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Water management on ISS is responsible for the provision of water to the crew for 

drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for 

oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush 

water, and for experiments on ISS.  This paper summarizes water management activities on 

the ISS US Segment as of May 2018 and provides a status of the performance and issues 

related to the operation of the Water Processor Assembly (WPA) and Urine Processor 

Assembly (UPA). 

Nomenclature 

ARFTA = Advanced Recycle Filter Tank Assembly    PCPA  = Pressure Control and Pump Assembly 

ACY = Russian Urinal           PWD  = Potable Water Dispenser 

ACTEX = Activated Carbon and Ion Exchange Cartridge   PWR  = Potable Water Reservoir 

BPA = Brine Processor Assembly        RHS  = Reactor Health Sensor 

CDRA = Carbon Dioxide Removal Assembly     SPA  = Separator Plumbing Assembly 

CWC = Contingency Water Container       TOC  = Total Organic Carbon 

CCAA = Common Cabin Air Assembly       TOCA  = Total Organic Carbon Analyzer 

DA = Distillation Assembly         UPA  = Urine Processor Assembly 

DMSD = dimethylsilanediol          UTAS   = United Technologies Aerospace 

EMU = Extravehicular Mobility Unit       UTS  = Urine Transfer System 

ЕДВ = Russian water container         UWMS = Universal Waste Management 

FCA = Firmware Controller Assembly           System 

FCPA = Fluids Control and Pump Assembly      WHC  = Waste & Hygiene Compartment  

ICWC = Iodinated Contingency Water Container    WRM  = Water Recovery and Management 

ISPR = International Standard Payload Rack     WPA  = Water Processor Assembly 

IX = Ion Exchange            WRS  = Water Recovery System 

MCV = Microbial Check Valve         WRT  = Water Resupply Tank 
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MLS = Mostly Liquid Separator        WSS  = Water Storage System 

MF = Multifiltration           WSTA  = Wastewater Storage Tank Assembly 

ORU = Orbital Replacement Unit 

 

I. Introduction 

he International Space Station (ISS) Water Recovery and Management (WRM) System insures availability of 

potable water for crew drinking and hygiene, oxygen generation, urinal flush water, and payloads as required. To 

support this function, waste water is collected in the form of crew urine, humidity condensate, and Sabatier product 

water, and subsequently processed by the Water Recovery System (WRS) into potable water. This product water is 

provided to the potable bus for the various users, and may be stored in water bags for future use when the potable bus 

needs supplementing. The WRS is comprised of the Urine Processor Assembly (UPA) and Water Processor Assembly 

(WPA), which are located in two International Standard Payload Racks (ISPR) named WRS#1 and WRS#2. This 

hardware was delivered to ISS on STS-126 on November 14, 2008 and initially installed in the US Lab module. On 

February 18, 2010, the racks were relocated to their permanent home in the Node 3 module. 

II. Description of the ISS Water Recovery and Management System 

A conceptual schematic of the WRM is provided in Figure 1. The waste water bus receives humidity condensate 

from the Common Cabin Air Assemblies (CCAAs) on ISS, which condenses water vapor and other condensable 

contaminants and delivers the condensate to the bus via a water separator. Waste water is typically delivered to the 

WPA Waste Tank. A separate Condensate Tank located in the US Laboratory Module is available as a back-up in the 

event the WPA Waste Tank is unavailable for waste water collection. In addition, waste water may also be delivered 

from the Carbon Dioxide Reduction System. This hardware uses Sabatier technology to produce water from carbon 

dioxide (from the Carbon Dioxide Removal Assembly (CDRA)) and hydrogen (from the electrolysis process in the 

Oxygen Generation System). However, the performance of the Sabatier reactor degraded over the last several years 

and was removed from service in October 2017 and returned to ground for a failure investigation. The ISS Program 

Office is currently planning to build another Sabatier reactor for operation on ISS in 2020.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Water Recovery and Management Architecture for the ISS US Segment 
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Crew urine is collected in the Waste & Hygiene Compartment (WHC), which consists of a Russian Urinal system 

(referred to as the ACY) that is installed in the US Segment. To maintain chemical and microbial control of the urine 

and hardware, the urine is treated with an oxidizer and an inorganic acid. The pretreated urine is then delivered to the 

Urine Processor Assembly (UPA) for subsequent processing. In addition, pretreated urine is collected in Russian urine 

containers (called ЕДВs) in the Russian Segment, manually transported to the US Segment, and offloaded into the 

UPA Waste Tank for subsequent processing. The UPA produces urine distillate, which is pumped directly to the WPA 

Waste Water Tank, where it is combined with the humidity condensate from the cabin and Sabatier product water, 

and subsequently processed by the WPA. A detailed description of the UPA and WPA treatment process is provided 

in Section III.  

After the waste water is processed by the WRS, it is delivered to the potable bus. The potable bus is maintained at 

a pressure of approximately 230 to 280 kPa (19 to 26.5 psig) so that water is available on demand for the various 

users. Users of potable water from the bus include the Oxygen Generation System (OGS), the WHC (for flush water), 

the Potable Water Dispenser (PWD) for crew consumption, the Extravehicular Mobility Unit (EMU) sublimator and 

Payloads. Finally, a reserve of a minimum of 697 L (1537 lbs) of potable water is stored on ISS in Iodinated 

Contingency Water Containers (ICWCs) and Potable Water Reservoirs (PWRs) to maintain ISS operations in response 

to contingency scenarios.  

III. Description of the ISS Water Recovery System 

The layout of the two WRS racks is shown in Figure 2, along with the OGS Rack. The WPA is packaged in WRS 

Rack #1 and partially in WRS Rack #2, linked by process water lines running between the two racks. The remaining 

portion of WRS Rack #2 houses the UPA.  

 

 

Figure 2. International Space Station Regenerative ECLSS Racks 

 

The following section provides a description of the WRS, current operational status, and describes issues and 

lessons learned during the past year. For the prior years’ status, see references 1-5. 

A. Water Processor Assembly Overview   

 

A simplified schematic of the WPA is provided in Figure 3. The WPA consists of 16 Orbital Replacement Units 

(ORUs), and occupies WRS#1 and the right half of WRS#2. Wastewater delivered to the WPA includes condensate 

from the Temperature and Humidity Control System, distillate from the UPA, and Sabatier product water when 
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available. This wastewater is temporarily stored in the Waste Water Tank ORU. The Waste Water Tank includes a 

bellows that maintains a pressure of approximately 5.2 – 15.5 kPa (0.75 to 2.25 psig) over the tank cycle, which serves 

to push water and gas into the Mostly Liquid Separator (MLS). Gas is removed from the wastewater by the MLS (part 

of the Pump/Separator ORU), and passes through the Separator Filter ORU where odor-causing contaminants are 

removed from entrained air before returning the air to the cabin. Next, the water is pumped through the Particulate 

Filter ORU followed by two Multifiltration (MF) Beds where inorganic and non-volatile organic contaminants are 

removed. The Sensor ORU located between the two MF beds determines when the first bed is saturated based on 

conductivity, and additional conductivity sensors are located downstream of the second MF Bed to detect ionic 

breakthrough. Following the MF Beds, the process water stream enters the Catalytic Reactor ORU, where low 

molecular weight organics not removed by the adsorption process are oxidized in the presence of oxygen, elevated 

temperature, and a catalyst. In addition, any microorganisms present in the process water are killed in the Catalytic 

Reactor due to the elevated temperature. A regenerative heat exchanger recovers heat from the effluent of the catalytic 

reactor to make this process more efficient. The Gas Separator ORU removes excess oxygen and gaseous oxidation 

by-products from the process water and returns it to the cabin. The Reactor Health Sensor (RHS) ORU monitors the 

conductivity of the reactor effluent as an indication of whether the organic load coming into the reactor is within the 

reactor’s oxidative capacity. Finally, the Ion Exchange (IX) Bed ORU removes dissolved products of oxidation and 

adds iodine for residual microbial control. The water is subsequently stored in the Water Storage Tank prior to delivery 

to the ISS potable water bus. The Water Delivery ORU contains a pump and small accumulator tank to deliver potable 

water on demand to users. The WPA is controlled by a firmware controller that provides the command control, 

excitation, monitoring, and data downlink for WPA sensors and effectors.  

 

Figure 3. WPA Simplified Schematic 

B. Urine Processor Assembly Overview   

 

A simplified schematic of the UPA is shown in Figure 4. The UPA consists of 7 ORUs, which take up slightly 

more than half of the WRS Rack #2. Pretreated urine is delivered to the UPA either from the US On-orbit Segment 

(USOS) WHC (outfitted with a Russian urinal) or via manual transfer from the Russian ЕДВ. In either case, the 

composition of the pretreated urine is crew urine, flush water, and a pretreatment formula containing chromium 

trioxide and an inorganic acid to inhibit microbial growth and the conversion of urea to ammonia. In the Russian 

segment, the inorganic acid is sulfuric acid. In the US Segment, the inorganic acid has been switched to phosphoric 

acid to address precipitation issues with calcium sulfate. The urine is temporarily stored in the Wastewater Storage 
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Tank Assembly (WSTA). When a sufficient quantity of feed has been collected in the WSTA, a process cycle is 

automatically initiated. The Fluids Control and Pump Assembly (FCPA) is a four-tube peristaltic pump that moves 

urine from the WSTA into the Distillation Assembly (DA), recycles the concentrated waste from the DA into the 

Advanced Recycle Filter Tank Assembly (ARFTA) and back to the DA, and pumps product distillate from the DA to 

the wastewater interface with the WPA. The DA consists of a rotating centrifuge where the waste urine stream is 

evaporated at low pressure. The vapor is compressed and condensed on the opposite side of the evaporator surface to 

conserve latent energy. A rotary lobe compressor provides the driving force for the evaporation and compression of 

water vapor. Waste brine resulting from the distillation process is stored in the ARFTA, which is a bellows tank that 

can be filled and drained on ISS. When the brine is concentrated to the required limit, the ARFTA is emptied into an 

ЕДВ. The ЕДВ containers are emptied into the Russian Rodnik tank on the Progress vehicle for disposal. The ARFTA 

is refilled with pretreated urine to initiate a new concentration cycle. The Pressure Control and Pump Assembly 

(PCPA) is another four-tube peristaltic pump which provides for the removal of non-condensable gases and water 

vapor from the DA. Liquid cooling of the pump housing promotes condensation, thus reducing the required volumetric 

capacity of the peristaltic pump. Gases and condensed water are pumped to the Separator Plumbing Assembly (SPA), 

which recovers and returns water from the purge gases to the product distillate stream. A Firmware Controller 

Assembly (FCA) provides the command control, excitation, monitoring, and data downlink for UPA sensors and 

effectors.  

 

 
Figure 4. Urine Processor Assembly Schematic 

The UPA was designed to process a nominal load of 9 kg/day (19.8 lb/day) of wastewater consisting of urine and 

flush water. This is the expected quantity for a 6-crew load on ISS. The UPA was designed to recover 85% of the 

water content from the pretreated urine, though issues with urine quality encountered in 2009 required the recovery to 

be dropped to 75% for the US Segment and 70% for urine collected in the Russian Segment. Implementation of a 

phosphate-based urine pretreatment in early 2016 allowed the UPA to return to 85% Recovery of urine collected in 
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the US Segment, though urine recovery from urine collected in the Russian Segment remains at 70% because no 

changes have been made to the pretreatment in the Russian Segment.  

IV. Water Recovery and Management Status 

In the last year, 4320 L (9520 lbs) of potable water have been supplied to the US Segment potable bus by the 

WPA. In addition, 1920 L (4233 lbs) of potable water is currently stored on ISS for resupply water and in reserve to 

protect for contingencies. Management of the water mass balance has continued to be a challenge due to the need to 

maintain 697 L (1537 lbs) of potable water on ISS for crew reserve while continuing to meet the various ISS needs 

for potable water. This task has been impacted by the decision in late 2014 to process all available urine from the 

Russian Segment. Processing of urine from the Russian segment generates distillate quantities in excess of the losses 

experienced by the rest of the ISS regenerative water systems. This excess has reduced the need to supplement the 

USOS water systems with stored water and generated a surplus of water in the USOS. Surplus water is stored for later 

use by draining the WPA Waste Water Tank or WPA Water Storage tank when the WRS rack tanks (UPA wastewater, 

WPA Waste, and WPA potable tanks) are too full to continue normal operation. This surplus of water in the US 

Segment is expected to shift in 2018 with the delivery of a Russian Segment Urine Processor on Progress 70P. 

Installation of this hardware has been completed by the RS crew arriving on Soyuz 54S. This crew is now performing 

the initial checkout of the system with urine collected in the Russian Segment, after which Russian personnel anticipate 

no more urine transfer to the US Segment. Distillate from the Russian Urine Processor is planned to be used for flush 

water, feed water to the Russian Elektron, and feed water to their condensate processor pending successful results 

from analysis of distillate samples returned to the ground.  

Following the loss of the 65 Progress mission in late 2016, NASA provided deiodinated water to the Russian 

Segment from the USOS stockpile. The Russian systems are incompatible with the iodine biocide used in USOS 

stockpile water. A new operation was developed and performed to remove the iodine. The Russian container was 

simply placed down stream of an ACTEX (Activated Carbon and Ion Exchange) filter and water was pumped through 

the filter using a contingency pump. This operation occurred in the crew cabin using USOS water storage containers 

(ICWC) and Russian ЕДВ containers, therefore generating this water did not interfere with the operation of the USOS 

water recovery systems. Approximately 505 L were transferred in 2017, and an additional 95 L is still available for 

transfer based on the agreement between NASA and the Russian Space Agency.  

When the WRS Racks were initially delivered to ISS, NASA also delivered a Microbial Shock Kit (MSK) that 

included a Microbial Check Valve (MCV) designed to produce a solution containing 40 mg/L of iodine by flowing 

water through the iodinated resin within the MCV. This hardware was delivered to provide a means to disinfect and 

recover function of the potable distribution bus following a microbial upset by shocking the bus with the solution 

containing elevated iodine concentration. Fortunately, this hardware has never been required on ISS during the 9.5 

years of WRS operation. In late 2017, the ISS crew relocated the Microbial Shock MCV (stored in a plastic shipping 

bag) and observed solid black particles in the packaging. Since this residue could only be due to an issue with the 

MCV, the hardware was returned to ground for evaluation. As a result, there is currently no capability on ISS to 

recover the potable bus from a microbial upset. In addition, NASA and Boeing personnel acknowledged that limited 

data is available on the actual health of the potable bus since there are no regular samples directly from the bus. 

Samples of drinking water (from the PWD) are returned approximately every quarter as part of routine environmental 

monitoring. However, these samples do not necessarily reflect the health of the potable bus because the PWD includes 

a bed with media to remove iodine from the WPA product water as well as a 0.2 micron microbial filter. Due to the 

sorbent media and the microbial filter, the PWD water samples provided limited insight into the actual conditions on 

the potable bus. To accurately assess the health of the potable bus, NASA and Boeing personnel agreed to begin taking 

annual samples of the potable bus for ground analysis. The first sample collected from the bus showed no microbial 

growth in the WPA product water, which was expected given the rigorous controls present in the WPA to sterilize the 

water in the catalytic reactor, remove organic carbon to low levels to minimize nutrients for microbial growth, and 

add iodine as a biocide. The effectiveness of these controls support the argument to no longer maintain a method for 

recovery from microbial upset. Instead, NAS should maintain the capability to launch a shock solution if sample 

results or on-orbit data indicate microbial contamination. NASA and Boeing are also evaluating the possibility of 

providing a disinfectant solution that may be used in conjunction with a separate action to preposition the spare PWD 

on ISS. The results of this investigation will be reported in the next year.  

Several significant modifications to the ISS water system are currently in development, including a Water Storage 

System (WSS), a Universal Waste Management System (UWMS), a Urine Transfer System (UTS), and a Brine 

Processor Assembly (BPA). The WSS addresses the water management issues associated with water resupply and 

potable water storage. Potable water storage capacity will be increased by launching four tanks recovered from Space 
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Shuttles Endeavor and Atlantis. The former space shuttle tanks will be connected to the potable bus with inlet valves 

that will be controlled by ground personnel. Water will be automatically transferred to and from this WSS as needed 

for the water balance. The additional capacity will greatly increase the WRS’s ability to absorb disturbances to the 

mass balance by adding system capacity and increase the time that ISS crew has to respond to mass balance upsets. 

The increased time for response will allow ground teams to mitigate mass balance upsets and potentially prevent crew 

involvement. In addition to assisting with management of the water reserve, the new rack will incorporate 

interchangeable 73 L (161 lbs) resupply tanks. These tanks are commercially available, and have been tested to insure 

compliance with the ISS requirements (including launch vibration and materials compatibility). The resupply tanks 

will be launched full, installed into the WSS rack, and emptied into the WPA waste tank via commanding from the 

ground. The water from the resupply tanks will be transferred to the WPA waste tank via the waste water bus using 

the same compressor currently utilized for ARFTA and ЕДВs transfers. The increased size of the resupply tanks and 

the ability for multiple tanks to be installed into the WSS greatly decreases the frequency and total crew time required 

to add water to the WRS. The resupply tanks will also provide back-up condensate collection volume to add to the 

existing WPA waste water tank and Lab condensate tank. WSS will add a commandable valve in front of the Lab 

condensate tank. The valve will allow the condensate tank to remain connected and isolated instead of manually 

connecting and disconnecting it when the WPA waste water tank is not available. When the pre-staged resupply tanks 

are emptied, they can be changed out with new tanks as they arrive on ISS. The empty resupply tanks may then provide 

additional disposal options for brine generated by the UPA, which will reduce procurement of costly ЕДВs. Assuming 

the Russian Urine Processor is operational in late 2018, the water surplus created by the US Segment’s processing of 

Russian urine will cease. The increased efficiency of the WSS will become an important factor for reducing crew time 

currently used to manage water transfers in the USOS. The WSS rack, Shuttle tanks, and resupply tanks are scheduled 

to be delivered to support initial operation in early 2019. A view of the WSS rack and how the tanks are installed is 

shown in Figure 5. 

 

 
Figure 5. WSS Rack without Covers 

 

The UWMS is a new toilet in development by United Technologies Aerospace Systems (UTAS). This hardware 

is planned for use in the Orion vehicle and will be initially demonstrated on ISS beginning in mid-2019. To support 

ISS operations, the urinal uses the phosphate-based pretreatment so that urine can be processed by the ISS UPA. 

Assuming a successful demonstration, the UWMS may be maintained on ISS to support the increased US crew 

expected beyond 2018. To support the operation of two urinals on ISS (UWMS and WHC), a Urine Transfer System 
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(UTS) is being built by Boeing. This hardware will automatically manage input from each urinal, insuring that parallel 

operation does not impact the delivery of urine from either separator to the UPA. This is accomplished by diverting 

flow from the WHC to a backup ЕДВ any time pressure sensors indicate the UWMS is also delivering urine to the 

UPA. This ЕДВ can subsequently be drained to the UPA when neither urinal is in use. As part of the UTS delivery, 

Boeing has also identified a commercially available compressor that can be used for the same applications as the 

Russian compressor. This hardware will be used nominally by UTS to transfer pretreated urine from ЕДВs to the UPA 

WSTA and for offloading the UPA brine tank (ARFTA) into the BPA.  

The BPA will be operated on ISS as a technology demonstration for NASA Exploration missions. This hardware 

will process the brine generated by the UPA (see Figure 1) to remove water and thereby achieve near-complete water 

recovery. This hardware is being delivered to NASA by Paragon Space Development and is scheduled for delivery in 

mid-2019. Successful demonstration of this technology is considered a critical step prior to future manned missions 

beyond ISS (i.e., a mission to Mars) because of the necessity to recover as much water as reasonably possible due to 

the launch costs for water and the absence of resupply capability. More detail on this technology can be found 

elsewhere6,7. If successful, NASA may continue to use the technology on ISS to reduce the water resupply requirement 

from earth.    

In addition to these items, the European Space Agency (ESA) is flying the Advanced Close Loop System (ACLS) 

technology demonstration in 2019. ESA is using ACLS to evaluate oxygen generation via water electrolysis, carbon 

dioxide (CO2) removal, and CO2 reduction for future manned missions. ACLS will use steam desorption for CO2 

removal, resulting in approximately doubling the quantity of water vapor that must be removed by the ISS Condensing 

Heat Exchangers. ACLS will be initially located in the US Laboratory module, where it will interface with both the 

potable bus and the waste water bus. ACLS has a unique requirement to remove and deliver water to the condensate 

bus. To prevent impacts to the WPA waste tank, NASA and Boeing have decided to separate the waste water bus in 

the US Laboratory. In this configuration, condensate collected in the US Lab, Node 2, and Columbus modules (along 

with the condensate tank) will interface with the ACLS while condensate collected in Node 3 and Airlock will feed 

the WPA waste tank. The additional humidity generation coupled with the split waste water bus is expected to 

complicate the mass balance on ISS, periodically requiring the bus to be reconnected to transfer condensate from the 

Condensate Tank to the WPA waste tank.  

V. Urine Processor Assembly Current Status 

The UPA has produced 2789 L (6147 lb) of distillate at 70% (Russian urine treated with baseline pretreatment) to 

85% recovery (US urine treated with alternate pretreatment) in the last year, cycling through 31 ARFTA cycles during 

that time. As of May 10, 2018, the total UPA production on ISS is at 16,179 L (35,659 lb) of distillate. A graphical 

summary of UPA production rate and upmass required for ISS operations is provided in Figure 6. In the past year, one 

PCPA (harmonic gear drive), one SPA (end of life condition), and 4 brine filters (expected loading) have been replaced 

to maintain nominal UPA operations.  

The UPA has experienced multiple failures of the FCPA in previous years due to various mechanical issues4,5. 

These failures led to the development of an improved drive shaft design, replacing the harmonic drive with a planetary 

gear. Though the harmonic drive is considered appropriate for precision applications, tolerances in the FCPA assembly 

and installation processes provide multiple opportunities for failure. In contrast, the planetary gear design supports a 

robust installation process and is also more advantageous for the power transfer application in the FCPA. This 

modification was expected to produce a marked increase in on-orbit reliability of the FCPA. As of May 10, 2018, 

FCPA S/N 04 has operated for 4045 hours, significantly exceeding the life of any previous FCPA with the harmonic 

drive. However, the PCPA failed in March 2018 most likely due to a harmonic drive failure. As previously seen with 

this failure in the FCPA, motor current gradually increased for several months until ORU replacement was required. 

The US crew installed PCPA S/N 4 on March 29 2018. This PCPA includes the planetary gear drive though there is 

also one remaining spare PCPA on ISS that has a harmonic drive.  

 As noted previously1, the UPA experienced elevated conductivity in the urine distillate from April 2016 to April 

2017. Based on on-orbit data, NASA engineering determined pretreated urine/brine was leaking into the distillate 

internal to the DA. After replacing the DA, the distillate conductivity returned to normal as shown in Figure 7. The 

DA was returned to ground and a failure investigation was performed to determine the most likely root cause was a 

leak through the centrifuge rear bearing, though it is also possible that carryover through the demister also contributed 

to the elevated conductivity. This leak path through the rear bearing has been observed in previous DAs, but never to 

the extent seen with DA S/N 3. The rear bearing is located in the centrifuge shaft, so a leak path in microgravity is not 

obvious. Engineering personnel believe it is likely either splashing in microgravity or fluid wicking up the brine pitot 

tube to the center shaft. No mechanical deficiencies were identified during the failure investigation to explain why  
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 Figure 6. UPA Production and Upmass on ISS 

  

this particular DA allowed a larger leak of pretreated urine/brine through the rear bearing. NASA engineering believes 

the primary difference with DA S/N 3 was that more pretreated urine/brine was reaching the rear bearing, but no 

obvious differences in the actual hardware could be identified that would explain why this would happen. To prevent 

recurrence, NASA is planning to implement a lip seal to prevent fluid from reaching the rear bearing. A lip seal was 

originally employed in the design to protect against this leak path, but this lip seal was removed to eliminate the drag 

placed on the centrifuge shaft. As part of the effort to implement upgrades to the UPA, this lip seal will be added back 

to the design. However, the drag introduced by the lip seal is still a concern because it may cause the centrifuge drive 

belt to slip (resulting in a separate DA failure). The UPA design team is currently implementing an improved drive 

belt (likely a V-belt instead of the current o-ring drive belt) to provide a design less susceptible to belt slippage. Once 

the design for this drive belt is complete, the lip seal on the rear bearing will also be implemented.  

 Since the leak path through the rear bearing is a known design issue, NASA engineering expected this event to 

recur with the current DA though the magnitude of the effect was not known. NASA engineering observed the initial 

indication of this issue after approximately six months of operation. Figure 8 shows a conductivity spike during startup, 

indicating a leak of pretreated urine/brine into the condenser during Standby that is then flushed out once the DA 

begins processing. This duration is consistent with other DAs but measurably longer than DA S/N 3, which showed 

initial indications of a fluid leak through the rear bearing after only six weeks of operation. This data indicated the 

leak path in the current DA would be more consistent with the previous DAs, not DA S/N 3. After 12 months in 

operation for the current DA, NASA engineering has seen no indication of the conductivity spikes during process 

mode that plagued DA S/N 3.  
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 Beginning in late December 2017, the UPA product water line showed indications of free gas. The conductivity 

sensor located downstream of the SPA displayed sharp decreases in signal during processing of the UPA, as shown in 

Figure 9. These downward spikes are indicative of free gas, which has no significant conductivity and therefore 

provides this unique signature. Corroborating data of free gas in this line was evident in the distillate pressure sensors, 

showing decreased pressure swings. Due to peristaltic action of the FCPA, nominal distillate pressure profiles during 

operation show relatively large pressure swings as the peristaltic pump pumps against the liquid-solid lines. Free gas 

Figure 7. Nominal distillate conductivity observed after replacing the distillation 

assembly. 
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in these lines provides gas compliance and thus these large pressure swings are minimized. Several sources of free gas 

in the product water lines were identified; however, data trending strongly suggested a SPA failure to separate and 

remove gas from the purge distillate line. Installation of a new SPA was completed January 24th, 2018. Shortly 

thereafter, indications of free gas ceased, as shown in Figure 8. The removed SPA will be returned on SpX-15 for a 

failure analysis. 

 

 

VI. Water Processor Assembly Current Status 

As of May 6, 2018, the WPA has produced approximately 34,680 L (76,450 lbs) of product water, including 4320 

L (9520 lbs) in the previous year. The two primary issues that impact WPA operations on ISS continue to be the 

Catalytic Reactor seals and the passage of dimethylsilanediol (DMSD) through the WPA, though neither have required 

replacement in over two years. The WPA Catalytic Reactor was last replaced in February 2016 due to leaking seals, 

and two Multifiltration Beds were replaced in late 2015 due to DMSD breakthrough. The following discussion 

addresses these two issues and the ongoing efforts to mitigate their impact.  

Multifiltration Bed life has been dictated by the passage of DMSD through the WPA. The source of DMSD and 

its impact on the WPA treatment process has been discussed previously9, 10. An extensive investigation in the past year 

into the formation of DMSD on ISS is also available elsewhere11, along with an assessment of DMSD sources on 

ISS12. There have been 6 instances of increasing Total Organic Carbon (TOC) in the WPA product water due to 

DMSD, including the current trend. Each TOC trend was initially detected by the TOC Analyzer (TOCA) on ISS, and 

a summary of the data is provided below in Figure 10. However, the current trend has deviated from previous trends. 

In the past, once TOC has been detected by the TOCA, it has consistently increased until exceeding the potable 

specification of 3000 g/L, necessitating the replacement of both MF Beds. In the current trend, the TOC peaked at 

approximately 1800 g/L and has reached a steady state condition around 1000 g/L for the last year. A product water 

sample returned to the ground for analysis has confirmed the source of the TOC is DMSD as expected. Engineering 

personnel believe a lower concentration of DMSD in the reactor effluent is the reason for the atypical trend, but it is 

not obvious why DMSD would be at a lower concentration. Possible explanations include a more efficient reactor, 
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lower DMSD concentration in the humidity condensate, or impacts to the mass transfer zone of DMSD in the MF 

Beds associated with reprocessing or processing clean water to address elevated RHS trends.  

 

 

 
Figure 10. Correlation between Product Water TOC and MF Bed Throughput 

 

The extended DMSD trend provided the first opportunity to extend the life of the MF Beds, since all previous beds 

were replaced after approximately one year in operation. The initial ionic breakthrough of MF Bed #1 had occurred 

before DMSD appeared in the product water, after approximately 2800 kgs of throughput. Subsequently, ionic 

breakthrough of MF Bed #2 occurred after 5900 kgs of throughput. Typically this ionic breakthrough would have 

resulted in the replacement of both MF Beds. However, previous testing at the NASA Marshall Space Flight Center 

had shown that the initial breakthrough contaminants could be processed by the Catalytic Reactor13. Using an ersatz 

based on the ISS waste water and a half-scale pair of MF Beds, discrete breakthrough trends were detected via 

conductivity for bicarbonate, acetate and ammonium, in that order. In addition, a flight-like Catalytic Reactor was 

challenged with each contaminant to show that the reactor could process all contaminants along with the nominal 

organic load. Since bicarbonate and acetate are oxidation products of ethanol (the primary organic processed by the 

reactor), it was expected that the reactor could accommodate their additional load. Though the reactor was also able 

to process ammonium, it is not expected to allow this on ISS since the MF Bed ersatz test showed that trace 

concentrations of several potential catalyst poisons were also present when ammonium breakthrough occurred.  

Based on the data from these ground tests, NASA and Boeing engineering agreed to continue operating the MF 

Beds on ISS after the initial ionic breakthrough of MF Bed #2. This decision has been justified by the product water 

TOC, which appears to be unaffected by the additional load. To provide more insight into this trend, samples from the 

effluent of each MF bed were taken by the crew and returned to ground for analysis. These samples determined that 

acetate had saturated both MF Beds, not bicarbonate as expected based on ground tests. The reason for the change in 

order is not presently understood, though it is not critical since the reactor can accommodate the load from both 
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contaminants if necessary. Since ionic breakthrough of MF Bed #2 occurred, two additional breakthrough trends have 

occurred in MF Bed #1. Based on ground testing, these contaminants are expected to be bicarbonate and ammonium. 

Additional samples have been taken to identify these contaminants, though results are not yet available. Figure 11 

provides the conductivity trend for the MF Bed #1 effluent, including the contaminants anticipated to have caused 

each breakthrough. Figure 12 provides the same data for MF Bed #2, identifying acetate as the initial contaminant to 

pass through both beds and be processed by the Catalytic Reactor along with the nominal load of volatile organics. 

Assuming sample results are as expected and WPA performance continues to be acceptable, NASA and Boeing 

personnel intend to operate the MF Beds until the third breakthrough of MF Bed #2 occurs. This would be a significant 

increase in MF Bed life and likely establish the expected procedure for loading MF Beds for the remainder of ISS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Ionic Breakthrough of WPA MF Bed #1 

 

Since repeating the current DMSD trend cannot be guaranteed, NASA and Boeing have continued to develop and 

implement a mitigation strategy for DMSD. There are two paths to reduce the concentration of DMSD in the humidity 

condensate by ~50%, which would establish a concentration that the Catalytic Reactor could reliably remove to 

acceptable potable levels. First, research into the sources of the siloxanes on ISS has been ongoing12. Though there 

are many sources of siloxanes, various crew items are the primary contributors. Crew items with significant 

contribution to the ISS siloxane load have been identified, including anti-perspirants, body lotions, wet wipes, and 

hair conditioner. Siloxane-free alternatives have also been identified and evaluated by the crew, resulting in the 

selection of viable alternatives for the crew to choose from. These siloxane-free products are expected to be used by 

the crew beginning in 2019. In parallel, Boeing is delivering Charcoal/HEPA filters to be installed on ISS in late 2018. 

These filters will remove atmospheric siloxanes before they can decompose to DMSD. This removal step would occur 

prior to each Condensing Heat Exchanger in the US Laboratory Module, Node 2, and Node 3. In April 2015, charcoal 

filters were installed in front of the Cabin Fan in Node 1 as an intermediate step to the filters in front of the Condensing 

Heat Exchangers. Node 1 was chosen due to it not having a heat exchanger which requires HEPA filtration. The 

charcoal filters have been effective at reducing the overall siloxanes in the atmosphere, but samples of condensate 

showed that the DMSD concentration remained at nominal levels. The addition of siloxane filters throughout ISS is 

expected to have a more significant impact on the DMSD concentration in the condensate. In addition to efforts to  
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Figure 12. Ionic Breakthrough of WPA MF Bed #2 

 

reduce DMSD in the condensate, NASA has worked with various vendors to develop an improved catalyst for the 

WPA Catalytic Reactor13. This effort identified a catalyst (developed by United Technologies Aerospace Systems, 

UTAS) that showed an increase in DMSD removal efficiency from 75 to 92%. Boeing and UTAS are now funded to 

deliver a reactor implementing this new catalyst to improve WPA capacity for DMSD.  

 

 As noted previously3, the Catalytic Reactor was redesigned in 2010-2011 to address the degradation of o-rings 

after prolonged exposure to the reactor’s operating temperature. This investigation showed that the o-ring material 

developed a compression set that allowed the seal to leak after approximately two years in service. Previous inspection 

of ORUs returned to the ground showed the seals that were typically maintained at a reduced temperature during 

Standby (depending on their location in the reactor) were in better physical condition that those continuously 

maintained at the elevated temperature. This failure investigation substantiated the root cause, which is that the seal 

material is not compatible with the elevated process temperatures of the Catalytic Reactor for the planned 5 year life. 

To improve seal life, engineering personnel decided to reduce the Catalytic Reactor temperature in Standby to 96 C 

(205 F) instead of continuously maintaining it at the nominal temperature of 131 C (267 F). This operational scenario 

was ultimately implemented on the previous Catalytic Reactor, and has been used with the current Catalytic Reactor 

since it was initially installed. While the previous reactor did not show any actual improvement in operational life, the 

reduced standby temperature was not fully implemented until after one year of service. Furthermore, the leakage 

signature for this reactor was slower than previously seen, indicating the reduced temperature may have had an effect. 

A disassembly and inspection of this reactor after it was returned to ground showed that the lower standby temperature 

did improve the overall appearance of the seals. The current reactor has been operating at the reduced standby 

temperature since it was installed in the WPA. After approximately 26 months in operation, there has been no 

indication of a leak. 
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 Though reducing the temperature in standby may provide some benefit, it is not considered to be viable for future 

missions because it is not expected to extend o-ring life beyond three years. To address this issue, NASA has funded 

Boeing and United Technologies Aerospace System (UTAS) to develop a Catalytic Reactor with metal seals. As noted 

previously, this reactor will also implement the improved catalyst developed by UTAS and tested by NASA. This 

hardware is expected to be operated on ISS in 2021 to provide engineering confidence for future manned missions.   

 The current Microbial Check Valve ORU was replaced in July 2016 after less than 4 years in operation in response 

to elevated pressure drop and to address the anomaly with the leaking internal mechanical check valve1,2. The MCV 

ORU includes an iodinated resin to prevent microorganisms from growing into the potable section of the WPA, and a 

mechanical check valve to prevent water from the waste tank from flowing into the potable section (which is at a 

lower pressure than the waste tank). However, previous MCV ORUs have not performed to expectations on ISS due 

to the mechanical check valve working intermittently after installation. Because the Waste Tank is at a slightly higher 

pressure than the product lines upstream of the 3-way valve in the reprocess line, waste water can flow upstream when 

this valve is not checking. The check valve can sometimes be coaxed into checking by cycling the upstream 3-way 

valve, which provides a momentary boost in pressure drop (by referencing the upstream pressure to the sub-ambient 

Storage Tank). When the new MCV was installed in July 2016, it typically did not check on its own but did check 

after ground commanding cycled the upstream 3-way valve. In the past year, ground personnel have allowed more 

time (typically approximately one hour) for the check valve to check on its own. With the additional time, the check 

valve has consistently checked on its own without assistance. However, improving the reliability of this check valve 

design is currently being evaluated.  

 The Pump Separator ORU has been exhibiting a new trend in the Mostly Liquid Separator (MLS) motor 

temperature. The Pump Separator ORU contains the MLS and also the process pump for the WPA. The MLS is a 

rotary separator that removes any gas entrained in the incoming waste water. The MLS motor is cooled with a bypass 

flow of the WPA waste water. The motor temperature is monitored by two surface-mounted temperature sensors (see 

Figure 13). The sensor data shows the increasing trend for the last year of the MLS Temp and the MLS Temp Switch. 

The cause of the temperature increase is unknown, but it is believed that the bypass flow path around the motor may 

be partially obstructed. This theory is supported by the previous biofouling in this section of the WPA that required 

replacement of the ORU in 2010 and resulted in the waste tank management scheme discussed in previous papers1-5. 

The current Pump Separator ORU has been installed since 2012 and both the MLS and pump continue to function as 

expected. If the MLS Temperature Switch exceeds 245 F, the ORU will have to be replaced. A spare Pump Separator 

ORU with a new MLS is available on-orbit and an additional spare will be available on the ground later in 2018. 

 
Figure 13. Increasing Temperature Trend of the MLS Motor 
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VII. Conclusion 

In the past year, the WRS has continued to provide the ISS crew with potable water for drinking, electrolysis via 

the Oxygen Generation System, flush water for the Waste & Hygiene Compartment, hygiene water, and payloads. 

During this time, the WPA has experienced no significant failures. The MF Beds have now been installed for 31 

months due to the extended DMSD trend, and the Catalytic Reactor is operational after 26 months in service.   

The UPA has experienced off-nominal performance due to condensate in the stationary bowl, resulting in elevated 

vacuum pressure and periodic shutdown events. However, there has been no increase in belt slippage during this time 

that would indicate condensate in the bowl might ultimately require replacement of the DA. Since this new DA has 

been installed, the UPA has continued to produce distillate with nominal conductivity levels. This observation 

indicates this DA will not be plagued with the elevated conductivity experienced by the previous DA due to a leak of 

pretreated urine through the rear bearing. Finally, implementation of a phosphate-based urine pretreatment in early 

2016 has allowed UPA to return to 85% water recovery, during which time NASA engineering has observed no 

performance issues with the use of the phosphate-based pretreatment.  

The initial Water Resupply Tank (WRT) was launched on Orbital OA-8 with plans to offload into the WPA waste 

tank in 2018. In the next year the WSS rack and associated tanks will be delivered and launched as soon as space is 

available. Design and delivery of other critical hardware (BPA, UWMS, UTS) will continue but this hardware will 

not be operational on ISS until 2019.  
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