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A Fault-Tolerant Clock Synchronization and Geometry 

Determination Protocol 

Mahyar R. Malekpour* 

Langley Research Center, Hampton, VA 

A fault-tolerant distributed protocol (algorithm) is presented that achieves optimum 

timing precision (clock synchronization) among the nodes and, simultaneously, determines 

the network’s geometry (shape)—locations and distances of the nodes relative to each 

other—in a wireless distributed system.  This protocol is based on the assumption of initial 

coarse synchrony of nodes’ local clocks.  The proposed solution assumes no prior knowledge 

of the nodes’ locations, the distances between the nodes, or network’s geometry, but assumes 

an ordered geometry where nodes have unique identifiers.  This protocol accommodates 

large variations in the communication latencies among the nodes; thus, it applies equally to 

both wireless and wired networks. 

Keywords:  Fault tolerant, synchronization, distributed, positioning system, mobile, dynamic 

environment, multilateration 

Nomenclature 

D = minimum communication event-response delay  

d = network communication imprecision  

γ = D + d 

F = maximum number of faults in the network 

K = number of nodes in the network 

i = 1..K 

Ni = ith Node 

π = synchronization  precision 

C = convergence time 

PLT = synchronization period 

Init = communication message 

Echo = communication message 

I. Introduction 

istributed systems have become an integral part of safety-critical computing applications, necessitating system 

designs that incorporate complex fault-tolerant resource management functions to provide globally (network 

level) coordinated operations with ultra-reliability.  As a result, robust clock synchronization has become a required 

fundamental component of fault-tolerant safety-critical distributed systems.  Clocks are typically modeled as local 

counters, which increase/decrease with a given rate according to real time.  Synchronization of a distributed system 

is the process of achieving and maintaining a bounded skew among independent local clocks at the participating 

nodes.  Synchronization has practical significance as a fundamental service for higher-level algorithms which solve 

other problems.  For example, in safety-critical TDMA (Time Division Multiple Access) architectures1,2,3,4, 

synchronization is the most crucial element of these systems.  Another example is in Local Positioning Systems 

(LPS) where a network of three or more signaling beacons (nodes) is used for navigation and surveying by 

providing location information within the coverage area.  The reliability and accuracy of such a positioning system 

fundamentally depends on two factors, first, its timeliness in broadcasting signals, i.e., whether or not the signals are 

transmitted at the same time or as close to the same time as possible, and second, the knowledge of its geometry, i.e., 

locations and distances of its beacons.  The more accurate the time is at each beacon and the higher the precision 
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across the network, the more accurate the estimated position at the receivers.  Similarly, the more accurate the 

geometry is and knowledge of the beacons’ location and distances from each other, the more accurate the estimated 

position at the receivers will be. 

A distributed system is defined to be self-stabilizing if, from an arbitrary initial state, it is guaranteed to reach a 

legitimate state in a finite amount of time and remains in the legitimate state.  For clock synchronization, a 

legitimate state is a state where all parts (local clocks) in the system are in synchrony, i.e., within a bounded skew of 

each other5.  Typically, the assumed network topology is a regular graph such as a fully connected graph or a ring, 

since they provide a base case to solve the distributed synchronization problem. 

A fundamental property of a robust distributed system is the capability of tolerating and potentially recovering 

from failures (loss of service due to a fault), which are not predictable in advance.  A fault is a defect or flaw in a 

system component resulting in an incorrect state2,6.  The requirement to handle faults adds a new dimension to the 

complexity of the synchronization of fault-tolerant distributed systems.  In the context of fault-tolerant distributed 

systems, a fault presenting different symptoms to different observers is known as Byzantine (arbitrary) fault.  To 

prevent single point failure, LPSs that are used as an alternate, or to complement GPS (Global Positioning System), 

need to establish their time synchrony and geometry internally and without reliance on an external source or a 

designated source internal to the network (master-slave scheme). 

We call an approach to solving the clock synchronization problem direct if it relies solely on local (node level) 

detection and filtering of faults.  This approach is primarily limited to detecting timing and/or value faults of a 

node’s incoming messages.  In contrast, we call an approach indirect if it relies on the global (network level) 

detection and filtering of faults independent of, and in addition to, the local detection and filtering of the faults.  This 

approach however requires coordination at the network level. 

Thus far, there is no formally verified, direct, and deterministic solution for the general case of the clock 

synchronization problem.  Furthermore, most attempts have been in trying to solve this problem directly, although, 

some approached to solve this problem indirectly using authenticated (signed) messages7.  Driscoll et al. in Ref. 8, 

however, argues that: “While the arguments of unforgeable signed messages make sense in the context of 

communicating generals, the validity of necessary assumptions in a digital processing environment is not 

supportable.  In fact, the philosophical approach of utilizing cryptography to address the problem within the real 

world of digital electronics makes little sense.  The assumptions required to support the validity of unbreakable 

signatures are equally applicable to simpler approaches (such as appending a simple source ID or a CRC to the end 

of a message).  It is not possible to prove such assumptions analytically for systems with failure probability 

requirements near 10-9/hr.”  Furthermore, we believe, to be generally useful, algorithms that solve clock 

synchronization problem must be able to handle non-authenticated messages. 

Also, addressing network element imperfections, such as oscillator drift with respect to real time and differences 

in the lengths of the physical communication media, is necessary to make a solution applicable to realizable systems.  

In Ref. 9, Biely et al. make the following two points; first, due to the high reliability of modern processors, 

communication-related failures like receiver overruns (run out of buffers), unrecognized packets (synchronization 

errors), and CRC errors (data reception problems) in all sorts of wireless networks are increasingly dominating 

process failures; and second, such link failures are typically transient and mobile, in the sense that they typically 

affect different messages to/from different processes over time.  Also, in wired systems, network’s geometry is a 

non-issue since the nodes are physically connected to each other and the lengths of communication links do not 

change.  In wireless systems, however, network’s geometry plays a crucial role as the link failures are more frequent 

and typically transient and mobile.  Unlike wired networks, a wireless network does not have to be static.  Mobility, 

however, adds yet another dimension to the complexity of this problem even in the absence of faults.   If the nodes 

are mobile, communication links vary with time and the network’s shape changes dynamically as a function of time. 

In Ref. 10, we defined direct and indirect approaches for solving the clock synchronization problem based on 

local and global detection and filtering of faults.  We also presented a two-step strategy for solving the clock 

synchronization problem indirectly by first converting any message to a symmetric message and then using a 

verified symmetric-fault-tolerant protocol to synchronize the network.  A symmetric-fault-tolerant protocol was also 

introduced in Ref. 10 (listed in Appendix A), that guarantees achieving synchrony.  The network precision obtained, 

however, is a function of the communication delays, coarse-grained and less than ideal for practical purposes.  To 

augment the symmetric-fault-tolerant protocol, in this paper, we introduce a protocol that guarantees fine-grained, 

optimum synchrony in only one iteration, assuming the network is initially coarsely synchronized.  Synchronization 

precision, π, is the guaranteed upper bound on differences of the nodes’ local clocks.  In distributed systems, the 

theoretical limit of π is one clock tick.  We refer to a network with precision of one clock tick as being fine-

grained/finely synchronized.  When the network precision is much more than this optimum value but far less than 
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the synchronization period, PLT (formally defined in the next section), we refer to it as coarse-grained/coarsely 

synchronized.   

There exist other clock synchronization algorithms (protocols) based on the assumption of initial synchrony, e.g., 

Ref. 11, 12, and 13.  These algorithms achieve their optimum synchrony in multiple rounds of iterations and, 

although not explicitly stated, the underlying assumption is a static wired network.  By accommodating larger 

variations in the communication latencies among the nodes (beacons), our solution equally applies to both wireless 

and wired networks.  Although we assume initial coarse synchrony, unlike the algorithms in Ref. 11, 12, and 13, our 

solution achieves optimum synchrony in only one iteration for static and/or dynamic networks.   

The requirement of initial knowledge of the network’s geometry would impose restrictions on the applications 

and preclude scenarios where the nodes are mobile.  To accommodate LPS applications, for instance, our proposed 

solution does not assume a prior knowledge of the nodes’ locations, the distances between the nodes, or the 

network’s geometry (shape).  As a result, our solution lends itself to high-dynamic systems by accommodating 

necessary services for UAVs (unmanned aerial vehicles) to maneuver at high speed, and in dynamic and mobile 

environments.  We, however, assume an ordered geometry where nodes have unique identifiers and the network 

topology is a fully-connected graph.  Extending this solution to include other topologies is left for future work. 

This paper is organized as follows.  In Section II we provide a system overview.  In Section III we present the 

protocol and provide examples in Appendix B to help with the understanding of our proposed solution.  Finally, we 

conclude with remarks in Section IV. 

II. System Overview 

We consider synchronous message-passing distributed systems and model the system as a graph with a set of 

nodes (vertices) that communicate with each other by sending messages via a set of communication links (edges) 

representing the nodes’ interconnectivity.  The underlying topology considered is a fully connected network of K† 

nodes that exchange messages.   For a fully connected  graph (network) of K nodes, a wired network consists of 

K(K-1) unidirectional (one-to-one) communication links while a wireless network consists of K unidirectional (one-

to-many, i.e., broadcast) communication links.  The systems considered consist of a set of good nodes/links and a set 

of faulty nodes/links.  A good node is assumed to be an active participant and correctly execute the protocol 

(algorithm).  A faulty node is either benign (detectably bad), symmetric, or bounded-arbitrary (Byzantine) faulty.  

We assume a maximum of F Byzantine faults present.  We assume F < K/3 and define the minimum number of 

good nodes in the system as G, noting that G > 2K/3.  For fully connected graphs the minimum number of nodes 

needed to maintain synchrony is well established to be 3F+1 7,14,15.  We leave the generalization to other topologies 

for future work. 

A good link between any two nodes is assumed to correctly deliver a message from its source node to its 

destination node within a bounded communication delay time.  A faulty link does not deliver the message, delivers a 

corrupted message, or delivers a message outside the expected communication delay time.  We associate a link fault 

to its source node.  The communication means is wireless broadcast, i.e., one-to-many, with each node broadcasting 

on a separate and dedicated channel.  Broadcast of a message by a node is realized by transmitting the message, at 

the same time, to all nodes (one-to-many).  The communication network does not guarantee any relative order of 

arrival of a broadcast message at the receiving nodes, that is, a consistent delivery order of a set of messages does  

not  necessarily  reflect  the  temporal  or  causal  order  of  

the message transmissions1.  But a broadcast message is 

assumed to arrive within a bounded delay at the 

destination nodes as described in the next section. 

A. Communication Delay 

The communication delay between directly connected 

(adjacent) nodes is expressed in terms of the minimum 

event-response delay, D, network imprecision, d, and 

communication delay, .  These parameters are measured 

at the network level as shown in Figure 1. 

As depicted in this figure, a message broadcast by a 

node N1 at real time t0 is expected to arrive at its directly 

connected adjacent nodes N2 (first node) and N3 (last 

                                                           
† Since we use Ni to address a node, we use K here instead of n as is traditionally used in the literature. 

t0

time

N1

N4

N2

N3

t +D10 t0+  1

D1

1  
Figure 1.  Event-response delay, D, and 

communication delay, . 
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node), processed, and subsequent messages generated by those nodes within the time interval of δ = [t0+D, t0+], 

where D = min(Di) and  = max(i), for all i = 1..K.  Communication between independently-clocked nodes is 

inherently imprecise.  The network imprecision, d =  - D, is due to many factors including, but not limited to, 

oscillators’ drift with respect to real time—hence, variation in nodes’ processing time—jitter, discretization error, 

temperature effects and differences in the lengths of the physical communication media.  These parameters are 

assumed to be bounded, D > 0, d ≥ 0,  > 0, and have units of real-time clock ticks and their values are known in the 

network.  In other words, we assume synchronous communication and bound the communication delay between any 

two directly connected adjacent nodes by [D, ].  Thus, a broadcast message from a source node is assumed to arrive 

at the destination nodes within d of each other. 

B. Protocol Messages 

For the protocol presented here, the nodes communicate by exchanging Init and Echo messages.  To maintain 

consistency with terminology used in the literature, we use the terms Init and Echo for messages as in Ref. 13; 

however, in our protocol, the Echo message is a vector of locally time-stamped events.  We assume physical-layer 

error detection is dealt with separately and a node uses its own message  clock ticks after its broadcast. 

C. Protocol Assumptions 

1. The topology is a fully connected graph 

2. F is the maximum number of asymmetric (Byzantine) faults in the network 

3. The number of nodes constituting the network is K, where F < K/3 nodes 

4. The bound on the oscillator drift rate is ρ, where 0 ≤ ρ << 1 

5. A message sent by a node will be received and processed by the destination nodes within d each other, 

where   = D + d 

6. The network is coarsely synchronized with an initial precision of πinit , where πinit ≤ 2γ << PLT  

7. Physical-layer error detection is dealt with separately 

D. Self-Stabilization Properties 

The following symbols are used in stating the subsequent self-stabilization properties: 

 PLT has units of real time clock ticks, and is defined as the upper bound on the time interval between any two 

consecutive resets of the LocalTimer by a node, PLT >> 0. 

 Net(t), for real time t, is the maximum difference of values of the LocalTimers of any two nodes (i.e., the 

relative clock skew) for t  t0. 

 π, the synchronization precision, is the guaranteed upper bound on Net(t) for all t  C, 0 ≤ π << PLT. 

 πinit, the initial coarse synchronization precision, πinit ≤ 2γ << PLT. 

 C, the convergence time, is defined as the bound on the maximum time for the network to achieve the 

guaranteed precision π. 

 

To prove that a protocol is self-stabilizing (self-synchronizing), it suffices to show that the following self-

stabilization properties hold. 

1. Convergence: Net(C)  π, 0  π << PLT 

2. Closure:   For all t  C, Net(t)  π 

3. Liveness: For all t  C, good node Ni, i = 1..K, there exists (PLT - π - ) ≤ U ≤ PLT, such that 

Ni.LocalTimer(t+1) = mod(Ni.LocalTimer(t)+1, U) 

 

The symmetric-fault-tolerant protocol in Ref. 10 provides coarse-grained synchrony with a guaranteed initial 

precision of πinit = d +  + δ(d+) < 2 clock ticks.  In the context of this paper and the symmetric-fault-tolerant 

protocol, we set C = PLT + ResetLocalTimerAt + 2, where ResetLocalTimerAt is a time when the LocalTimer is 

reset and we chose πinit as the earliest time when all good nodes have completed the resynchronization process.  

Since 0 <  << PLT, and the LocalTimer is reset after reaching PLT (worst-case wraparound), a trivial solution is not 

possible. 

In Section III, we introduce a clock synchronization protocol that achieves optimum precision of one clock tick, 

which is the theoretical limit. 
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E. What Self-Stabilization Properties Mean 

The Convergence and Closure properties address achieving and maintaining network synchrony, respectively.  

Given sufficient time, C, the convergence property examines whether or not the system has reached a point where 

all nodes are within the specified precision.  The closure property, on the other hand, examines whether or not the 

system starting within the specified precision will remain within that precision thereafter.  The Liveness property 

examines whether or not a node takes on all possible discrete values within an expected range.  In other words, the 

system is “alive” and the good nodes execute the protocol properly, and time advances within each node. 

III. The Protocol 

The protocol below is executed by all nodes Ni, every clock tick.  This protocol is based on the assumption of 

initial coarse synchrony (πinit << PLT).  To maintain consistency with terminology used in the literature, we use the 

terms Init and Echo for messages as in Ref. 13; however, in our protocol, the Echo message is a vector of locally 

time-stamped events. 

The protocol presented in Figure 2 starts executing when 

triggered by another algorithm (e.g., the symmetric-fault-tolerant 

protocol), which indicates that the network is coarsely 

synchronized.  The integration process of this protocol with the 

symmetric-fault-tolerant protocol10 is described in detail in Ref. 16.  

The following parameters are used in describing the protocol: 

 ω = πinit +   

 ψ = ResetLocalTimerAt 

 Init, a message broadcast by a node to all others. 

 Echo, a message broadcast by a node to all others and is a 

vector of K entries of time-stamped events indicative of 

arrival times of the Init messages.  A node assumes its 

own messages (Init and Echo) to be valid γ clock ticks 

after their broadcasts. 

 

We now describe the Recover() and Adjust() functions used by the protocol.  Let, at any node Nx, M be the 

matrix of received messages, where a row i is a vector of locally time-stamped values received from node Ni 

(content of received Echo message from Ni).  Hence, a column j is the vector of reportedly received values from Nj.  

Thus, M(i,j) is the time when Ni is reported to have received a message from Nj.  Let T be a matrix of time-

differences between nodes Ni and Nj. 

T(i,j) = (M(i,j) - M(j,i)) / 2                      (1) 

 

In evaluating Equation 1, T(i,j) is invalid if the right hand side of the equation contains an invalid value.  It 

follows from Equation 1 that T is skew-symmetric and an invalid entry in M, ex. M(i,j), will result in two invalid 

entries in T, T(i,j) and T(j,i). 

Let Dij be determined by the following equation: 

Dij = C (M(i,j) + M(j,i)) / 2                     (2) 

 

This value is unknown if the right-hand side contains an invalid value.  Note that Dij will be the actual distance 

between Ni and Nj upon the network achieving synchrony and adjusting the timing of nodes’ exchanged messages as 

reflected in M.  Nevertheless, we use current values of Dij in the process of achieving the optimum precision (fine-

synchrony) in the network and determining correct distances between the nodes. 

A. Recover()  

In this section we describe the Recover() function that, in turn, consists of two parts, recover invalid, or missing, 

Init and recover invalid, or missing, Echo messages.  Matrix T is introduced to aid with the recovery of missing data 

(faults), provide fault-tolerance, and achieve the optimum precision given the initial contents of matrix M.  Once 

faults are recovered, the optimum precision is achieved and the contents of matrix M is restored. 

 

1. Recover Invalid Init 

Recall that a fault is defined as no message or an invalid received message.  A faulty/no Init message manifests 

itself as an invalid entry in matrix M.  As long as the fault assumptions are not violated, recovery of an invalid Init is 

 

 if (LocalTimer = ψ) 

Broadcast Init 

 if (LocalTimer = ω + ψ) 

Broadcast Echo 

 if (LocalTimer = 2ω + ψ) 

Recover() 

Adjust()  

 

Figure 2.  The Fault-Tolerant Clock 

Synchronization and Geometry 

Determination Protocol. 
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possible by using valid data received by other nodes.  In particular, a link fault between nodes Ni and Nj can be 

recovered as long as there is valid data between these nodes and a third node Nx. 

T(i,j) = T(i,x) - T(x,j)                       (3) 

 

Note that a missing entry in M(i,j) is synonymous to a link fault.  Having T(i,j) and either M(i,j) or M(j,i), 

missing either M(j,i) or M(i,j) is reconstructed by using Equation 1.  To help with better understanding of the 

algorithm and its functions, examples are provided in Appendix B.  After the network has reached fine-grain 

synchrony and provided there is sufficient data in M, Dif is determined using trilateration‡ and the available data in 

M.  Using Equation 4, derived from Equations 1 and 2, M(i,f), and subsequently M(f,i), are recovered.  In case of 

marginally sufficient data, where two possible solutions exist, the assumption of an ordered network lends itself to 

determining the correct solution. 

M(i,j) = T(i,j) + Dij                        (4) 

 

Since a missing entry in M(i,j) is synonymous to a link fault, it follows from Equation 3 that if a node is silent and 

does not broadcast Init and Echo messages, it cannot be recovered.  On the other hand, if a node broadcasts an Init 

message to at least three good nodes but does not broadcast an Echo message, it can be recovered as described next.  

We leave diagnosis of the network and analysis under various fault scenarios for future work. 

 

2. Recover Invalid Echo 

A faulty Echo message manifests itself as an invalid row in matrix M.  Let, at node Ni, Nf be the faulty node 

whose corresponding row in M contains no data.  Let V be a vector of data associated with all  nodes that received 

valid Init messages from Nf.  In other words, V is in the column f in M and V = M(i,f) = valid.  The following 

iterative algorithm recovers from this fault and restores invalid row f of M, provided the fault assumptions are not 

violated, i.e., there exist sufficient valid entries in V.  The number of iterations is captured by w. 

1. Determine Dij using Equation 2, for all i, j, Ni ≠ Nf and Nj ≠ Nf. 

Reset iteration counter w. 

 

2. Realign all nodes in V, around node Nj from the set of nodes whose values constitute the vector V, excluding 

Nf, by adjusting the content of the vector V as described in the Equation 5.  Although typically a node uses 

itself as reference, an optimum reference for alignment would be choosing the node whose value is at the 

midpoint of the values in V. 

V(i) = M(i, f) + T(j,i), for all i                  (5) 

 

3. Use trilateration with entries in V—modulo the faulty node’s—and the location of those nodes relative to 

each other, i.e., Dij, to determine the time when Nf had broadcast its message.  Repeat this process until one 

of the following conditions a or b is satisfied, otherwise, adjust V by some amount 0 < x < γ and continue, 

where x is a fraction/multiple of clock ticks. 

V(j) = V(j) - x, for all j 

Increment iteration counter w 

a. Trilateration (using the values in V) results in a closest intersecting point, where any two intersecting 

points are within δ ≥ 0 of each other, and so a solution exists.  The amount of imprecision, 0 ≤ δ << γ, 

is due to drift and noise. 

b. Trilateration does not converge to a closest intersecting point after w ≥ πinit/x iterations and so there 

does not exist a solution. 

 

4. If there exists a solution, the intersecting point is indicative of the time when Nf had broadcast its Echo 

message and xw is the amount of time it took to reach the convergence point.  Reconstruct T(i,f) as follows. 

T(j,f) = xw, where Nj is the reference node used in Step 2 

T(i,f) = T(j,f) - T(j,i), for all i and i ≠ j 

T(f,i) = -T(i,f), to preserve symmetry in T 

Repair M using T and Equation 1. 

M(f,i) = M(i,f) - 2T(i,f), for all i 

Find the remaining distances Dij between all nodes using Equation 2. 

                                                           
‡ Trilateration is the process of determining absolute or relative location of a point given a set of sphere centers, their 

locations, and their radii, using the geometry of circles, spheres or triangles. 
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Having accurately measured the distances between any two nodes, and since the nodes’ IDs are assumed to be 

ordered, the network’s geometry in 3-dimensions is uniquely determined if the projection of the nodes onto the x-

plane (ground) maintains their ID order. 

B. Adjust()  

The purpose of this function is to adjust the nodes’ local times to a reference point in time and, thus, establish an 

optimum synchrony across the network. 

Construct a timeline of transmission times of Init messages of all nodes using a given row of the matrix T 

(typically a node uses own row).  To tolerate F faults, given the assumptions hold, we discard F values from both 

extremes.  Although the reference point in time can be anywhere on the timeline, we choose the midpoint of the two 

remaining extreme values (transmission times).  The process of choosing the reference point has to be consistent at 

all nodes.  Let LT and RT be the left and right most transmission times of the remaining nodes on the timeline, 

respectively. 

tMidPoint = (RT + LT) / 2  

 

The adjustment amount is determined by the following equation that is then incorporated into the node’s local 

timer, LocalTimer. 

Adj = (RT + LT) / 2 = tMidPoint  

LocalTimer = LocalTimer - Adj  

C. Proof of the Protocol 

In this section we present a sketch of a proof of the protocol described in Fig. 2.  When the assumptions hold, 

proofs of the Recover() and Adjust() functions are trivial. 

 

Lemma Correctness – The protocol in Fig. 2 achieves optimum precision. 

Proof – Given the initial precision, πinit, is known and the nodes broadcast their Init messages within πinit of each 

other, at time t = ω + ψ, at least  clock ticks have passed since the last broadcast of an Init message and all nodes 

(modulo some experiencing faults manifested as bad/missing Init messages) will have received the Init messages.  In 

a similar  argument, at time t = ω + ψ  all  nodes  broadcast  their Echo  messages  within  πinit  of each other.  At 

time t = 2ω + ψ, at least  clock ticks have passed since the last broadcast of an Echo message and all nodes 

(modulo some experiencing faults manifested as bad/missing Echo messages) will have received the Echo messages.  

If there exists faults (missing Init and/or Echo messages) and assuming the assumptions are not violated, at t = 2ω + 

ψ, the nodes recover the missing Init and Echo messages via the Recover() function.  The recovery process 

guarantees that the nodes have similar data when evoking the Adjust() function; thus ensures that the adjustment 

realigns their local clocks to the optimum precision.                 □ 

IV. Conclusion 

We have presented a distributed fault-tolerant protocol that performs two distinct functions in a wireless network 

of F < K/3 nodes (F is the maximum of F Byzantine faults), given the network starts with a coarse-grain synchrony.  

First, it achieves fine-grained synchrony—optimum timing of one clock tick—in the presence of up to F Byzantine 

faulty nodes.  Second, it determines the network’s geometry without the initial knowledge of the nodes’ locations or 

the distances between the nodes, provided the network’s geometry is ordered, nodes have unique identifiers, and the 

network topology is a fully-connected graph.  This protocol lends itself to mobile, high-dynamic environments 

where the network is not required to be bounded to remain physically stationary or to retain static geometry. 
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Appendix A 

The symmetric-fault-tolerant protocol, presented in 

Figures 1 and 2, is executed by all good nodes and 

consists of a synchronizer and a set of monitors that 

execute once every local clock tick.  Four concurrent 

if statements describe the synchronizer.  The function 

ValidateMessage() describes the monitor. 

 PST has units of real time clock ticks, and is 

defined as the upper bound on the time 

interval between any two consecutive resets 

of the StateTimer by a node, PST >> 0. 

 

 

 

Appendix B 

The following is an example of a fully connected graph consisting of 4 nodes, where F = 0.  Additional examples 

are provided in Ref. 16 to give the reader a quick review of and help in understanding the behavior of the 

Symmetric-Fault-Tolerant protocol and the Fault-Tolerant Clock Synchronization and Geometry Determination 

protocol, as well as the Fault-Tolerant Integrated Self-Synchronizing algorithm that assimilates the two protocols 

together. 

 

 

System parameters: 

D = 4 clock ticks, d = 4 clock ticks   = 8 clock ticks 

K = 4 nodes, G = 4 nodes, F = 0 nodes 

ψ = ResetLocalTimerAt =  = 8 clock ticks 

πinit = d +  + δ(d + ) ≤ 2  πinit = 16 clock ticks (worse case) 

ω = πinit +  = 3 = 24 

 

 

Matrices M and T at N1 at LocalTimer = 7γ when all received Init and Echo 

messages are valid. 

4

8

4

8

7

7

4

2

3

1

 
Figure 1.  A 4-node network. 

Synchronizer: 

ST1:  if (StateTimer < 0) or (Accept()) 

StateTimer := 0,  // reset 

ST2:  elseif (StateTimer < PST) 

StateTimer := StateTimer + 1. 

__________________________________________________ 

LT1:  if (LocalTimer < 0) or  

  (LocalTimer  PLT) or  

    (StateTimer = πinit) 

LocalTimer := 0, // reset 

LT2:  else 

LocalTimer := LocalTimer + 1. 

__________________________________________________ 

TT1:  if (TransmitTimer < 0) or  

  ((TransmitTimer  ) and  

    (StateTimer  PST)) 

TransmitTimer := 0, 

TT1:  elseif (TransmitTimer < ) 
TransmitTimer := TransmitTimer + 1. 

__________________________________________________ 

TS1:  if (StateTimer  PST) and  // timed out 

  (TransmitTimer  ) and  

    (not Accept()) 

Transmit Sync. 

__________________________________________________ 

Monitor: 

ValidateMessage(). 

__________________________________________________ 

Figure 2.  The symmetric-fault-tolerant protocol. 

ValidateMessage(): 

if (incoming message = Sync) and (MessageTimer ≥ D) 

 MessageValid = true,  // store it, 

MessageTimer = 0, 

elseif (MessageTimer ≥ MessageLifeSpan) 

MessageValid = false,  // it expired 

elseif (MessageTimer < MessageLifeSpan) 

MessageTimer = MessageTimer + 1. 

____________________________________________ 

Accept(): 

if (number of stored Sync messages ≥ TA) 

return true, 

else 

return false. 

____________________________________________ 

Figure 1.  Protocol functions. 
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Timeline of activities at N1:           0 --- 6,6 -------- 16 

Ignoring extreme values of 0 and 16, the adjustment Amount is: (6 + 6) / 2 = 6 

Recover Invalid Init 

Matrices M and T at N1 at LocalTimer = 7γ with some invalid entries (Init messages) but all Echo messages are 

valid, i.e., no faults during Echo exchange. 

 

 

 

 

 

 

 

T(1,2) = T(1,4) - T(2,4) = 6 - 0 = 6, T(2,1) = -T(1,2) = -6 

T(2,3) = T(1,3) - T(1,2) = 16 - 6 = 10, T(3,2) = -T(2,3) = -10 

T(3,4) = T(1,4) - T(1,3) = 6 - 16 = -10, T(4,3) = -T(3,4) = 10 

And M is readily restored using Equation 1. 

For K = 4, K-1 = 3, simultaneous link faults were tolerated (recovered). 

 

Recover Invalid Echo 

Matrices M and T at N1 at LocalTimer = 7γ with some invalid entries in Init and Echo messages, specifically, 

given 4 nodes and allowing for one fault per stage. 

 

 

 

 

 

 

 

T(2,3) = T(1,3) - T(1,2) = 16 - 6 = 10, T(3,2) = -T(2,3) = -10 

From Equation 1, M(2,3) = 22 

 

 

 

 

 

 

 

Note N4 did not broadcast Echo message to N1. 

V = M(1,4) = (18, 16, 5) 

Using V, Dij, and trilateration, timing of N4 in T is restored.  M is subsequently restored using Equation 1. 
  

Table 1. Matrix M 

16 21 32 18 

9 16 22 16 

0 2 16 5 

6 16 25 16 

 

Table 2.  Matrix T 

0 6 16 6 

-6 0 10 0 

-16 -10 0 -10 

-6 0 10 0 

 

Table 5. Matrix M 

16 - 32 18 

9 16 - 16 

0 2 16 - 

6 16 25 16 

 

Table 6. Matrix T 

0 - 16 6 

- 0 - 0 

-16 - 0 - 

-6 0 - 0 

 

Table 7. Matrix M 

16 21 32 18 

9 16 - 16 

0 2 16 5 

- - - - 

 

Table 8. Matrix T 

0 6 16 - 

-6 0 - - 

-16 - 0 - 

- - - - 

 

Table 9. Matrix M 

16 21 32 18 

9 16 22 16 

0 2 16 5 

- - - - 

 

Table 10. Matrix T 

0 6 16 - 

-6 0 10 - 

-16 -10 0 - 

- - - - 

 

Table 3. Matrix M 

8 7 8 4 

7 8 4 8 

8 4 8 7 

4 8 7 8 

 

Table 4.  Matrix T 

0 0 0 0 

-0 0 0 0 

-0 -0 0 -0 

-0 -0 -0 0 

 

D12 = M(1,2) + M(2,1) / 2 = 15 * C 

D13 = M(1,3) + M(3,1) / 2 = 16 * C 

D14 = M(1,4) + M(4,1) / 2 = 12 * C 

D23 = M(2,3) + M(3,2) / 2 = 12 * C 

D24 = M(2,4) + M(4,2) / 2 = 16 * C 

D34 = M(3,4) + M(4,3) / 2 = 15 * C 

D12 = M(1,2) + M(2,1) / 2 = 7 * C 

D13 = M(1,3) + M(3,1) / 2 = 8 * C 

D14 = M(1,4) + M(4,1) / 2 = 4 * C 

D23 = M(2,3) + M(3,2) / 2 = 4 * C 

D24 = M(2,4) + M(4,2) / 2 = 8 * C 

D34 = M(3,4) + M(4,3) / 2 = 7 * C 


