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Why the need for sub-Kelvin cooling in 
space flight?

• Astro-H / XRISM uses an array of 36 bolometers with absorbers 
tuned to soft-Xray energies. They require 50 mK to reach stated 
sensitivity less than 7 eV

• PIPER uses two Backshort-Under-Grid (BUG) superconducting 
transition-edge sensors (TES) detectors developed at NASA/GSFC 
measure signal (> 5000 pixels). TES tuned to ~ 100 mK
temperature range

• PIXIE (proposed) will use an array of infrared-sensitive 
bolometers to measure the polarization of the cosmic microwave 
background (CMB). Temperature requirement 

• Origins Space Telescope (proposed) contains three instruments 
that require sub-Kelvin cooling. All three use TES detectors 
operating at 50 mK. At this temperature, the sensitivity will be 
limited by the sky background.



Adiabatic Demagnetization Refrigeration



ADR Multi-Stage System



Continuous ADR



CADR built for External Mission

4 Stages

① 45 g CPA [0.100 K]

② 100 g CPA [0.375 -> 0.09 K]

③ 100 g CPA [1.4 -> 0.275 K]

④ 82 g GGG [4.2 -> 1.2 K]

Heat Switches

① Superconducting Switch (1 -> 2)

② Passive Gas-Gap (2 -> 3)

③ Passive Gas-Gap (3 -> 4)

④ Internal Passive Gas-Gap (4 -> H.S.)



CADR built for PIPER Mission

4 Stages

① 45 g CPA [0.100 K]

② 100 g CPA [0.375 -> 0.09 K]

③ 100 g CPA [1.4 -> 0.275 K]

④ 82 g GGG [3 -> 1.2 K]

Heat Switches

① Superconducting Switch (1 -> 2)

② Passive Gas-Gap (2 -> 3)

③ Passive Gas-Gap (3 -> 4)

④ Internal Passive Gas-Gap (4 -> H.S.)



Same CADR; Different Configurations

4 Stages

① 45 g CPA [0.100 K]

② 100 g CPA [0.375 -> 0.09 K]

③ 100 g CPA [1.4 -> 0.275 K]

④ 82 g GGG [3 -> 1.2 K]

Heat Switches

① Superconducting Switch (1 -> 2)

② Passive Gas-Gap (2 -> 3)

③ Passive Gas-Gap (3 -> 4)

④ Internal Passive Gas-Gap (4 -> H.S.)



Passive Gas-Gap Heat Switches

• Passively closes when temperature of 
associated stage warms above some value 
– More thermodynamically efficient since no 

additional heat added to system to activate

• Thin (0.127 mm) titanium outer shell

• Gold-plated copper innards consist of 
interleaved fins with a 0.36 mm gap 
between when assembled

• Getter typically sintered stainless pucks or 
the copper fins themselves



Stage 4 Passive GGHS Internal to Stage

• One set of “fins” is the salt pill

• Other set the magnet itself
– ~ 0.4 mm gap between adjacent pair of fins

• Sintered 300 CRES getters epoxied onto the 
pill provide attractive surface for He-3
– If 3He between sets of fins, switch on

– When 3He to CRES binding energy greater than 
some temperature, switch turns off

• Room-temperature fill level sets the 
transition temperature
– 4 torr fill provides transition ~ 1.2 K



Superconducting Heat Switch

• Positioned between stages 1 and 2
• Two halves of switch separated by a 

length of lead wire
• When lead in superconducting 

state, switch open
• When lead in normal state, 

switch closed
• Magnetic field from Helmholtz 

coil switches state
• Quick switching time
• Works in a temperature regime 

where gas in a GGHS is absorbed 
fully



S2,3 Salt Pill Suspensions

A total of 6 Kevlar bundles suspend the 
paramagnetic salt pill within the bore of 
a superconducting magnet
• Magnet temperature: 3 K
• Pill temperatures often below 1 K
• Kevlar assemblies made on the bench 

then installed 
• Button head screw on outside 

attachment point
• “D-shaped” screw threaded 

through inner attachment point
• Tensioned via a nut and locked 

with a second nut
• Estimated heat lead from 3 to 0.1 K: 

4.4 µW 



S4 Salt Pill Suspension

• 300 CRES bellows 
isolates one end

• Thin Vespel SP1 spool 
provides structural 
support 

• Six Kevlar bundles 
suspend other end



Plots of Temperatures and Currents 



Plots of Temperatures and Currents 



Plots of Temperatures and Currents 



Heat Lift etc.

CADR was developed using 
research money provided by 
NASA/GSFC in the early 
2000’s (Shirron et al.)
• Measured cooling 

powers and overall 
efficiency measured for 
that system

• Taking data on new 
system now and will 
compare the two 
systems
• Expect new system 

to have a lower 
available cooling 
power due to 
stronger Kevlar 
suspensions* Cooling power in addition to parasitic heat loads



Many Possibilities

Two, or more, unique continuous temperatures possible
• Asynchronous CADRs
• In this example, one is a 2 K, the other 0.050 K



Summary
• Both 4-stage continuous ADRs built for the PIPER balloon mission 

and our external partner have completed testing

• One cooler demonstrated continuous operation below 45 mK with 
a total heat lift of > 5 µW at that temperature
– Includes parasitic heat to coldest stage two stages

– Usable cooling power decreased by testing environment (vibrational 
heating from cooler in one case)

– Need to modify environment by either dampening cooler or moving to 
flight Dewar cooled via liquid helium

• Second cooler modified to work from a 4.2 K liquid helium bath
– Demonstrated greater than 6 µW heat lift in addition to parasitic heating 

while at 80 mK

• Since the CADR has a higher cooling power for the same mass as a 
single-shot system, we are now baselining this technology will be 
baselined for future missions


