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A NOVEL MULTI-SPACECRAFT INTERPLANETARY GLOBAL
TRAJECTORY OPTIMIZATION TRANSCRIPTION

Sean W. Napier∗,†, Jay W. McMahon‡

As the frontier of space exploration continues to advance, so does the design com-
plexity of future interplanetary missions. This increasing complexity includes a
class of designs known as Distributed Spacecraft Missions; missions where mul-
tiple spacecraft coordinate to perform shared objectives. Current approaches for
global trajectory optimization of these Multi-Vehicle Missions (MVMs) are prone
to shortcomings, including laborious iterative design, considerable human-in-the-
loop effort, treatment of the multi-vehicle problem as multiple, separate trajec-
tory optimization subproblems, and poor handling of coordination objectives and
constraints. This leads to suboptimal solutions where the whole is less than the
sum of its parts. There are only a handful of software platforms in existence
capable of fully-automated, rapid, interplanetary global trajectory optimization,
including the Gravity Assisted Low-thrust Local Optimization Program (GAL-
LOP), and the Evolutionary Mission Trajectory Generator (EMTG). However,
none of these tools is capable of performing such tasks for MVM designs. We
present a fully-automated technique which frames interplanetary MVMs as Multi-
Objective, Multi-Agent Hybrid Optimal Control Problems (MOMA HOCP). First,
the basic functionality of this technique is validated on the single-vehicle problem
of reproducing the Cassini interplanetary cruise. The technique is then applied to
explore the possibility of a dual-manifest mission to the Ice Giants, Uranus, and
Neptune. A single trajectory with flybys of both planets has been shown to be
infeasible with only a single spacecraft anytime between 2020 and 2070.

INTRODUCTION

Framing interplanetary spacecraft trajectory optimization as a hybrid optimal control problem
(HOCP) has proven an effective approach.2,3 In this framework, trajectory optimization is a Mixed-
Integer Programming (MIP) problem. Some decision variables are discrete (integers) while others
are continuous (floating point), necessitating distinct optimization routines for each category of
variable. Furthermore, the resulting mission designs are points within a solution space spanned by
multiple objectives (i.e., minimum fuel versus minimum time of flight). Thus, in order to effectively
characterize the solution space for a given mission design problem, a multi-objective HOCP frame-
work is essential. However, while tools exist to solve interplanetary multi-objective HOCPs for a
single spacecraft, no tool exists to optimize multi-spacecraft, multi-objective global optimization
problems. Addressing the shortcomings of current approaches to MVM optimization, including the
methods for handling of coordination objectives and constraints, are key to enabling the design of
future MVMs.
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This work explores the application of a fully automated (i.e., requiring no initial guess) Multi-
Objective Multi-Agent (MOMA) optimization to an interplanetary global trajectory optimization
problem: designing an Ice Giant Multi-Mission. The individual spacecraft in the MVM are treated
as agents, i.e., intelligent tokens, that have optimizable states and behavior, which cooperate to
achieve coordinated objectives in a decision space bounded by multiple coordination constraints.4,5

With this technique, the user only needs to specify the bounds of the MVM problem, and the MOMA
HOCP scheme optimizes the solution space with no human-in-the-loop effort. Further, in treating
the constituent spacecraft as agents within a coupled decision space, resulting point solutions are
more indicative of the true behavior of the solution space compared to those gleaned from an ap-
proaches where the MVM is split into separate sub-problems.

The optimization technique of this work is comprised of four nested components: an outer-loop
which only optimizes discrete variables via a population based method, an inner-loop stochastic
global search method which traverses the continuous variable decision space bounded by its outer-
loop decision vector, a local optimizer which finds a local minima in the inner-loop’s global search
space, and a trajectory transcription to evaluate a hybrid decision vector with respect to an objective.
The contributions of this paper are threefold: 1) an outer-loop transcription to pose a MVM as a
single, coupled trajectory optimization problem, 2) three new outer-loop coordination constraints,
and 3) an outer-loop coordination objective approach.

PROBLEM FORMULATION

The goal of a multi-objective optimization problem is to find the optimal non-dominated front
that depicts the fundamental trades between objectives.6 The outer-loop performs this task effi-
ciently via a cap and optimize approach.11 For a given decision vector, one objective, such as ∆V,
is optimized by the inner-loop, while secondary objectives are treated caps which the outer-loop
imposes on inner-loop decision variables. The outer-loop only optimizes integer decision vectors,
where integers encode items such as gravity assist targets. Each outer-loop decision vector defines
a trajectory optimization problem which is in turn optimized by an instance of the inner-loop. The
result of this optimization is passed back to the outer-loop for ranking. Secondary objectives for
each inner-loop solution are evaluated by the outer loop during ranking. The larger the population
size in the outer-loop, the more instances of the inner-loop must be run, ideally in parallel.

The outer-loop uses the Non-Dominated Sort Genetic Algorithm-II (NSGA-II).6,7 In this work,
each point on the outer-loop’s Pareto front represents a spacecraft fleet. One level down, the inner-
loop exclusively chooses continuous decision variables such as launch date, C3, or time of flight
(TOF) between flyby targets. The choice of continuous variables is dependent upon the choice
of discrete variables. During the course of this work, the authors have experimented with differ-
ent versions of the inner-loop to improve reliability. NSGA-II reliably finds the multi-objective
Pareto front for a given problem space, but the quality of each point on this Pareto front is lim-
ited by the power of the inner-loop to reliably find the global optimum. The first iteration of this
inner-loop used an evolutionary algorithm known as Differential Evolution (DE/best/2/bin).2 This
produced results that varied widely when applied to a modestly wide global search space. This ap-
proach was improved wrapping a Monotonic Basin Hopping (MBH) global search algorithm around
DE/best/2/bin, at which point DE/best/2/bin proved a modestly reliable local optimizer. MBH hops
through the global search space across local minima found by the local optimizer to arrive, given
ample run time, within statistical striking distance of the global minimum of the cost function.17

Finally, trajectories are transcribed using the Vinko-Izzo Multiple Gravity Assists with one Deep
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Space Maneuver (MGA1DSM) transcription, a direct method that is easy to formulate and ideally
suited to optimization with evolutionary algorithms.8

MBH without a gradient search was tested as a standalone inner-loop, but MBH and DE/best/2/bin
were found to perform better together than either did alone. The MBH+DE/best/2/bin inner-loop’s
performance is first demonstrated on reproducing Cassini’s EVVEJ interplanetary cruise, proving
the functionality of the inner-loop to find the global optimum trajectory, in terms of minimum ∆V.
C3, Right Ascension, and Declination of the launch asymptote (RLA and DLA) are free to vary
while the launch date is constrained to occur between Oct 1 and Oct 31 1997. The TOF of each tra-
jectory phase was bounded to within ±10 days of the nominal Cassini trajectory phase flight times.
No initial guess seed was provided to the inner-loop optimizer. While evolutionary algorithms make
suitable breadboards for exploring a problem which cannot leverage gradient information, they lack
the ability to handle most constraints that were of interest in the problem posed by this work. The
latest inner-loop uses MBH as the global search method and MATLAB’s fmincon as the local opti-
mizer, which enables faster acquisition of solutions and explicit linear constraints.

All the code in this work is written in MATLAB. Planetary orbit states were acquired from the JPL
Horizons database at a single epoch, and were propagated inside the optimizer, along with spacecraft
trajectories, using a universal variable Kepler propagator. A single impulsive maneuver is allowed
between each pair of flyby bodies. With the inner-loop’s functionality validated, the full MOMA
HOCP technique was put to work on an Ice Giant Multi-Mission preliminary design. The mission
design consists of two high-thrust chemical propulsion spacecraft, one of which must intercept
Uranus and the other Neptune. The MOMA HOCP optimizer is tasked with optimizing the flyby
sequences for each spacecraft for total ∆V, while also trading against time of flight. All spacecraft
are subject to the initial coordination constraint of sharing a launch vehicle. This constraint is
formulated by holding the launch epoch, C3, RLA and DLA as identical for all spacecraft in the
fleet. This novel active coordination constraint approach guides the optimizer through the true
multi-mission solution space, coupling the performance of one spacecraft to the other.

MVM Outer-Loop Transcription

An outer-loop integer decision vector is treated as a chromosome by the NSGA-II algorithm.
Each row is a vector corresponding to the trajectory of a single spacecraft. Each column contains
a gene whose value is the index from a particular decision variable menu. In each row, the first
four elements comprise a header of bounding parameters: launch window bounds, global TOF cap,
C3 bounds, and minimum number of shared flyby genes. Beyond this header, all remaining genes
encode flyby targets. The destination planet is fixed — it does not evolve during successive genera-
tions of the NSGA-II algorithm. While the header parameters need not necessarily be identical for
both spacecraft, the shared launch asymptote constraint forces them to be. For example:

X =

[
LW Tcap C3 Nshfb Planet1,1 Planet1,2 Planet1,3 Destination1
LW Tcap C3 Nshfb Planet2,1 Planet2,2 Planet2,3 Destination2

]
(1)

=

[
1 5 2 1 1 10 4 6
1 5 2 1 2 3 5 7

]
(2)
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=

[
{1/1/2030, 5/1/2030} 10 yr [50, 60] km2/s2 (0 shfb) Venus NULL Jupiter Uranus
{1/1/2030, 5/1/2030} 10 yr [50, 60] km2/s2 (0 shfb) Earth Mars Saturn Neptune

]
(3)

The number of rows of this chromosome equals the maximum allowed number of spacecraft in
a fleet while the number of columns is equal to the length of the header plus the maximum number
of allowed flyby targets for a spacecraft. Note that the gene 10 in equation (2) evaluates to NULL.
All flyby genes when generated have a 50% chance of being null genes. This is accomplished by
generating a gene as an index equal to a random number between 1 and double the length of the
allowable flyby genes menu. If the chosen gene corresponds to an index beyond the length of the
flyby menu, it is pruned by the inner loop as NULL.

Outer-Loop Coordination Objectives (Minimax)

The approach taken for multi-agent constraints was a novel weakest link formulation. For a given
objective function, the cost assigned to the fleet is equal to that of the highest cost spacecraft. In the
outer-loop, minimal-cost individuals are dominant. Over successive iterations, evaluating the fleets’
cost this way leads to decreasing cost of each spacecraft in the fleet. This is known in game theory
as a minimax problem. This approach has proven highly effective in optimization via integer genetic
algorithms and in multi-agent optimization problems, but has never been applied to a interplanetary
MVM design. In this work, TOF is a handled as an outer-loop minimax objective, with the cost
assigned to a trial fleet equal to the TOF of slowest spacecraft to reach its destination.

Trajectory Transcription

Trajectories in this work are parametrized according to the MGA1DSM transcription.8 Mission
phases are bracketed by control nodes, which in this work are planets. All trajectories begin at the
Earth, and propagate according to two-body patched conics assumptions. Each mission phase is
assigned a TOF and is composed of a forward propagated Kepler arc for some fraction of that TOF,
hereon known as the DSM Index, followed by an impulsive deep space maneuver (DSM) given by
the minimum energy Lambert transfer arc to intercept the next flyby target within the remaining
fractional TOF. In addition to choices of DSM index η and total phase TOF, the first phase arc
begins with the choice of launch date in Modified Julian Date (MJD), C3, RLA, and DLA which all
together define the initial position and outgoing velocity of the spacecraft. All subsequent phases
are transcribed with four parameters: hflyby (flyby altitude), β (angle of the flyby plane in the body
frame of the planet), η, and total phase TOF. Shown in Fig. 1, this transcription ensures unpowered
flybys.
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Figure 1: Illustration of the MGA1DSM transcription. This transcription is well suited for use
with evolutionary algorithms and is readily applied to trajectory optimization problems with small
bodies, planets, or both.

Inner-Loop Global Search Method

The inner-loop is executed in real-time by the outer-loop, with no user intervention. This requires
the inner-loop’s routine to be robust, reliable, and requiring no initial guess. It is necessary to wrap
a global search method around the local optimizer to insure statistical acuquisition of the global op-
timum. The stochastic global search method employed in this work is version of Monotonic Basin
Hopping (MBH).13 This algorithm derives its name from the supposition that the generally noncon-
vex cost function being optimized contains local optima within basins, which can be traversed by a
local optimizer.

Once the local optimizer drives a sub-optimal initial guess down to the bottom of a basin, MBH
perturbs the current decision vector by some random hop distance out of the basin and begins ex-
ploring the global space. This process is repeated until either a maximum number of hops have
been performed or an elapsed time has passed (both of which are user-selectable parameters). This
process is illustrated in Fig. 2. MBH thus hops through the global search space stochastically. Its
performance has been greatly improved by using a Nonlinear Programming (NLP) solver to quickly
optimize local minima.11 The following pseudocode captured in Algorithm 1 describes the version
of MBH developed for this work.

Figure 2: Illustration of the MBH process.11 While the cost function is not monotonically increasing
or decreasing everywhere, there exist local basins with monotonically decreasing intervals, enabling
convergence to local minima.
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Algorithm 1: Monotonic Basin Hopping

Initialize fbest
while current iteration < max iterations

Generate random point x.
Run local optimizer to find point x∗ using initial guess x.
xcurrent = x∗

if x∗ is a feasible point then
if f(x∗) < fbest then
fbest = f(x∗)
save x∗ to archive

end if
while Nnot improve < Nmax

generate x′ by randomly perturbing xcurrent
Run local optimizer on x′ to find x∗

if (x∗ is a feasible point) & (f(x∗) < f(xcurrent)) then
Nnot improve = 0
xcurrent = x∗

if f(x∗) < fbest then
fbest = f(x∗)
save x∗ to archive

end if
else
Nnot improve = Nnot improve + 1

end if
end while

end if
end while
return best x in archive

Single Objective Local Optimizer

Now that we have described how a trajectory is parametrized for the optimizer, we discuss the
implementation of the first layer of the global optimization process in this work. Of many varieties
of so-called gradient-free approaches to optimization of continuous variables, Differential Evolu-
tion (DE) has been shown to be among the most well-suited to flight dynamics applications. There
are many varieties of DE, but the one used in this work is known as DE/best/2/bin (Algorithm
2). Instead of using a Nonlinear Programming (NLP) solver to find local optima with the assis-
tance of analytical derivatives, DE is a population-based evolutionary algorithm which performs a
stochastic downhill walk via a genetic crossover operator, using no analytical derivative informa-
tion. Approaches like this are well-suited to problems where the analytical behavior is unknown or
untenable. In this work, we augment the robustness of the DE/best/2/bin routine with the addition
of a mutation operator to deter the algorithm from getting stuck in local optima. DE/best/2/bin may
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also be used as an inner-loop global search in place of MBH, however, due to its inability to eject
itself from a sub-optimal local minimum, MBH is more suitable. We report that in the benchmark
problems examined in this work, the approach of nesting DE/best2/bin within MBH was found to
be superior to employing either method alone.The key feature which separates DE from other evo-
lutionary algorithms is its use of a difference vector- – a random direction along which the current
best decision vector is perturbed that estimates the local gradient. This feature more actively fa-
cilitates the downhill random walk as opposed to using the canonical genetic operators alone. The
pseudocode for this routine is shown below.

Algorithm 2: Differential Evolution (DE/best/2/bin) with Mutation

Given a cost function f and maximum number of iterations, generate a random population P of
decision vectors u∗ and evaluate their cost J∗ = f(u∗).

while current iteration < max iterations
for each decision vector u∗

Randomly choose decision vectors u1, u2, u3, u4

Calculate the difference vector d = u1 − u2 + u3 − u4

for each decision vector element u∗
i

Generate: F, ω, CR, MR ∈ rand(0,1); MR�CR
if ω > CR
utrial,i = ubest,i + Fdi

else
utrial,i = ui∗

end if

ωMutation = rand(0, 1)
if ωMutation < MR
utrial,i = rand(xlb,i , xub,i)

end if

if utrial,i < xlb,i or utrial,i > xub,i
utrial,i = rand(xlb,i , xub,i)

end if
end for

if f(utrial) < f(u∗)
u∗ = utrial

if f(utrial) < f(ubest)
ubest = utrial

end if
end if

return ubest
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Outer-Loop Multiple Objective Optimizer

Genetic algorithms are viable assets for solving global optimization problems which 1) may not
be well-seeded by analytical initial guess information and 2) contain large numbers of decision
variables, objectives and constraints. These methods are presently being introduced into numerous
flight dynamics applications.2,3. The inner-loop optimizes only a single objective, in this case,
the total mission ∆V. However, to understand the true behavior of the solution space, we employ
a multi-objective optimization technique. The goal of a multi-objective optimization routine is to
generate the Pareto front of the solution space.12 ThisN -dimensional curve depicts the fundamental
trade-offs between the objective functions considered in a study, beyond which no improvement
in the solutions can be made. No point solution on the front completely dominates any other.
Thus, traversing from one point on the front to any other in any direction requires degrading the
performance of at least one objective.

The Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is an effective method for tack-
ling multi-objective problems, employing a fast non-dominated sort routine to evaluate a problem
spanned by M objectives via the Pareto criterion.6,13 It has proven effective on a wide range of
flight dynamics applications.1,2,11,13 Furthermore, a cap and optimize approach is used to enable
simultaneous evaluation of all M objectives on a design.13 The outer-loop, which operates solely
on a population of integer decision vectors, selects from integer-encoded menus of caps for differ-
ent objective functions and thus constrains the inner-loop problem, binning the secondary objective
functions to a particular range for each candidate design. Thus, a user may evaluate N objectives in
the same timespan it takes to evaluate just one. Any speed-limiting factors in evaluating the HOCP’s
solution space stem solely from inefficiencies within the inner-loop.

Figure 3: Concept illustration of the Pareto front for a mission with two objectives, f1 and f2.11

Feasible designs exist in the blue region below the front, optimal solutions upon it, and no designs
may exist in the region above it.

Null Gene Transcription

The null gene transcription allows the genetic algorithm outer-loop to insert and delete genes in
accordance with the fitness of the trade space despite fixed array dimensions. The power of this
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transcription to explore single vehicle trade spaces has been repeatedly demonstrated.2 However,
this transcription has never been applied to multi-spacecraft problems. While not presented here,
we explore a multi-dimensional null gene transcription as a means to vary fleet size, in an upcoming
paper investigating Near-Earth Asteroid multi-tours.

RESULTS

The preliminary results in this work serve to illustrate several capabilities. The first benchmark,
Cassini’s interplanetary cruise, validates the inner-loop’s functionality applied to a challenging tra-
jectory optimization problem with a known solution. With the inner-loop validated, the second
benchmark problem explores the a cutting edge mission concept using the novel techniques in this
work, notably the application of inter-spacecraft coordination constraints/objectives to a MVM.

Cassini’s Interplanetary Cruise

As a benchmark test of the inner-loop’s capability, the inner-loop’s performance was validated
by reproducing the Cassini interplanetary cruise. The nominal mission itinerary is compared to the
itinerary found here, with minor differences. The parameters for the DE/best/2/bin local optimizer
and the MBH global search algorithm are given in Table 1 and Table 2, respectively.

Figure 4: Cassini pre-launch design of nominal interplanetary cruise.14.

Table 1
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DE/best/2/bin Parameter Value

Population Size 20

Generations 200

Difference Vector Throttle 1.0E-2

Launch Window (days) 90

Mutation Rate 0.05

C3 bounds (km2/s2) [15, 20]

RLA bounds (degrees) [0, 360]

DLA bounds (degrees) [-90, 90]

DSM Index bounds [0, 1]

β (degrees) [0, 360]

Table 2

MBH Parameter Value

Maximum Global Search Hops 5

Local Hop Magnitude 2.5E-3

Improvement Criterion 1.0E-5

Nmax 20

Maximum Runtime (minutes) 60

The minimum ∆V solution found in this inner-loop test is shown in Fig. 5. The resulting Cassini-
like trajectory was produced from a one hour inner-loop run, and consumed a total ∆V of 696 m/s
compared to the 550 m/s in the nominal pre-launch design of the equivalent cruise portion. This
difference is likely due to the difference of event dates between the two trajectories. Time stamps
of launch, flyby, and encounter events varied from nominal by under 15 days. Extra runtime would
likely improve the performance of this solution, but determining the correct runtime is a problem-
specific tuning task.

Ice Giant Multi-Mission

The 2013 Planetary Science Decadal Survey identifies both Uranus and Neptune as high priority
science targets for future missions. However, no one spacecraft can perform flybys of both targets
within the next 50 years.1 This is, in part, due to the lacking conjunction geometry which existed
during the Voyager spacecraft launches and occurs roughly once every 170 years. Therefore, in
order to visit both targets, two vehicles are needed. This entails two possibilities: either two separate
single-vehicle missions, or a dual vehicle multi-mission where both spacecraft are deployed from
the same launch vehicle. The approach of designing the latter via cross-referenced independent
grid searches for each spacecraft is insufficient to provide an understanding of the optimal solution
space.
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Figure 5: Cassini-like Trajectory found by the inner-loop (green) overlaying nominal trajectory (red
to blue).

Independent searches, filtered a posteriori into a constrained space of shared launch opportuni-
ties, are likely to miss optimal opportunities and provide only a handful of point solutions rather
than a full Pareto-optimal front. Here we present an early analysis of an Ice Giant Multi-Mission
design using the novel MOMA HOCP technique described in this work. During the analysis period,
the difference in ecliptic right ascension between Uranus and Neptune is considerable. This leads to
the performance of one trajectory being inversely proportional to that of the other. Launched to the
same asymptote, as the Uranus probe’s trajectory improves, the Neptune probe’s trajectory worsens
and vice versa. Below, in Table 3, are the parameters bounding used in the first instantiation of the
problem setup.

Table 3
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NSGA-II Parameter Value

Population Size 50

Generations 100

Maximum Flyby Targets 5

Mutation Rate 0.05

Main Objective minimize total mission ∆V

Secondary Objectives minimize time of flight; launch date (not sorted)

Launch Date Cap Menu 1/1/2025 : 1 year step : 1/1/2031

Phase Time of Flight Cap Menu 2 to 7 years in 1 year steps

Planetary Flyby Menu Venus, Earth, Mars, Jupiter, Saturn

MBH Parameter Value

Maximum Global Search Hops 5

Local Hop Magnitude 2.5E-2

Improvement Criterion 1.0E-5

Nmax 20

Maximum Runtime (minutes) 30

DE Parameter Value

Population Size 30

Generations 250

Difference Vector Throttle 1.0E-2

Launch Window (days) 90

Mutation Rate 0.05

C3 bounds (km2/s2) [5, 25]

RLA bounds (degrees) [0, 360]

DLA bounds (degrees) [-90, 90]

DSM Index bounds [0, 1]

β (degrees) [0, 360]

The first implementation of the MOMA-HOCP technique considered a relatively small search
space using lowC3 values and a single multi-agent constraint: a shared launch asymptote for the two
spacecraft. Subsequent larger scale studies begin from this same multi-agent terminal constraint.
The bounds used in the first cut analysis are shown in Table 3. However, these particular problem
bounds produced few numerically feasible solutions, and no practically feasible solutions.

The second version of this technique improves upon the first version by replacing of the DE inner-
loop with an NLP solver fmincon. This allows for the explicit enforcement of linear and nonlinear
constraints on the inner-loop problem. Specifically, a global TOF constraint is used, replacing the
piece-wise phase caps approach. A performance increase occurred even though analytical deriva-
tives were not used. The key additions in the second version are two new outer-loop multi-agent
constraints: a minimum number of flyby genes shared by both spacecraft, and a minimum number
of shared trajectory phase genes.

Minimum Shared Flyby Genes Constraint

For various reasons, a mission designer may want multiple spacecraft in a fleet to flyby identical
targets, not necessarily at the same time. For example, the Voyager spacecraft performed stag-
gered flybys of Jupiter and Saturn to leverage favorable turning angles. These staggered flybys also
enabled interesting secondary science objectives including imaging the planets at different points
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along their orbits. This constraint is a applied via an outer-loop decision variable menu. If a trial
fleet is allowed N intermediate flybys to its destinations, then a user sets the shared flyby genes
menu to allow 0−−M shared flyby genes (where M ≤ N ).

One subtle caveat is that given the outer-loop’s null gene transcription, flyby genes are not equiv-
alent to physical flybys. With fixed non-null destination genes, the fleet size is constrained to be
constant at the user-specified maximum number. But with intermediate flybys, the number of flybys
can and does evolve over generations thanks to the null gene transcription’s insertion and deletion
behavior. For example, consider the following outer-loop decision vector:

X =

[
LW Tcap C3 (3 shared flyby genes) Venus NULL NULL Jupiter Uranus
LW Tcap C3 (3 shared flyby genes) Venus NULL NULL Saturn Neptune

]
(4)

The outer-loop has generated a vector where both spacecraft share at minimum the first three
flyby genes, but 2 of those genes were generated null. So functionally, the inner-loop problem is
only optimizing trajectories with one intermediate flyby each rather than 3. Applying this con-
straint allows the outer-loop to explore a greater diversity of solutions than with the shared launch
asymptote constraint alone.

Minimum Shared Trajectory Phases Constraint

This boolean constraint enables the transcription of a trajectory where both payloads fly the exact
same trajectory for a portion of the mission. This constraint may only be enabled if the minimum
shared flyby genes constraint is also enabled. If so, then for any non-NULL flyby target genes,
the two spacecraft are required to share the same trajectory until all specified shared flybys are
completed. However, if any of the shared flyby genes are NULL, such as in Eq. (4), those flybys
are pruned away by the inner-loop, and thus their corresponding trajectory phases do not exist. This
constraint is enforced by the inner-loop via a header of shared parameters. The 2D hybrid decision
vector is transformed into a 1D vector by the inner loop by parsing it into blocks in the following
order: a header of shared decision variables including launch asymptote, and shared trajectory
phases, followed by unique decision variables for spacecraft 1, then unique decision variables for
spacecraft 2, etc. The indices that encode these blocks are stored in a separate structure parsed
during the evaluation of an objective function. By making this transformation, the shared trajectory
phases constraint may be strictly rather than loosely enforced. This constraint produced the least
feasible solution space, due to the relative geometry of Uranus and Neptune.

Two modestly sized low C3 studies were run on the CU Boulder Summit cluster followed by sev-
eral otherwise equivalent high C3 studies. Each of the studies included the shared launch asymptote
constraint, but two studies separately included the shared flyby genes constraint and shared trajec-
tory constraint. The low C3 studies biased results towards higher numbers of intermediate flybys,
while the higher C3 studies biased more direct transfers. Without a more robust inner-loop tran-
scription, the geometric complexity of adding more flybys yielded impractical results. The higher
C3 studies, however, begin to unearth more practical solutions due to less lengthy flyby permuta-
tions and less ∆V needed by the spacecraft to achieve the required energy changes. The parameters
for the low C3 studies are shown in Table 4. Changes made for the high C3 studies are bolded.
The choice of C3 bounds for the latter study was made based on C3 values obtained from JPL’s
pre-decadal study, specifically the point solution for an Ice Giant Dual Manifest mission using an

13



Table 4

Outer-Loop Parameter Value

Population Size 72

Number of Workers 72

Generations 100

Maximum Intermediate Flyby Targets 5

Mutation Rate 10%

Main Objective minimize fleet ∆V

Secondary Objective(s) [minimax TOF]

Launch Window Menu {[1/1/2030, 5/1/2030] : 4 mo : [9/1/2040, 1/1/2040]}

Global TOF Cap Menu [10 years : 1 year : 16 years]

Planetary Flyby Menu [Venus, Earth, Mars, Jupiter, Saturn]

Minimum Shared Flyby Genes Constraint Menu [0, 1, 2, 3, 4]

Shared Trajectories Constraint (boolean) [0, 1]

C3 (km2s-2) Bounds Menu {[0.0, 2.5] : 2.5 : [22.5, 25.0]}

MBH Parameter Value

Maximum Global Search Hops 10,000

Local Hop Magnitude ±5% of current decision parameter value

Improvement Criterion 1.0E-5

Nmax 25

Maximum Runtime (minutes) 60

Outer-Loop Parameter Value

Maximum Intermediate Flyby Targets 4

Planetary Flyby Menu [Mars, Jupiter, Saturn]

C3 (km2s-2) Bounds Menu {[25.0, 30.0] : 5.0 : [210.0, 220.0]}

optimal, purpose-built kick stage.16
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(a) (b)

(c) (d)

Figure 6: Low C3 study results: (a) and (b) show, respectively, the Y-Z and X-Y views of Pareto
front for the minimum shared flyby genes constraint (SHFB) study while (c) and (d) show analogous
views for the shared trajectory phases constraint (SHTR) study.

Fig. 6 depicts the Pareto fronts of ∆V versus minimaxed TOF for the fleet at the 22nd outer-loop
generation for the minimum shared flyby genes constraint SHFB and SHTR constraint studies. Each
circle represents a spacecraft fleet. The size of each marker qualitatively reports the total number
of intermediate flyby targets used by the spacecraft in the fleet with the least amount of flybys. In
these plots, there are two sizes: zero intermediate flybys, and one intermediate flyby. The SHTR
study produces a front with a noticeably sparser tail.

The low C3 studies both found the minimum ∆V solution to be one that shares no trajectory
phases at all, but where each spacecraft performs a flyby of one identical target (Jupiter, white
orbit). The result is shown in Fig. 7. Red star markers depict events including launch, deep space
maneuvers, and flybys. The Neptune probe performs a solar system escape maneuver to achieve
the energy change needed to reach Neptune. That is, the spacecraft launches from Earth, performs
a Jupiter flyby to target the Sun, and performs a solar flyby effectively achieving an Oberth Effect
energy increase to reach Neptune, analogous to the maneuver designed by Arora et al. for a Kuiper
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Table 5

LowC3 , SHFB Date C3 (km2/s2) RLA ◦ DLA ◦ ∆V (km/s) Altitude (rplanet)

Spacecraft 1 — — — — — —

Launch 1 May 2032 25 319.4 4.1 — —

DSM 1 (km/s) 5 Jul 2034 — — — 4.981 —

Flyby Jupiter 24 May 2036 — — — — 50.0

DSM 2 (km/s) 24 May 2036 — — — 2.622 —

Encounter Uranus 7 May 2044 — — — — —

Spacecraft 2 — — — — — —

Launch 1 May 2032 25 319.4 4.1 — —

DSM 1 (km/s) 11 Jun 2032 — — — 4.528 —

Flyby Jupiter 27 Dec 2036 — — — — 50.1

DSM 2 (km/s) 1 Mar 2039 — — — 5.591 —

Encounter Neptune 1 Jan 2045 — — — — —

Belt Object encounter.15 This mission is summarized in Table 5 and has a total ∆V of 18 km/s with
a TOF of 12.3 years for the slowest spacecraft to reach its target.

Figure 7: Minimum ∆V solution for the low C3 SHFB study.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: High C3 studies: All fleets shown after 22 outer-loop generations. (a) and (b) depict the
Pareto front for the shared launch asymptote constraint only (SHLV) while (c) and (d) offer views
of the SHTR study, and (e) and (f) depict the front for the SHFB study.
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Table 6

High C3, SHLV Date C3 (km2/s2) RLA ◦ DLA ◦ ∆V (km/s) Altitude (rplanet)

Spacecraft 1 — — — — — —

Launch 8 Jun 2030 121.2 40.4 -5.2 — —

DSM 1 (km/s) 8 Sep 2030 — — — 4.546 —

Encounter Uranus 17 Nov 2039 — — — — —

Spacecraft 2 — — — — — —

Launch 8 Jun 2030 121.2 40.4 -5.2 — —

DSM 1 (km/s) 13 Dec 2033 — — — 10.596 —

Flyby Jupiter 12 Oct 2034 — — — — 93.9

DSM 2 (km/s) 20 Oct 2035 — — — 0.047 —

Encounter Neptune 9 Oct 2039 — — — — —

For the high C3 studies, results where in higher abundance. The Pareto fronts for each are cap-
tured in Fig. 8. In (c) and (d) the structure of the front is markedly sparser than either of its less
tightly constrained counterparts. Due to the unfavorable phasing of Uranus and Neptune during the
study window, coupled with the constraint against using inner planet flybys to leverage an energy
increase, numerically feasible solutions were few and far between. No practically feasible or near-
practically feasible solutions were found in either the low or high C3 SHTR studies. Among other
concerns to be addressed in future work, a more thorough search is needed. In the SHFB study
shown in (e) and (f), the Pareto front exhibits a distinct tail at the 10-year TOF mark, where local
families of otherwise equivalent ∆V solutions exist for all TOFs over 10-years. Across all studies,
one observes that launch dates later than 1/1/2032 have markedly fewer, if any, solutions. This is
due mainly to the fact that Uranus’ heliocentric angular velocity is greater than Neptune’s, which
means the Ice Giants’ relative difference in ecliptic right ascension grows as time moves forward.
Conversely, the earlier the launch date, likely up until the era of the Voyager launches, the number
of feasible opportunities improves as the planets approach conjunction.

In Fig. 8a, the high C3 SHLV study’s minimum ∆V solution finds a trajectory whose geometry
suggests that the Neptune probe would benefit from an Earth flyby, while the Uranus probe could
potentially realize a ballistic trajectory with a slightly higher C3. Since the bounds of this study did
not allow for inner planet flybys, an Earth flyby was not an available option, but would arguably
eliminate the large DSM if a flyby opportunity exists. In (b), the high C3 SHFB study, the minimum
∆V solution in this study is the most promising found among all studies run yet. Its primary
shortcoming is the clear need for a Jupiter flyby which was simply not found due to the relatively
small span of the search given by the small outer-loop population. Secondarily, the ‘DSM’ on the
Neptune trajectory is performed on the launch date which implies a need for a higherC3 to eliminate
this maneuver. Variants of this trajectory are found across different flight times, as captured by the
tail of the Pareto front. Mission itineraries for the high C3 SHLV and SHFB studies are given in
Table 6 and Table 7 respectively.
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Table 7

High C3, SHFB Date C3 (km2/s2) RLA ◦ DLA ◦ ∆V (km/s) Altitude (rplanet)

Spacecraft 1 — — — — — —

Launch 16 May 2030 150.0 339.3 -37.0 — —

DSM 1 (km/s) 30 May 2034 — — — 7.584 —

Encounter Uranus 16 May 2046 — — — — —

Spacecraft 2 — — — — — —

Launch 16 May 2030 150.0 339.3 -37.0 — —

DSM 1 (km/s) 16 May 2030 — — — 1.854 —

Encounter Neptune 16 May 2046 — — — — —

Figure 9: (a) The high C3 SHLV study’s minimum ∆V solution and (b), the high C3 SHFB study’s,
the minimum ∆V solution.

CONCLUSIONS

In this paper, we have described the formulation of a novel technique for Multi-Objective, Multi-
Agent, Hybrid Optimal Control optimization applied to interplanetary multi-spacecraft global tra-
jectory optimization. The results of this work demonstrate both promise for the current technique,
while also highlighting the need for improvement in the reliability of the inner-loop, and the pop-
ulation size of the outer-loop. Higher C3 studies produced artificially lower ∆V solutions in part
due to the inner-loop’s inability to optimize complex trajectories with multiple flybys. Optimal
solutions produced by the outer-loop also highlighted need for flybys that the outer-loop did not
find autonomously, which is likely due to the small population size used. This shortcoming will
be addressed with greater computing resources. Future work will focus on improving the robust-
ness of the inner-loop, acquiring more significant distributed computing resources to evaluate larger
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search spaces, and exploring performance under the influence of a wider variety of coordination
constraints/objectives.
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