

**Prepared for:** 

**NESC** Meeting

# PAT Wing Fixed Base Correction Modal Testing Debrief



Kevin Napolitano ATA Engineering

Natalie Spivey Kia Miller NASA Armstrong Flight Research Center **Date:** 

August 23, 2018

13290 Evening Creek Drive S, Suite 250, San Diego CA 92128

(858) 480-2000



www.ata-e.com

ata-engineering У

@ATAEngineering

### **Presentation Outline**

#### Note: All results shown here are preliminary

The objective of this presentation is to describe the PAT Wing modal testing conducted and results using Fixed Base Correction (FBC) method.

- ➢ FBC Theory Drive point accelerations as references
- Description of Modal Test Setup
- ➢ FBC Signal Processing Techniques
  - $\succ$  FRF calculation
  - Partial FRF matrix inversion technique (SMURF)
- > Decisions on where to add shakers (if needed)
- ➢ FBC Results





# Fixed Base Correction - Theory

Original fixed base correction theory used constraint shapes as references, but the method is more easily deployed <u>using drive point accelerations as references</u>

$$\begin{bmatrix} s^{2}m + k & -k \\ -k & s^{2}m + k \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{cases} F_{1} \\ F_{2} \end{bmatrix}$$
  

$$F_{1} \text{ and } F_{2} \text{ as References: } \omega_{n}^{2} = 0,2k/m$$
  

$$X_{1} = \frac{s^{2}m_{2} + k}{(s^{2}m + k)(s^{2}m + k) - k^{2}}F_{1} + \frac{k}{(s^{2}m + k)(s^{2}m + k) - k^{2}}F_{2}$$
  

$$X_{2} = \frac{k}{(s^{2}m + k)(s^{2}m + k) - k^{2}}F_{1} + \frac{s^{2}m_{2} + k}{(s^{2}m + k)(s^{2}m + k) - k^{2}}F_{2}$$
  

$$X_{2} = \frac{k}{(s^{2}m + k)(s^{2}m + k) - k^{2}}F_{1} + \frac{s^{2}m_{2} + k}{(s^{2}m + k)(s^{2}m + k) - k^{2}}F_{2}$$
  

$$X_{2} = 0F_{1} + 1X_{2}$$

> Using a drive point accelerometer as reference results in system modes with that DOF fixed

- > Make sure drive point FRF are as co-located as practicable
- > Make sure drive point FRF are as clean as practicable
  - Use seismic accelerometers as drive points
  - > Drive base shakers harder than wingtip shakers





# PAT Wing Test Article

- Passive Aeroelastic Tailored (PAT) Wing is a tow-steered graphite epoxy, high aspect ratio, semi-span (≈ 39ft) right wing box
- > Designed and built for NASA by Aurora Flight Sciences
- Project funded by NASA ARMD Advanced Air Transport Technology (AATT) Project







### PAT Wing Test Setup

#### Test Goal: Extract all fixed base modes to first torsion mode (near 55 Hz)







# Modal Test Physical Boundary Conditions

# Using these boundary conditions would lead to a very challenging model updating effort without Fixed Base Correction

- Test physical boundary conditions: White static test fixture on the lab floor with four retractable feet and one location on the fixture that is secured to the lab floor with a strap
  - > Dynamically active boundary condition

#### Static Test Fixture Boundary Condition on Lab Floor





Four Retractable Feet Boundary Condition Table Secured with Strap to FLL Floor Boundary Condition



### Initial Modal Test Setup

270 Accelerometers
 10 Shakers/load cells
 10 Seismic accels (drive points)
 True Random Input
 Flexibility in signal processing

Wingtip Shaker



Config. 1: 9 Base Shakers









# Three Shaker Configurations

- Config. 1 (Initial Pass): 10 shakers 9 on white static test fixture, 1 on wingtip
- Config. 2 (Second Pass): 12 shakers Added 2 to aft white triangular brackets (lateral)
- Config. 3 (Final Pass): 14 shakers Added 2 more to fwd wing root metallic plates (lateral)



#### **Shaker Layout**





Forces usually have the highest S/N ratio and are therefore usually the best choice as basis vectors

- Step 1. Calculate A/F FRF
- Step 2. Use IMAT **SMURF** function to perform partial inversion of FRF matrix

Example: g=smurf(f,ref(2:end),ref(2:end)), where

- $\succ$  F is the FRFs in all positive DOF (f=fn2pos(f))
  - > Not strictly necessary, but easier to manage
- ightarrow REF is the reference dof ([ref, res]=ref\_res(f))
- Step 3. Review FRF, and try new signal processing parameters if needed
- Step 4. Fit modes using FRF associated with wingtip shaker FRF





### Config 2: 12 Shakers

#### Filename: T10\_A3\_CR\_12shakers\_LowForce.ati

Step 1: Calculate A/F FRF (using ALL shaker load cells)



# Config 2: Use SMURF on Fixture Drive Points

g=smurf(f,ref(2:end),ref(2:end))

Step 2: Partially invert FRF matrix so base drive point accelerometers and wingtip shaker forces are references using SMURF technique. (Use MATLAB IMAT function)



- > Step 3: Try different signal processing parameters when needed
- > Optimal signal processing parameters may vary with frequency
- > Takeaway: Signal processing is iterative







# Config 2: A/A FRF are Usually Noisy

#### Use A/F FRF to fit modes



Base structure A/A can be cleaned up by using constraint shapes as references, but doing so takes effort and most often the structure A/F FRF are sufficient to extract modes





### Config 2: Use FRFs associated with Wingtip Shaker Force to Fit Modes

#### Step 4: Fit modes using standard modal analysis software







### Config 2: 12 Shakers Results



### Config 3: 14 Shakers Results

#### Helps remove flexible motion in wing root metallic plates









### Config 3: 14 Shakers Results

Two additional shakers removes lateral motion, but opens up new concerns

"Infinite Loop" of removing compliance by adding more shakers is limited by time, number of available shakers, or test objective requirements.

Frequency: 77.402 H:

amping: 1.250 %Cr

120

100 80

0

-20

-50

0

50

(NI) sixe Z 20

IDLine 4: T16 C2 CR 14shakers LowForce

IDLine 1: C:\Users\test\NASA Armstrong\DATA\T16 C2 CR 14shakers LowForce A.afu



12 Shakers: 81.5 Hz

81 Hz mode with 12 shakers is eliminated with 14 shakers

Some vertical pedestal motion at 74 Hz with 14 shakers Could mount vertical shakers to remove this mode, however:

150

200

Yaxis (IN)

250

300

- 1. This mode is higher in frequency than last target mode
- 2. We ran out of source signal generators

14 Shakers: 77.4 Hz

100



axis (IN)

300

350



# Config 1: 10 Shakers

FEM assumes white static test fixture is fixed

| Test Self MAC Table                                                                                                                                              |                         |     |     |     |     |     |     |     |     |     |     |       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|--|--|--|
|                                                                                                                                                                  | Test Shapes             |     |     |     |     |     |     |     |     |     |     |       |  |  |  |
|                                                                                                                                                                  | 1 2 3 4 5 6 7 8 9 10 11 |     |     |     |     |     |     |     |     |     |     |       |  |  |  |
| Test Shapes         3.48         10.09         10.77         21.21         29.40         35.14         52.22         57.70         75.66         88.99         9 |                         |     |     |     |     |     |     |     |     |     |     | 98.57 |  |  |  |
| 1                                                                                                                                                                | 3.48                    | 100 | 32  |     | 14  |     | 6   |     |     |     |     |       |  |  |  |
| 2                                                                                                                                                                | 10.09                   | 32  | 100 |     | 38  |     | 12  |     |     |     |     |       |  |  |  |
| 3                                                                                                                                                                | 10.77                   |     |     | 100 |     | 29  |     |     | 8   |     | 5   | 6     |  |  |  |
| 4                                                                                                                                                                | 21.21                   | 14  | 38  |     | 100 |     | 36  | 7   |     |     |     |       |  |  |  |
| 5                                                                                                                                                                | 29.40                   |     |     | 29  |     | 100 |     |     | 38  | 9   | 10  | 5     |  |  |  |
| 6                                                                                                                                                                | 35.14                   | 6   | 12  |     | 36  |     | 100 | 24  |     |     |     |       |  |  |  |
| 7                                                                                                                                                                | 52.22                   |     |     |     | 7   |     | 24  | 100 |     | 6   |     |       |  |  |  |
| 8                                                                                                                                                                | 57.70                   |     |     | 8   |     | 38  |     |     | 100 | 27  | 21  |       |  |  |  |
| 9                                                                                                                                                                | 75.66                   |     |     |     |     | 9   |     | 6   | 27  | 100 | 23  |       |  |  |  |
| 10                                                                                                                                                               | 88.99                   |     |     | 5   |     | 10  |     |     | 21  | 23  | 100 |       |  |  |  |
| 11                                                                                                                                                               | 98.57                   |     |     | 6   |     | 5   |     |     |     |     |     | 100   |  |  |  |

| FEM/Test Cross MAC Table |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |      |      |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------|------|
|                          |       | FEM S | hapes |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        | Test | Test |
|                          |       | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17     | CRSS | CRSS |
| Test S                   | hapes | 3.38  | 10.33 | 10.95 | 22.36 | 29.32 | 36.61 | 39.64 | 51.67 | 54.89 | 61.19 | 62.18 | 73.43 | 76.05 | 92.77 | 95.87 | 99.65 | 104.86 | 3%   | All  |
| 1                        | 3.48  | 98    | 31    |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        | 99   | 99   |
| 2                        | 10.09 | 32    | 98    |       | 41    |       |       |       |       |       |       |       |       |       |       |       |       |        | 99   | 100  |
| 3                        | 10.77 |       |       | 92    |       | 24    |       |       |       |       |       |       |       |       |       |       |       |        | 96   | 97   |
| 4                        | 21.21 |       | 33    |       | 98    |       | 44    |       |       |       |       |       |       |       |       |       |       |        | 99   | 100  |
| 5                        | 29.40 |       |       | 39    |       | 98    |       | 46    |       |       |       | 29    |       |       |       |       |       |        | 99   | 99   |
| 6                        | 35.14 |       |       |       | 31    |       | 96    |       |       | 21    |       |       |       |       |       |       |       |        | 98   | 99   |
| 7                        | 52.22 |       |       |       |       |       | 21    |       | 65    | 25    |       |       |       | 24    |       |       |       |        | 81   | 99   |
| 8                        | 57.70 |       |       |       |       | 38    |       | 65    |       |       | 38    | 82    | 20    |       |       |       | 23    |        | 91   | 99   |
| 9                        | 75.66 |       |       |       |       |       |       |       |       |       | 27    | 50    | 65    |       |       | 23    | 32    |        | 80   | 99   |
| 10                       | 88.99 |       |       |       |       |       |       |       |       |       |       | 39    | 27    |       |       |       | 49    |        | 70   | 95   |
| 11                       | 98.57 |       |       |       |       |       |       |       |       |       |       |       |       |       | 91    |       |       |        | 95   | 99   |
| CRSS                     | 3%    | 99    | 99    | 96    | 99    | 99    | 98    | 81    | 81    | 50    | 61    | 90    | 80    | 49    | 95    | 48    | 70    | 32     |      |      |
| CRSS                     | All   | 99    | 100   | 97    | 100   | 99    | 99    | 95    | 84    | 64    | 80    | 97    | 83    | 80    | 98    | 69    | 76    | 52     |      |      |



#### Test: 88.99 Hz White Triangular Stiffbacks Bending



| Test | FEM  | Test  | FEM   | Freq | Cross | CRS | CRS |
|------|------|-------|-------|------|-------|-----|-----|
| Mode | Mode | Freq  | Freq  | Pct  | MAC   | MAC | MAC |
| No.  | No.  | (Hz)  | (Hz)  | Diff |       | 3%  | All |
| 1    | 1    | 3.48  | 3.38  | -2.8 | 98    | 99  | 99  |
| 2    | 2    | 10.09 | 10.33 | 2.3  | 98    | 99  | 100 |
| 3    | 3    | 10.77 | 10.95 | 1.7  | 92    | 96  | 97  |
| 4    | 4    | 21.21 | 22.36 | 5.4  | 98    | 99  | 100 |
| 5    | 5    | 29.40 | 29.32 | -0.3 | 98    | 99  | 99  |
| 6    | 6    | 35.14 | 36.61 | 4.2  | 96    | 98  | 99  |
| 7    | 8    | 52.22 | 51.67 | -1.1 | 65    | 81  | 99  |
| 8    | 11   | 57.70 | 62.18 | 7.8  | 82    | 91  | 99  |
| 9    | 12   | 75.66 | 73.43 | -3.0 | 65    | 80  | 99  |
| 10   | 16   | 88.99 | 99.65 | 12.0 | 49    | 70  | 95  |
| 11   | 14   | 98.57 | 92.77 | -5.9 | 91    | 95  | 99  |

FEM: 61.19 Hz Triangular Bracket

Node 10 Frequency: 61.192 Hz Damping: 0.000 %Cr





### Config 2: 12 Shakers

#### FEM assumes white static test fixture & four aft triangular stiffbacks are fixed

| Test Self MAC Table | le |
|---------------------|----|
|---------------------|----|

|        | Test Shapes |      |       |       |       |       |       |       |       |       |       |       |  |
|--------|-------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|        |             | 1    | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    |  |
| Test S | hapes       | 3.48 | 10.12 | 10.90 | 21.23 | 29.59 | 35.17 | 52.25 | 58.20 | 77.22 | 81.50 | 99.42 |  |
| 1      | 3.48        | 100  | 32    |       | 14    |       | 6     |       |       |       |       |       |  |
| 2      | 10.12       | 32   | 100   |       | 38    |       | 12    |       |       |       |       |       |  |
| 3      | 10.90       |      |       | 100   |       | 34    |       |       | 10    |       | 5     | 9     |  |
| 4      | 21.23       | 14   | 38    |       | 100   |       | 36    | 7     |       |       |       |       |  |
| 5      | 29.59       |      |       | 34    |       | 100   |       |       | 38    |       | 16    | 9     |  |
| 6      | 35.17       | 6    | 12    |       | 36    |       | 100   | 24    |       |       |       |       |  |
| 7      | 52.25       |      |       |       | 7     |       | 24    | 100   |       | 20    | 5     |       |  |
| 8      | 58.20       |      |       | 10    |       | 38    |       |       | 100   |       | 36    |       |  |
| 9      | 77.22       |      |       |       |       |       |       | 20    |       | 100   |       |       |  |
| 10     | 81.50       |      |       | 5     |       | 16    |       | 5     | 36    |       | 100   |       |  |
| 11     | 99.42       |      |       | 9     |       | 9     |       |       |       |       |       | 100   |  |

| FEM/Test Cross MAC Table |       |       |       |       |       |       |       |       |       |       |       |       |       |        |      |      |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------|------|
|                          |       | FEM S | hapes |       |       |       |       |       |       |       |       |       |       |        | Test | Test |
|                          |       | 1     | 2     | З     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13     | CRSS | CRSS |
| Test S                   | hapes | 3.38  | 10.36 | 11.16 | 22.40 | 30.83 | 36.90 | 51.42 | 51.78 | 55.10 | 67.82 | 76.23 | 93.15 | 100.98 | 3%   | All  |
| 1                        | 3.48  | 99    | 31    |       |       |       |       |       |       |       |       |       |       |        | 99   | 100  |
| 2                        | 10.12 | 32    | 99    |       | 41    |       |       |       |       |       |       |       |       |        | 99   | 100  |
| 3                        | 10.90 |       |       | 97    |       | 27    |       |       |       |       |       |       |       |        | 99   | 100  |
| 4                        | 21.23 |       | 34    |       | 98    |       | 43    |       |       |       |       |       |       |        | 99   | 100  |
| 5                        | 29.59 |       |       | 41    |       | 97    |       | 31    |       |       | 25    |       |       |        | 98   | 99   |
| 6                        | 35.17 |       |       |       | 31    |       | 96    |       |       | 23    |       |       |       |        | 98   | 99   |
| 7                        | 52.25 |       |       |       |       |       |       | 26    | 54    | 28    |       | 26    |       |        | 80   | 99   |
| 8                        | 58.20 |       |       |       |       | 43    |       | 62    |       |       | 73    |       |       |        | 85   | 99   |
| 9                        | 77.22 |       |       |       |       |       |       |       |       |       |       | 63    |       | 31     | 79   | 98   |
| 10                       | 81.50 |       |       |       |       |       |       |       |       |       | 64    | 32    |       |        | 80   | 99   |
| 11                       | 99.42 |       |       |       |       |       |       |       |       |       |       |       | 95    |        | 97   | 99   |
| CRSS                     | 3%    | 99    | 99    | 99    | 99    | 98    | 98    | 78    | 74    | 53    | 85    | 79    | 97    | 55     |      |      |
| CRSS                     | All   | 100   | 100   | 100   | 100   | 99    | 99    | 95    | 82    | 65    | 99    | 99    | 99    | 64     |      |      |
|                          |       |       |       | _     |       |       |       |       |       |       |       |       |       |        |      |      |



| Test | FEM  | Test  | FEM   | Freq  | Cross | CRS  | CRS  |
|------|------|-------|-------|-------|-------|------|------|
| Mode | Mode | Freq  | Freq  | Pct   | MAC   | XMAC | XMAC |
| No.  | No.  | (Hz)  | (Hz)  | Diff  |       | 3%   | All  |
| 1    | 1    | 3.48  | 3.38  | -2.9  | 99    | 99   | 100  |
| 2    | 2    | 10.12 | 10.36 | 2.4   | 99    | 99   | 100  |
| 3    | 3    | 10.90 | 11.16 | 2.4   | 97    | 99   | 100  |
| 4    | 4    | 21.23 | 22.40 | 5.5   | 98    | 99   | 100  |
| 5    | 5    | 29.59 | 30.83 | 4.2   | 97    | 98   | 99   |
| 6    | 6    | 35.17 | 36.90 | 4.9   | 96    | 98   | 99   |
| 7    | 8    | 52.25 | 51.78 | -0.9  | 54    | 80   | 99   |
| 8    | 10   | 58.20 | 67.82 | 16.5  | 73    | 85   | 99   |
| 9    | 11   | 77.22 | 76.23 | -1.3  | 63    | 79   | 98   |
| 10   | 10   | 81.50 | 67.82 | -16.8 | 64    | 80   | 99   |
| 11   | 12   | 99.42 | 93.15 | -6.3  | 95    | 97   | 99   |





### Config 3: 14 Shakers

#### FEM assumes everything but wing is fixed

|                                                                                                                                                       | Test Self MAC Table                                                                                                |        |       |     |     |     |     |     |     |     |     |       |       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|--|--|
|                                                                                                                                                       |                                                                                                                    | Test S | hapes |     |     |     |     |     |     |     |     |       |       |  |  |
|                                                                                                                                                       | 1         2         3         4         5         6         7         8         9         10         11         12 |        |       |     |     |     |     |     |     |     |     |       |       |  |  |
| Test Shapes         3.48         10.05         11.02         21.22         30.15         35.23         52.20         56.67         59.08         77.4 |                                                                                                                    |        |       |     |     |     |     |     |     |     |     | 98.45 | ##### |  |  |
| 1                                                                                                                                                     | 3.48                                                                                                               | 100    | 30    |     | 13  |     | 6   |     |     |     |     |       |       |  |  |
| 2                                                                                                                                                     | 10.05                                                                                                              | 30     | 100   |     | 37  |     | 12  |     |     |     |     |       |       |  |  |
| 3                                                                                                                                                     | 11.02                                                                                                              |        |       | 100 |     | 33  |     |     |     | 8   |     | 8     |       |  |  |
| 4                                                                                                                                                     | 21.22                                                                                                              | 13     | 37    |     | 100 |     | 35  | 9   |     |     |     |       |       |  |  |
| 5                                                                                                                                                     | 30.15                                                                                                              |        |       | 33  |     | 100 |     |     |     | 37  |     | 8     |       |  |  |
| 6                                                                                                                                                     | 35.23                                                                                                              | 6      | 12    |     | 35  |     | 100 | 25  |     |     | 5   |       |       |  |  |
| 7                                                                                                                                                     | 52.20                                                                                                              |        |       |     | 9   |     | 25  | 100 |     |     | 22  |       | 8     |  |  |
| 8                                                                                                                                                     | 56.67                                                                                                              |        |       |     |     |     |     |     | 100 |     |     | 8     |       |  |  |
| 9                                                                                                                                                     | 59.08                                                                                                              |        |       | 8   |     | 37  |     |     |     | 100 |     |       |       |  |  |
| 10                                                                                                                                                    | 77.40                                                                                                              |        |       |     |     |     | 5   | 22  |     |     | 100 |       | 21    |  |  |
| 11                                                                                                                                                    | 98.45                                                                                                              |        |       | 8   |     | 8   |     |     | 8   |     |     | 100   |       |  |  |
| 12                                                                                                                                                    | 106.17                                                                                                             |        |       |     |     |     |     | 8   |     |     | 21  |       | 100   |  |  |

| FEM/Test Cross MAC Table |                                                                                                                                                                                     |     |     |     |     |    |    |     |    |     |    |    |    |      |      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|----|----|-----|----|-----|----|----|----|------|------|
|                          | FEM Shapes                                                                                                                                                                          |     |     |     |     |    |    |     |    |     |    |    |    |      | Test |
|                          |                                                                                                                                                                                     | 1   | 2   | 3   | 4   | 5  | 6  | 7   | 8  | 9   | 10 | 11 | 12 | CRSS | CRSS |
| Test S                   | Fest Shapes         3.39         10.45         11.35         22.64         31.98         37.46         51.94         55.54         65.92         77.43         93.69         102.17 |     |     |     |     |    |    |     | 3% | All |    |    |    |      |      |
| 1                        | 3.48                                                                                                                                                                                | 99  | 29  |     |     |    |    |     |    |     |    |    |    | 99   | 100  |
| 2                        | 10.05                                                                                                                                                                               | 31  | 98  |     | 40  |    |    |     |    |     |    |    |    | 99   | 100  |
| 3                        | 11.02                                                                                                                                                                               |     |     | 97  |     | 26 |    |     |    |     |    |    |    | 98   | 100  |
| 4                        | 21.22                                                                                                                                                                               |     | 35  |     | 99  |    | 41 |     |    |     |    |    |    | 99   | 100  |
| 5                        | 30.15                                                                                                                                                                               |     |     | 41  |     | 96 |    |     |    | 25  |    |    |    | 98   | 100  |
| 6                        | 35.23                                                                                                                                                                               |     |     |     | 31  |    | 96 |     | 20 |     |    |    |    | 98   | 100  |
| 7                        | 52.20                                                                                                                                                                               |     |     |     |     |    | 20 | 62  | 29 |     | 22 |    |    | 79   | 100  |
| 8                        | 56.67                                                                                                                                                                               |     |     |     |     |    |    | 42  | 57 |     |    |    |    | 75   | 100  |
| 9                        | 59.08                                                                                                                                                                               |     |     |     |     | 46 |    |     |    | 79  |    |    |    | 89   | 99   |
| 10                       | 77.40                                                                                                                                                                               |     |     |     |     |    |    |     |    |     | 83 |    | 22 | 91   | 99   |
| 11                       | 98.45                                                                                                                                                                               |     |     |     |     |    |    |     |    |     |    | 95 |    | 97   | 100  |
| 12                       | 106.17                                                                                                                                                                              |     |     |     |     |    |    |     |    |     |    |    | 74 | 86   | 99   |
| CRSS                     | 3%                                                                                                                                                                                  | 99  | 99  | 98  | 99  | 98 | 98 | 79  | 75 | 89  | 91 | 97 | 86 |      |      |
| CRSS                     | All                                                                                                                                                                                 | 100 | 100 | 100 | 100 | 99 | 99 | 100 | 99 | 96  | 96 | 99 | 92 |      |      |

| ATA               | - |
|-------------------|---|
| ENGINEERING, INC. |   |

| Test | FEM  | Test   | FEM    | Freq | Cross | CRS    | CRS    |
|------|------|--------|--------|------|-------|--------|--------|
| Mode | Mode | Freq   | Freq   | Pct  | Ortho | XOrtho | XOrtho |
| No.  | No.  | (Hz)   | (Hz)   | Diff |       | 3%     | All    |
| 1    | 1    | 3.48   | 3.39   | -2.4 | 99    | 99     | 100    |
| 2    | 2    | 10.05  | 10.45  | 4.0  | 98    | 99     | 100    |
| 3    | 3    | 11.02  | 11.35  | 3.0  | 97    | 98     | 100    |
| 4    | 4    | 21.22  | 22.64  | 6.7  | 99    | 99     | 100    |
| 5    | 5    | 30.15  | 31.98  | 6.1  | 96    | 98     | 100    |
| 6    | 6    | 35.23  | 37.46  | 6.3  | 96    | 98     | 100    |
| 7    | 7    | 52.20  | 51.94  | -0.5 | 62    | 79     | 100    |
| 8    | 8    | 56.67  | 55.54  | -2.0 | 57    | 75     | 100    |
| 9    | 9    | 59.08  | 65.92  | 11.6 | 79    | 89     | 99     |
| 10   | 10   | 77.40  | 77.43  | 0.0  | 83    | 91     | 99     |
| 11   | 11   | 98.45  | 93.69  | -4.8 | 95    | 97     | 100    |
| 12   | 12   | 106.17 | 102.17 | -3.8 | 74    | 86     | 99     |





- ➤View Animations of Fixed Base Modes
- ➤Baseline A/F FRF had significant base motion
- Initial shaker set resulted in bending mode of base at 80+ Hz
- Second shaker set removed base bending motion
- Sliding motion of wing root pinned connection amplified when 14 shaker set used





- Use full finite element model (FEM), but constrain DOF associated with shaker/drive point accelerometers to best match the testing results
  - May have to spread load to avoid stress concentrations & local deformation of "point load" due to single DOF constraint







Test Summary

- Fixed Base Correction method was successfully used to extract fixed base modal results for the PAT wing that was mounted to a dynamically active static test fixture resting unsecured on a test facility floor.
- There are many potential scenarios where this FBC method can be used on future tests of structures mounted on other dynamically active static test fixtures.



