testing of Mars parachutes.

in the interpretation of published opening loads, since the
literature often fails to specify which of these forces is being
reported.6

Equation 6 is the continuity equation written for a control
volume surrounding our parachute system, where ṁentr is
the time rate of change of entrained atmosphere within the
control volume. This equation simply states that ṁentr is
equal to the net difference between inflow and outflow mass
fluxes, ṁin and ṁexit. Note that during inflation, the mass
of the system is not constant, (i.e. ṁentr > 0), which differs
significantly from the steady-state, post-inflation state.

ṁentr = ṁin − ṁexit (6)

Similarly, Equation 7 is the conservation of momentum ap-
plied to the control volume. This equation states that the
aerodynamic force is equal to the sum of the net flux of
momentum into the control volume, the time rate of change
of momentum within the control volume, and the net pressure
forces acting on the faces of the control volume.

Fdrag = ṁinu∞ − ṁexituexit
− ṁentrutrans

− (pexit − p∞)Sexit

− (pwake − p∞) (Sin − Sexit)

(7)

Comparing Equation 7 with Equation 3, we see many com-
mon terms, noting that each term in Equation 3 appears
negated in Equation 7, since the drag and thrust are defined
as positive in opposing directions. However, Equation 7
adds two additional terms that are not present in Equation
3 – one momentum term and one pressure term. The third
term, ṁentrutrans, is the time rate of change of momentum
of the entrained atmosphere. This term would be zero for a
ramjet since the mass of the working fluid within the engine is
constant. The final term, (pwake − p∞) (Sin − Sexit), is an
additional pressure correction term due to the static pressure
in the parachute wake acting on the external surface of the
parachute.

Finally, Figure 8 qualitatively compares the magnitude of
each term in Equation 7 for a representative case of a 21.5 m
DGB parachute opening at MSL flight conditions.7 The “inlet
momentum flux” term, , ṁinu∞, which is equivalent to the
“ram drag” term in Equation 3, is far and away the dominant
term. The magnitude of this term even exceeds the magnitude
of the total drag, since most of the other contributions are
negative. The only other positive term is the wake pressure
correction, since the pressure in the wake is less than free-
stream pressure (i.e. Cpwake < 0).

Because the inlet momentum flux is by far the dominate term,
and since its magnitude exceeds the total drag, it is reasonable
to estimate the total drag as an empirical fraction of the inlet

6Flight reconstruction data reported in Table 1 and Table 2 of this paper
assumes that the reported opening loads are aerodynamic forces (i.e. Fdrag).
In the event this assumption is not true, the actual opening load would be
larger and may be contributing to some of the variability observed in the
available data.
7Mach = 1.7 and q∞ = 474Pa in Mars atmosphere.
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Figure 7. Free-body diagram depicting the positive directions of the sensed forces and accelerations acting on a parachute in
flight. The buoyancy force is the weight of the free-stream atmosphere displaced by the denser entrained atmosphere within

the parachute volume. Because the parachute is decelerating, the sensed acceleration is negative and acts in the opposite
direction of the arrow shown here.

Figure 8. Relative contributions of each term in Equation 7
for a case representative of an MSL DGB at Mars. The

ṁinu∞ term, identified as “inlet momentum flux”, exceeds
the total drag, Fdrag (i.e. all other terms have a net negative

contribution).

momentum flux, as shown in Equation 8. Substituting the
identities ṁin = ρ∞u∞Sin and q∞ = 1

2ρ∞u
2
∞ we also find

that ṁinu∞ = 2q∞Sin.

Fdrag = kP (ṁinu∞)

= kP (2q∞Sin)
(8)

Physically, this empirical momentum constant, kP , is a non-
dimensional coefficient that describes the instantaneous frac-
tion of the incoming momentum flux that is converted to
aerodynamic drag. Taken at peak inflation, kP is the ratio
of the peak opening load to the momentum flux through the
projected area of the fully-inflated parachute, since Sin =
Sproj at full-inflation.

Another very important implication of Equation 8 is that we
have removed the explicit Mach dependence, kMEF . This

implies that opening load is only a function of dynamic
pressure, which is contrary to the assumed shape of the Mach
efficiency factor, as shown in Figure 4. That figure suggests a
decreasing opening load with increasing Mach number. As a
consequence, it is reasonable to expect that kP might have
an implicit Mach dependence. However, Figure 6, which
plots the flight data of Table 2 against Mach number at full-
inflation, shows very little variation over a wide range of
Mach numbers. This issue will be addressed further in a
subsequent section.

6. ANALYTIC ESTIMATE OF kP
In this section, we develop an analytical estimate for kP as a
function of flight conditions and parachute geometry. Though
this analysis may be extended to other regimes, we will make
some assumptions that restrict our discussion to supersonic
inflation. Given Equation 7 from the control volume analysis,
we can substitute the parachute drag into Equation 8. This
results in Equation 9.

kP = 1−
(
ṁexit

ṁin

)(
uexit
u∞

)
−
(

1− ṁexit

ṁin

)(
utrans
u∞

)
− 1

2
Cpexit

(
Sexit
Sin

)
− 1

2
Cpwake

(
1− Sexit

Sin

)
(9)

We can now estimate each term in this expression by making
a few assumptions. The general procedure is illustrated in
Figure 9, while specific steps are enumerated below.

1. Assume a normal shock exists just inside the parachute
canopy. This allows us to calculate post-shock and stag-
nation conditions inside the parachute from the normal
shock relations (e.g. the post-shock Mach number, M2,
is found from Equation 10 where M∞ is the free-stream
Mach number and γ is the perfect-gas ratio of specific
heats).
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Figure 9. Assuming that a normal shock exists just inside the parachute canopy and that the exit flow is choked, normal shock
relations and isentropic flow relations are used to estimate the flow conditions within the parachute control volume: (1)

supersonic free-stream conditions, (2) subsonic post-shock conditions, (3) near-stagnation internal transiting flow conditions,
and (4) sonic exit conditions.

M2 =

√
M2
∞ (γ − 1) + 2

2γM2
∞ − (γ − 1)

(10)

Likewise, other post-shock properties are found by well-
known normal shock relationships (e.g. Equation 11 for
pressure, Equation 12 for temperature, and Equation 13 for
density).

p2
p∞

=
2γM2

∞
γ + 1

− γ − 1

γ + 1
(11)

T2
T∞

=

(
1 + γ−1

2 M2
∞
) (

2γ
γ−1M

2
∞ − 1

)
M2
∞

(
2γ
γ−1 + γ−1

2

) (12)

ρ2
ρ∞

=
(γ + 1)M2

∞
(γ − 1)M2

∞ + 2
(13)

The post-shock stagnation, or “total”, conditions are found
from the following relationships (e.g. Equation 14 for total
pressure, Equation 15 for total temperature, and Equation
16 for total density).

p20
p2

=

(
1 +

γ − 1

2
M2

2

) γ
γ−1

(14)

T20
T2

=

(
1 +

γ − 1

2
M2

2

)
(15)

ρ20
ρ2

=

(
1 +

γ − 1

2
M2

2

) 1
γ−1

(16)

The inlet mass flow rate is given by Equation 17.

ṁin = ρ∞Sinu∞ (17)

2. Assume that the Mach number of the entrained atmo-
sphere, as it transits through the parachute control volume,
M3, is a fixed fraction of M2 (Equation 18). This allows
us to calculate the properties of the entrained atmosphere
from isentropic relations. Because the fraction ftrans must
be assumed, this value becomes an empirical parameter
that may be adjusted to match observed data.

M3 = ftransM2

0 ≤ ftrans ≤ 1
(18)

Other post-shock properties are found from the post-shock

stagnation conditions by well-known isentropic relations
(e.g. Equation 19 for pressure, Equation 20 for tempera-
ture, and Equation 21 for density).

p3
p20

=

(
1 +

γ − 1

2
M2

3

) −γ
γ−1

(19)

T3
T20

=

(
1 +

γ − 1

2
M2

3

)−1
(20)

ρ3
ρ20

=

(
1 +

γ − 1

2
M2

3

) −1
γ−1

(21)

The transiting flow velocity, utrans, can then be found
from Equation 22.

utrans = M3

√
γRT3 (22)

3. Assume the exit flow is choked (i.e. Mexit = 1) and that
the ratio of exit to inlet areas is approximately equal to
the porosity of the parachute, λ (i.e. Sexit ≈ λSproj).
This allows us to calculate the properties of the exit flow
from isentropic relations (e.g. Equation 23 for pressure,
Equation 24 for temperature, and Equation 25 for density).

pexit
p20

=

(
1 +

γ − 1

2

) −γ
γ−1

(23)

Texit
T20

=

(
1 +

γ − 1

2

)−1
(24)

ρexit
ρ20

=

(
1 +

γ − 1

2

) −1
γ−1

(25)

The exit flow velocity, uexit, can then be found from
Equation 26.

uexit = cexit =
√
γRTexit (26)

The exit pressure coefficient is given by Equation 27.

Cpexit =
(pexit − p∞)

q∞
(27)

The exit mass flow rate is given by Equation 28.

ṁexit = ρexitSexituexit (28)

7



Figure 10. Comparison of analytic estimates from Equation
9 (assuming MSL inputs and ftrans = 0.4) with Table 2

empirical data, showing excellent agreement between
analytic and empirical results.

4. Finally, assume Cpwake is given empirically by the Viking
back-pressure correction8 as developed by Mitcheltree
(Equation 29). This allows us to estimate the pressure
correction on the outer surface of the parachute canopy.

Cpwake =A0 +
A1

M∞
+

A2

M2
∞

+
A3

M3
∞

A0 = 0.008325

A1 = 0.112933

A2 = −1.801004

A3 = 1.288481

(29)

Figure 10 plots the results of Equation 9 versus Mach number
for an assumed transit Mach number fraction of ftrans =
40%. This estimate shows excellent agreement with the flight
data, even capturing the slightly lower kP of the Viking
landers as well as the kP for the SFDT-2 ringsail parachute at
M = 2.26.

Returning to the discussion of the Mach dependence of kP ,
Figure 10 implies there may be some sensitivity at lower
Mach numbers, near M = 1, but shows a very flat trend at
Mach numbers above M = 1.5. Of course, this observation
assumes that ftrans is constant over all Mach numbers, as we
assumed it to be, or at least doesn’t vary significantly. Thus,
it would be folly to place too much faith in this observation
without additional data at higher Mach numbers.

7. FUTURE WORK
The proposed opening load indicator has been adopted by the
Mars program projects currently under development, Mars
2020 and Insight, and is being used to help target desired

8As suggested by M. Schoenenberger in unpublished work, “Prediction of
Peak Drag Coefficient During Inflation of a Supersonic Parachute,” 2016.

test conditions for the ASPIRE test flights. These upcoming
flight opportunities will provide critical data for evaluating
the effectiveness of a priori load estimates using the new
indicator.

In particular the first ASPIRE flight (SR-01) will fly a build-
to-print MSL parachute at MSL flight conditions, thus evalu-
ating the similarity of kP between Earth flight tests and Mars
flights. The second flight (SR-02) will fly a strengthened
parachute at the same flight conditions, thus demonstrating
any differences in load due to the differences in construction
for geometrically similar parachutes. The third and fourth
flights (SR-03 and SR-04) will target conditions at twice the
MSL flight load, which will test the application of kP at
higher dynamic pressures.

8. CONCLUSIONS
In this paper we propose a new empirical model for predict-
ing peak opening loads in supersonic parachutes, Fpeak =
2kP q∞Sproj . This model is informed by a derivation,
from first principles, of the aerodynamic forces acting on
a parachute during inflation. A classical control volume
analysis was performed in which the conservation equations
for mass and momentum were written, under the assumptions
of quasi-static and one-dimensional flow.

Empirical constants calculated from existing flight recon-
struction data were compared to those calculated in the cus-
tomary way and were shown to have a much smaller standard
deviation. These data were also compared to an analytic
estimate with excellent agreement across a wide range of
Mach numbers, dynamic pressures, and various parachute
geometries and sizes.

The following particular observations are made:

1. Parachutes operate in very different flow regimes that
may be characterized by whether or not the flow field is
supersonic, M > 1, and whether or not the mass of the
entrained atmosphere is constant, ṁentr > 0. This paper
focused on only the region of supersonic inflation, and
developed expressions for the opening load explicitly for
these conditions and directly from first principles. This is
in contrast to the customary approach, in which an estimate
of the fully-inflated, steady-state, incompressible drag is
used as the basis for the opening load prediction.

2. During the inflation of a supersonic parachute, the aero-
dynamic drag is dominated by the momentum exchanged
with the entrained atmosphere. An analogy was made
with the thrust produced by a ramjet engine and the two
equations were shown to contain several identical terms.
The largest term, larger even that than the total drag,
was the term identified as the “ram drag”, which is the
momentum flux through the inlet area. This led to the
approach of estimating the opening load as an empirical
fraction of the incoming momentum flux, 2q∞Sproj .

3. Both the analytic estimate of kP and the empirical esti-
mates, from flight reconstruction data, suggest that there
may exist very little Mach dependence in the opening load,
except possibly below M = 1.5. This is in stark contrast
with the customary approach, which predicts a significant
reduction in opening load for increasing Mach numbers,
based on the Mach efficiency factor, kMEF . However,
additional flight data at higher Mach numbers would be

8



required to resolve this discrepancy in models.
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