PL&HA Precision Landing and Hazard Avoidance

NASA SPLICE Project: Development and Testing of Precision Landing GN&C Technologies

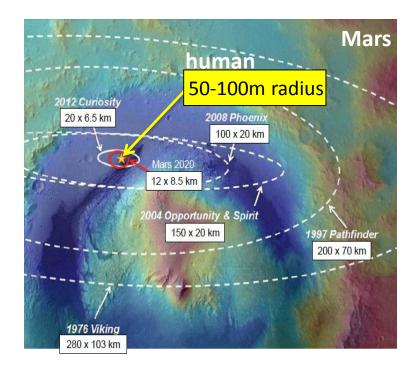
Dr. Carolina Restrepo Hazard Detection Lead for NASA SPLICE Project

Dr. John M. Carson III

Project Manager for NASA SPLICE Project

Michelle M. Munk

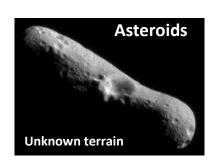
NASA EDL System Capabilities Leadership Team (SCLT) Lead STMD EDL Principal Technologist


July 31, 2018

Cleared for External Release Charts herein include content provided by multiple NASA centers and supporting institutions.

The Motivation for PL&HA Technology

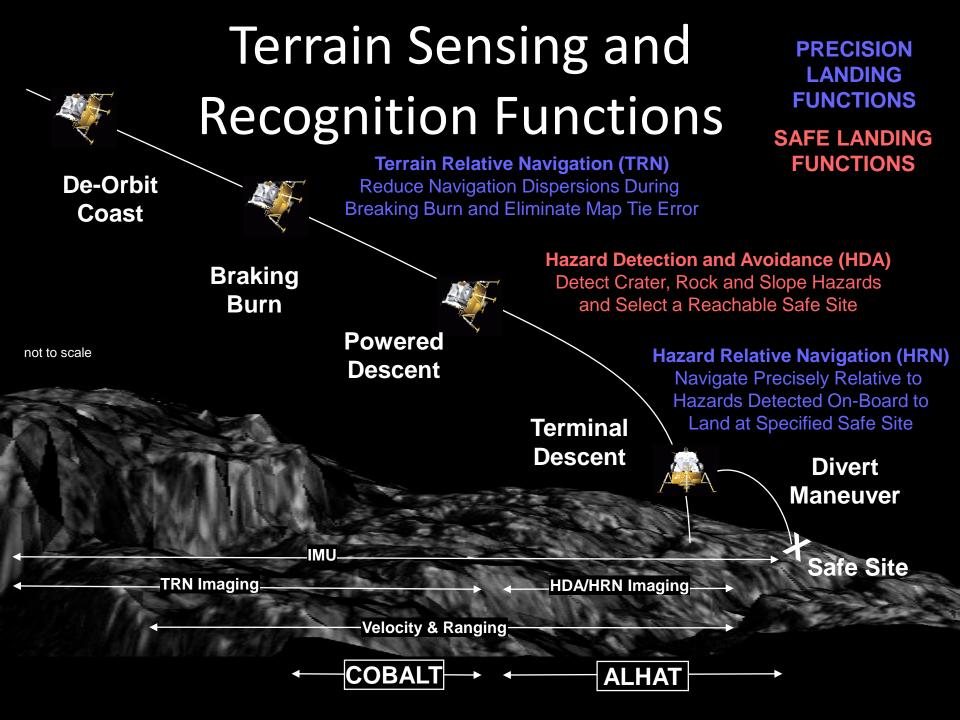
- Enable landing at locations that pose significant risk to vehicle touchdown or payload deployment (including near pre-positioned surface assets)
- Technology has been deemed critical in NASA and NRC Space Technology Roadmaps and architecture studies for future robotic and human missions
 - Required for future human landings on Mars
 - Enabler for robotic exploration of new destinations



What is the NASA PL&HA domain?

- NASA development, testing and infusion of GN&C technologies for controlled, precise and safe landing
- Investments have come through **multiple HQ Directorates** (STMD, SMD, HEO) and have included **multi-center collaboration** in past & present projects:
 - ALHAT (Autonomous precision Landing and Hazard Avoidance Technology)
 - LVS (Lander Vision System)
 - COBALT (CoOperative Blending of Autonomous Landing Technologies)
 - Lander Technologies (LT)
 - ILS (Intelligent Landing System)
 - SPLICE (Safe & Precise Landing Integrated Capabilities Evolution)
- Domain includes technologies for sensors, algorithms, avionics, software & techniques for missions (robotic or human) having various Concepts of Operation (ConOps) and various terrain illuminations (light/shadow/dark)

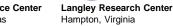
Jet Propulsion Laboratory California Institute of Technology


Langley Research Center Hampton, Virginia

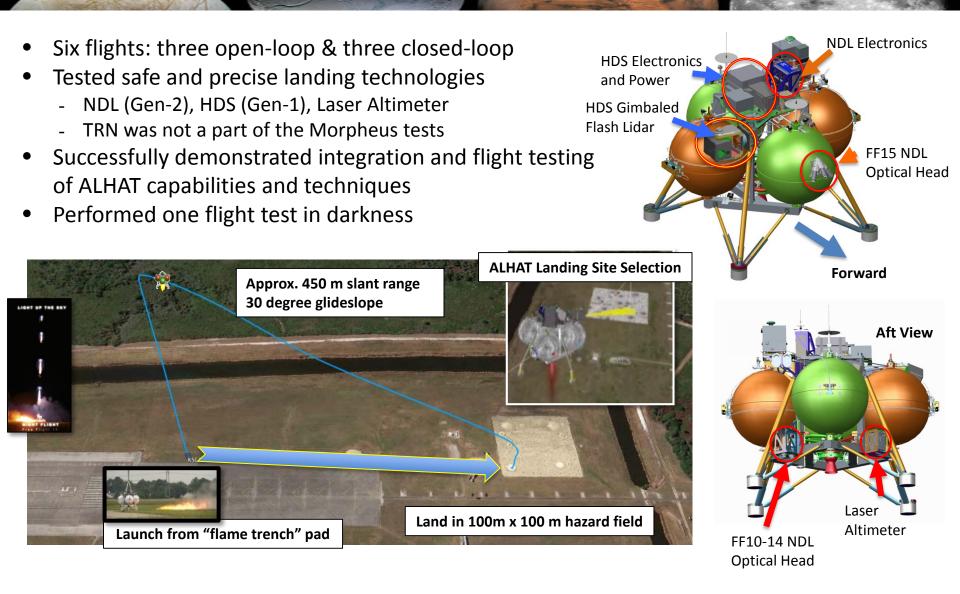
Goddard Spaceflight Center Greenbelt, Maryland

Marshall Spaceflight Center Huntsville, Alabama

ALHAT Overview


Autonomous precision Landing Hazard Avoidance Technology

- ALHAT combined autonomous guidance, navigation and control algorithms capable of characterizing the landing surface while identifying and avoiding lander-sized hazards in real time
- ALHAT flew on JSC's Morpheus Lander as a self-contained payload with the goal of prototyping future hazard avoidance & hazard relative navigation systems for future robotic or human landers



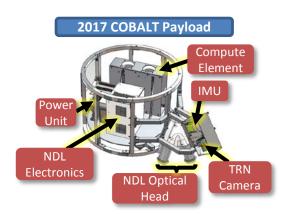
Jet Propulsion Laboratory California Institute of Technology

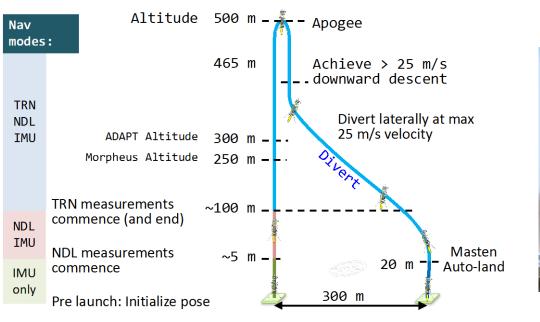
COBALT Overview

- A platform to mature TRL and reduce risk for spaceflight infusion of GN&C PL&HA technologies into near-term robotic and future human missions
- Self contained and could be modified to test different GN&C technologies on different host vehicles

Johnson Space Center L Houston, Texas H

Langley Research Center Hampton, Virginia


Jet Propulsion Laboratory California Institute of Technology



OBA

2017 COBALT Flights on Masten Xodiac

- COBALT: CoOperative Blending of Autonomous Landing Technologies
- Platform to mature TRL and reduce risk for spaceflight infusion of GN&C PL&HA technologies
- Multi-center collaboration: JSC, Langley, JPL
- Multi-directorate partnership: STMD & HEOMD

Portfolio of Current **PL&HA** Technologies

SMD/STMD/other

Controlled (Soft) Landing Velocity and/or Range Sensing

TRL 5+ Navigation Doppler Lidar (NDL) (6 in FY19)

Line-of-site velocity of 200 m/s (\pm 1.7-cm/sec, 1 σ) Line-of-site range of 4+ km ($\pm 2.2m$, 1σ) dev & test in ALHAT/Morpheus, COBALT, & SPLICE

SMD/ other

Long-range Laser Altimeter (LAIt) TRL 4 Range in vacuum, 50+ km (5 cm, 1σ) dev & tested in ALHAT/Morpheus

Optical Velocimetry (many in development) TRL 3+ Estimates from image-based feature tracking and optical flow

Precise Landing Terrain Relative Navigation (TRN)

Passive-Optical/Camera-Based

(requires illuminated terrain: applicable to most missions)

- JPL Lander Vision System (LVS): camera + IMU + dedicated computing to be TRL 9 with Mars2020
- TRN solutions also available from APL, Draper & elsewhere in dev for multiple mission concepts
- JPL Intelligent Lander System (ILS) in dev for Europa Lander concept

Active/Lidar-based TRL 3-4 (dark/shadowed or illuminated terrain) dev & tested in ALHAT

PL&HA Computing

Descent & Landing Computer (DLC) **HPSC (High Performance Spaceflight** Computing) multicore A53 (extendable) + FPGAs (extendable) + PL&HA sensor interfaces (in dev & test within SPLICE) (5 in FY2020)

Safe Landing Hazard Detection (HD) and Hazard Relative Nav (HRN)

SMD

Hazard Detection System (HDS) prototype TRL 4 flash lidar + gimbal + dedicated IMU + dedicated computing Range, 1 km (\pm 8cm, 1 σ). Generates 100mX100m map & safe landing sites within 10-12 sec dev & tested in ALHAT/Morpheus

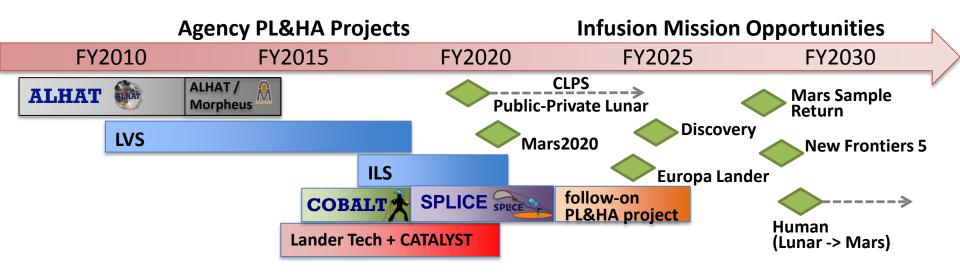
Hazard Detection Lidar (HDL) in dev & test within SPLICE

STMD/ SMD Scan array lidar + FPGA. Provides long-range altimetry and rapid medium- & short-range high-resolution terrain maps TRL 4 (5 in FY2020) uses many flight heritage parts

JPL Intelligent Lander System (ILS) in dev for Europa Lander concept

Overview of NASA SPLICE Project (FY2018-FY2020)

- Multi-Directorate, Multi-Center PL&HA project
 - Centers: JSC, LaRC, GSFC, AFRC, MSFC, JPL (in planning for FY19-20), KSC (FY19-20)
 - Directorates: STMD-GCD, HEOMD-AES, STMD-FO, SMD-PSD
 - STMD-GCD: oversight and support for all SPLICE elements
 - HEOMD-AES: support for NDL element and synergy with cFS-based flight software development
 - STMD-FO: support for suborbital flight test element (COBALT portion)
 - SMD-PSD: support for NDL path-to-flight components
- Project Components (Elements)
 - NDL: Implement an NDL (Navigation Doppler Lidar) Engineering Test Unit (ETU) & Achieve TRL6 in FY2019
 - ConOps: Develop a multi-mission PL&HA requirements matrix for relevant robotic science & human exploration destinations (to drive PL&HA infusion & investment)
 - Avionics: Develop an HPSC-surrogate DLC (Descent & Landing Computer) to TRL 5 for future COBALT tests and spaceflight infusion missions
 - HD: Design, develop, and test a multi-mission HDL (Hazard Detection Lidar) to TRL 5 with relevance to future robotic & human missions
 - HWIL Sim/SW: Evolve HWIL sim/test capabilities and PL&HA flight software to foster PL&HA infusion into NASA & US commercial missions
 - Field Test: conduct NDL environmental tests, validate NDL & HDL performance on airborne vehicles, and lead closed-loop COBALT flight tests on the Xodiac suborbital rocket


PL&HA Development & Infusion Strategy

Goal

- Develop multi-mission technologies that become part of the standard suite of GN&C capabilities
- Develop technologies for robotic missions that also feed forward into future human missions

Approach

- Develop and maintain a PL&HA knowledge base that captures robotic and human mission needs
- Prioritize technologies that promote multiple robotic missions and align to human mission needs
- Form a cross-directorate strategy and leverage multi-center/multi-project partnerships

- The NASA PL&HA domain includes a diverse suite of GN&C technologies for precise and safe landing
- Many of these PL&HA technologies are approaching readiness for infusion into near-term robotic science missions
- PL&HA capabilities enable new mission concepts by enlarging the trade space of feasible landing sites for surface exploration
- Development of PL&HA technologies for robotic missions also benefits future human missions