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Abstract  
Curvilinear Displacement Transfer Functions were formulated for deformed shape predictions of 

different curved structures using surface strains. The embedded curved beam (depth-wise cross section of 
a curved structure along a surface strain-sensing line) was discretized into multiple small domains, with 
domain junctures matching the strain-sensing stations. Thus, the surface strain distribution can be 
described with a piecewise linear or a piecewise nonlinear function. The discrete approach enabled 
piecewise integrations of a curvature-strain differential equation for the embedded curved beam to yield 
closed-form Curvilinear Displacement Transfer Functions, which are written in terms of embedded 
curved-beam geometrical parameters and surface strains. By inputting the surface strain data, the 
Curvilinear Displacement Transfer Functions can transform surface strains into deflections along each 
embedded curved beam for mapping out the overall structural deformed shapes. The finite-element 
method was used to analytically generate the surface strains of the curved beams. The deformed shape 
prediction accuracies were then determined by comparing the theoretical deflections with the finite-
element-generated deflections, which were used as yardsticks. By introducing the correction factors in 
simple mathematical forms, the Curvilinear Displacement Transfer Functions can be quite accurate for 
shape predictions of different curved-beam structures ranging from limit case of straight beam up to 
semicircular curved beam.   

Nomenclature 
 a(s)  curvilinear displacement (measured from the -axis) of a bent cantilever straight beam in  
   forming an undeformed cantilever curved beam, in. 
AB   incremental arc length 

  deformed arc length of AB 
 depth factor at axial location s (distance from neutral axis to the outer surface of the 

embedded curved beam), in. 
   , depth factor at  [associated with outer surface bending strain ], in. 
   value of  at embedded curved-beam root  , in. 
   value of  at embedded curved-beam tip , in. 

   , averaged depth factor for a small domain , in. 
   centroid-axis depth factor (distance from centroid axis to the outer surface), in. 
    , linear distance between undeformed and deformed positions of a point at  

             , in. 
   differential of r, in. 
   differential of s, in. 
   differential of , rad 

E   Young’s modulus, lb/in2  
 , averaged depth of embedded curved beam within domain , in. 
   depth of an embedded curved beam at , in. 

  depth of an embedded curved beam at , in. 
   depth of an embedded curved beam at fixed end , in. 
   depth of an embedded curved beam at free end , in. 

 i    strain-sensing station identification number 
 j   dummy index 

x

′A ′B
c(s)

� 

ci ≡ c(si ) s = si ε(si )

� 

c0

� 

ci (s = s0 = 0)

� 

cn

� 

ci (s = sn = l)
c ≡ (ci−1 + ci ) 2 si−1 ≤ s ≤ si
cc
di ≡ ui

2 + vi
2

s = si
dr
ds
dθ θ

h = (hi−1 + hi ) 2 si−1 ≤ s ≤ si
hi s = si
hi−1 s = si−1
h0 (s = s0 = 0)
hn (s = sn = l)

= 0,1,2,3,...,n,



2 
 

        , magnitude of normalized bending stress on concave side of curved beam, no  
   dimension  

   , magnitude of normalized bending stress on the convex side of a curved beam, no  
              dimension 
 l   curvilinear length of an embedded curved beam, in. 

  , distance from origin to point , the chord length subtended by 
angle  with radius , in. 

    identification number for the last span-wise strain-sensing station, or domain density  
    (number of domains between two adjacent strain-sensing stations)  
 P   applied load, lb 

  local curved deflection (curvilinear distance traced by a material point from its initial  
 undeformed position to its final deformed position), in. 

   , curved deflection at , in. 
   corrected deflection 

      deflection of the two-end supported curved beam at , in. 

     Nastran-generated curved (or radial) deflection at , in. 
    , local radius of curvature of a deformed embedded curved beam, in. 
   radius of curvature of undeformed embedded curved beam, in.   

      curvilinear axial coordinate along the neutral axis of an embedded curved beam, in. 
   curvilinear axial coordinate of i-th strain-sensing station at , in. 
        x-displacement at , in. 
         y-displacement at , in. 

w   width, in.  
 x, y  Cartesian coordinates, in. 

     curved deflection measured from x-axis, in. 
     , curved deflection at , in. 
    deformed slope angle, rad 

  , deformed slope angle relative to the undeformed slope angle , rad 
   , deformed slope angle at , rad 
   angle subtended by  (considered as chord length), rad  
   neutral axis offset, in. 
   angular displacement of the i-th strain-sensing station at , rad 
 , domain length (strain-sensing stations separation curvilinear distance), in 

  outer surface bending strain at the curvilinear axial location s, in/in 
   , outer surface bending strain at , in/in 
   , inner surface bending strain at , in/in 

    , correction factor at  for cantilever curved beams, no dimension 

   beam tip correction factor 

kin ≡σ in σ

kout ≡ σ out σ

Li = 2R0 sin (i n)(φn 2)[ ] s = si
(i n)φn R0

n

r(s)

ri ≡ r(si ) s = si
 
ri
ri
B s = si
ri
(N ) s = si
R = R(s)
R0
s
si s = si
ui s = si
vi s = si

y(s)
yi ≡ y(si ) s = si
α
α (s) ≡θ −θ0 θ0
α i ≡α (si ) s = si
βi di
δ
δφi s = si
Δl ≡ (si − si−1) = l n
ε(s)

� 

εi ≡ ε(si ) s = si
ε i ≡ ε (si ) s = si

ηi ≡ 2sin(φi 2)
φi

s = si

ηn
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   , correction factor at beam center  for two-end supported curved    

   beams, no dimension 
    slope angle of a deformed embedded curved beam in reference to the x-axis, rad 
   slope angle of an undeformed embedded curved beam in reference to the x-axis, rad 

  value of  at , rad 
    Poisson’s Ratio 
    magnitude of surface bending stress of an equivalent straight beam, lb/in2  

   magnitude of bending stress on the concave side of a curved beam, lb/in2  
   magnitude of bending stress on the convex side of a curved beam, lb/in2 

         curved-beam angle, rad or deg 
   , angular location of i-th strain-sensing station at , rad or deg 

Introduction 
Deflections of a structure under load can be experimentally measured using position transducers or 

photogrammetry. However, these methods can be impractical for airborne structures. Traditionally, 
deflections of the loaded structure can be analytically calculated by using the finite-element method. 
However, depending on the structures, finite-element modeling can be quite complex and very time 
consuming. To eliminate the need for tedious finite-element modeling, the Displacement Transfer 
Functions (refs. 1–9) were invented to transform measured surface strains into out-of-plane deflections so 
that one can map out the overall structural deformed shapes for visual displays. Keep in mind that without 
using the Displacement Transfer Functions, strain sensors of any type cannot sense the overall structural 
deformed shapes. This innovative patented technology for structure deformed shape predictions is called, 
“Method for Real-Time Structure Shape-Sensing,” U.S. Patent Number 7,520,176, (ref. 2), which is very 
attractive for application to in-flight deformed shape monitoring of flexible wings and tails, such as those 
often employed on flight vehicles for maintaining safe flights. In addition, the real-time wing shape 
monitored could then be input to the aircraft control system for aero-elastic wing shape control.  

In the formulation of the past Displacement Transfer Functions (refs. 1–9), strain-sensing stations 
(strain measurement points) are to be discretely distributed along a strain-sensing line on the surface of 
the structure (for example, an aircraft wing). The depth-wise cross section of the structure along the 
strain-sensing line is called an embedded beam (not to be confused with the classical isolated Euler-
Bernoulli beam). Each embedded beam was then evenly discretized into multiple domains with domain 
junctures matching the strain-sensing stations. By discretization, variation of the surface strain can be 
described with either a piecewise linear or a piecewise nonlinear function. The piecewise approach 
enabled piecewise integrations of the curvature-strain differential equation for the deformed embedded 
beam to yield slope and deflection equations in recursive forms. Those recursive slope and deflection 
equations can then be combined into a single deflection equation in summation form. Those three 
equations are then called Displacement Transfer Functions, which are expressed in terms of the embedded 
beam geometrical parameters and surface strains, containing no material properties. By entering the 
surface strain data into the Displacement Transfer Functions, one can then calculate slopes and 
deflections along the deformed embedded beam. By using multiple strain-sensing lines, overall deformed 
shapes of a structure subjected to bending and torsion loadings can then be graphically mapped out for 
visual display. A total of seven sets of Displacement Transfer Functions were formulated in the past for 
applications to different types of structural geometries (refs. 1–9).  

All the earlier Displacement Transfer Functions (refs. 1–9) were analytically validated for the 
prediction accuracies using finite-element analysis of various slender structures under combined bending 
and torsion. Those structures include: tapered cantilever tubular beams, tapered two-end supported tubular 

 
ηn/2 ≡ φn/2

sinφn/2
(i = n 2)

θ
θ0
(θ0 )i θ0 s = si
ν

� 

σ
σ in

σ out

� 

φn
φi = (i n)φn s = si
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beams, depth-tapered wing boxes (unswept and swept), a width-tapered wing box, a doubly-tapered wing 
box, plates, doubly tapered Ikhana wings (66-ft wingspan) (fig. 1a) (ref. 10), and GIII swept wings 
(77.83-ft wingspan) (fig. 1b) (ref. 11). Also, the accuracy of a typical Displacement Transfer Function 
was experimentally validated by large-scale ground tests of highly flexible Global Observer wings 
(175-ft wingspan, wingtip deflections could reach up to 32 ft during flights) (ref. 12).  

The rectilinearly distributed surface strains can also be entered into the Stiffness, Load Transfer 
Functions, and the Displacement Transfer Functions, to calculate structural stiffness (bending and torsion) 
and inflight loads (bending moments, shear loads, and torques) for monitoring the inflight loads of the 
flight vehicle. This patented method is called, “Process for Using Surface Strain Measurements to Obtain 
Operational Loads for Complex Structures,” U.S. Patent No. 7,715,994, (ref. 13). The accuracy of this 
patented method for estimating operational loads on structures was analytically validated by using finite-
element analysis of different aerospace structures (tapered cantilever tubular beams, depth tapered 
un-swept wing boxes, depth tapered swept wing boxes, and doubly-tapered Ikhana wing) (ref. 14).  

The earlier Displacement Transfer Functions (refs. 1–9) were formulated exclusively for straight 
embedded beams, and when applied to the shape predictions of curved structures, one had to introduce 
empirically determined curvature correction factors (refs. 5, 9). Thus, there is a need to mathematically 
formulate Curvilinear Displacement Transfer Functions for the deformed shape predictions of curved 
structures (for example, rocket motor and aircraft fuselage cross sections). 

In the present paper, Curvilinear Displacement Transfer Functions are formulated for shape 
predictions of curved structures with different initial curvatures. A family of long curved beams 
(cantilever and two-end supported) were chosen to study the shape-prediction accuracies of the 
Curvilinear Displacement Transfer Functions. Instead of using actually measured surface strains, finite-
element analyses of the curved beams were carried out to analytically generate the surface strains. The 
associated finite-element-generated deflections were used as yardsticks in the shape prediction accuracy 
analysis. The Curvilinear Displacement Transfer Functions were then used to calculate the theoretical 
deflections using the finite-element-generated surface strains as inputs. The shape prediction accuracies 
were then determined by comparing the theoretical deflections with the finite-element-generated 
deflections (yardsticks). The results show that, with the use of correction factors of simple mathematical 
forms, the Curvilinear Displacement Transfer Functions are very accurate for shape predictions of 
different curved structures, ranging from the limit case of a straight beam up to a semicircular 
(180-deg arc) curved beam.  

Curvature-Strain Relationship 
 Figure 2 shows the embedded curved beam with an initial constant radius of curvature  and depth 
factor . The embedded beam is defined as the depth-wise cross section of a structure along a strain-
sensing line. After inward bending, a small curved segment  on the outer surface of the 
undeformed curve beam subtended by a small angle  will deform into a new arc length 

, where  is the local radius of curvature of the deformed arc length 
subtended by a deformed small angle  (fig. 2). Then, the outer surface strain  in reference to the 
curved s-system (fig. 1), can be expressed with equation (1) as: 
 
 

 (1) 

                                
 For an in-extensional (no length changed in neutral axis) embedded curved beam, the small curved 
segments  along the neutral axis remains unchanged after deformation and, therefore, in view of 
figure 2, one can write equation (2): 
 

R0
c

AB = (R0 + c)dθ0

� 

dθ0
′A ′B = (R + c)dθ R[≡ R(s)] ′A ′B

dθ ε(s)

ε(s) = ′A ′B − AB
AB

= (R + c)dθ − (R0 + c)dθ0
(R0 + c)dθ0

ds
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  (2) 
 
From equation (2), the deformed small angle  can be related to the undeformed small angle  
through equation (3) as: 
 
 

  (3) 

                                                
Substitution of equation (3) into equation (1) yields equation (4): 
 
 

 

 

 

(4) 

                                              
Equation (4) can be rewritten in the alternative form as equation (5), which relates the curvature 
differential  to surface strain : 
 
 

 (5) 

                                          
In view of equation (2), the left-hand side of equation (5) can be written in terms of small angles 

as equation (6): 
 
 

 (6) 

                
 In equation (6),  is the deformed slope angle in reference to the undeformed slope angle

. Substitution of equations (6) into equation (5) yields the following equation (7), relating the slope-

angle gradient  to surface strain  for the embedded curved beam: 
 
 

 (7) 

                                    
 The Curvilinear Displacement Transfer Functions are to be formulated through integrations of 
equation (7) (called a-formulation) as described in the subsequent sections.        

Theoretical Formulations  
   The Curvilinear Displacement Transfer Functions can be formulated by integrating curvature-strain 
differential equation (7). For the given embedded curved beam, the initial radius of curvature  is 

ds = R0dθ0 = Rdθ

dθ dθ0

dθ = R0
R
dθ0

ε(s) = (R + c)(R0 R)dθ0 − (R0 + c)dθ0
(R0 + c)dθ0

= (R + c)R0 − R(R0 + c)
R(R0 + c)

= c(R0 − R)   
R(R0 + c)

= c
R0 + c

R0

R
−1⎛

⎝⎜
⎞
⎠⎟ =

c
1+ c R0

1
R
− 1
R0

⎛
⎝⎜

⎞
⎠⎟

(1 R −1 R0 ) ε(s)

1
R
− 1
R0

= 1+ c(s)
R0

⎡

⎣
⎢

⎤

⎦
⎥
ε(s)
c(s)

{dθ0,dθ}

1
R
− 1
R0

= dθ
ds

− dθ0
ds

= dθ − dθ0
ds

= d(θ −θ0 )
ds

= dα
ds

α (≡θ −θ0 )
θ0

dα ds ε(s)

dα
ds

= 1+ c(s)
R0

⎡

⎣
⎢

⎤

⎦
⎥
ε(s)
c(s)

R0



6 
 

known. However, for the curved beams, the neutral axis and centroid axis may not coincide, and the 
neutral-axis depth factor  can be calculated by using outer and inner surface strains (described in the 
Neutral-Axis Shifting Method section). Also, the functional form of surface strain  must be 
established before equation (7) can be integrated. By introducing a discretization method described in the 
following section, variation of  can be represented with a piecewise linear or a piecewise nonlinear 
function so that piecewise integration of equation (7) can be carried out.  

Discretization 

 Figure 3 shows a typical cantilever embedded curved beam with curved length l and depth factor 
, installed with outer and inner surface strain-sensing lines. The embedded curved beam is then 

evenly discretized into n small domains (domain length ), with domain junctures matching the 

strain-sensing stations. Thus, there are  equally spaced strain-sensing stations at 

 along the strain-sensing lines for obtaining the outer and inner surface bending strains, 
. Note that the first and the last strain-sensing stations  are located respectively at the 

fixed end  and free end .  
 Using the discretization approach (fig. 3), surface strain distributions can be represented with a 
piecewise linear or a nonlinear function. Then, equation (7) can be piecewise integrated to yield slope and 
deflection equations derived in the following sections.  

Piecewise Strain Representations  

 If the surface strain  varies slowly in the s-direction within a small domain  
between two-adjacent strain-sensing stations , then the value of  can be represented with a 
linear function [eq. (8)] or nonlinear (quadratic) function [eqs. (9)]:  

Linear Representation  

 
 

     ;      (8) 

 
In equation (8),  are respectively the values of  at the strain-sensing stations . 

Nonlinear Representation 

 
 

                  

                
 

(9a)
 

  
      ;     

 
(9b)

                                                 

c(s)
ε(s)

ε(s)

c(s)
Δl = l n

(n +1) s = si
(i = 0,1, 2,3,...,n)
{εi,εi} {s0, sn}

(s0 = 0) (sn = l)

ε(s) (si−1 ≤ s ≤ si )
{si−1, si} ε(s)

ε(s) = εi−1 − (εi−1 − εi )
s − si−1
Δl

(si−1 ≤ s ≤ si ) (i =1,2,3,...,n)

{εi−1, εi} ε(s) {si−1, si}

ε(s) = εi−1 −
3εi−1 − 4εi + εi+1

2Δl
(s − si−1)+

εi−1 − 2εi + εi+1
2(Δl)2

(s − si−1)
2

(si−1 ≤ s ≤ si ) (i =1,2,3,...,n)

εn+1 = εn−2 − 3εn−1 + 3εn (i = n)
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In equation (9a), when i = n, the non-existing strain will appear. Therefore, the three point 

extrapolation equation (9b) is provided for estimating the non-existing strain . Keep in mind that 

equations (8) and (9) are also applicable to the inner surface strain  case. 

Stepwise Depth Factor Representation 

 If the depth factor  varies very slowly with s within a small domain , between two 

adjacent strain-sensing stations , then the variation of is very small and can be 
approximated with the averaged depth factor c defined as equation (10): 
 
 

    
 ;     (10) 

                   
In equation (10),  are respectively the depth factors at the strain-sensing stations 
(fig. 2). Using equation (10) will greatly simplify mathematical processes in the piecewise integrations of 
equation (7) to obtain both slope and deflection equations. 

Basic Slope-Angle Equation  

 The slope-angle equation can be obtained by piecewise integration of equation (7) within each small 
domain  as equation (11):  
 
 

     ;       (11) 

             
         

In equation (11), if the depth factor is represented with the averaged value c according to 

equation (10), then the factor  can be replaced with  and can be 
moved outside the integral sign, and thereby simplifying the integration process. After integration of the 
left-hand side, equation (11) can be written as equation (12): 
 
 

     ;      (12) 

                     
In equation (12),  is the slope angle at strain-sensing station .  

Basic Deflection Equation  

 If  denotes the curved deflection at point  (fig. 4), measured from the undeformed curved 
embedded beam (that is, curvilinear distance traced by a material point at point  from its initial 
undeformed position to its final deformed position), then the curved deflection increment  due to 
incremental  can be related to the slope angle  as  (fig. 4). Thus, one can integrate 

the slope-angle equation (12) within the small domain   as equation (13): 

εn+1
εn+1

ε (s)

c(s) si−1 ≤ s ≤ si
{si−1, si} c(s)

c(s) ≈ c ≡ 1
2
(ci−1 + ci ) (i =1,2,3,...,n)

{ci−1,ci} {si−1, si}

si−1 ≤ s ≤ si

dα
dssi−1

s
∫ ds = 1+ c(s)

R0

⎡

⎣
⎢

⎤

⎦
⎥
ε(s)
c(s)si−1

s
∫ ds (si−1 ≤ s ≤ si )

c(s)
[1+ c(s)] R0 )[1 c(s)] (1+ c R0 )(1 c)

 

α (s) = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

1
c

ε(s)si−1

s
∫ ds

Slope-angle increment due to ε (s)
! "### $###

+ α i−1
Slope angle
  at si−1

% (si−1 ≤ s ≤ si )

α i−1[≡ α (si−1)] si−1

r(s) s
s

dr
ds α (s) α (s) = dr ds

si−1 ≤ s ≤ si
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     ;      
(13) 

  
After partial integration of equation (13) and rearranging, one obtains the curved deflection equation (14) 
of the following form: 
 
 

      ;      (14) 

   
In equation (14), the term  is the curved deflection at strain-sensing station . 

List of Curvilinear Displacement Transfer Functions 
 By using piecewise representations of the surface strains given by equations (8) or (9), the slope-
angle equation (12) and the deflection equation (14) can be piecewise integrated (ref. 15) to yield the 
following final forms given by equations (15) and (16) (see derivations in Appendices A–D). 

Piecewise Linear Strain Case  

 Slope-angle equation in recursive form (Appendix A) is shown as equation (15a): 
 
 

     
;      (15a) 

                                          
Deflection equation in recursive form (Appendix A) is shown in equation (15b): 

 
 

     
;      (15b)   

                
        

 Deflection equation in summation form (Appendix B) is shown in equation (15c): 
 
 
 

 

 

(15c) 

  
     Equations (15a–15c) are called the Curvilinear Displacement Transfer Functions for embedded curved 
beams.  
  

 

α (s)dssi−1

s
∫ = dr

ds
α (s)
!

dssi−1

s
∫ = 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

1
c

ε(s)ds +si−1

s
∫ α i−1

⎡

⎣
⎢

⎤

⎦
⎥

Right-hand side of eq. (12)
" #$$$$$ %$$$$$

dssi−1

s
∫ (si−1 ≤ s ≤ si )

 

r(s) = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

1
c

ε(s)dssi-1
s
∫ dssi-1

s
∫

Deflection increment due to ε (s) 
! "#### $####

+ ri−1
Deflection
 at si−1

% + (s − si−1)α i−1

Deflection 
due to αi−1

! "## $## (si−1 ≤ s ≤ si )

ri−1[≡ r(si−1)] si−1

α i = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
Δl
2c

ε i−1 + ε i( ) +α i−1 (i =1,2,3,...,n)

ri = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
(Δl)2

6c
2ε i−1 + ε i( )+ ri−1 + (Δl)α i−1

(i =1,2,3,...,n)

 

ri = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
(2ε j−1 + ε j )

j=1

i

∑
Contributions from deflection terms
! "##### $#####

+ 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
(i − j)(ε j−1 + ε j )

j=1

i−1

∑
Contributions from  slope terms

! "###### $######
+ r0 + (i)(Δl)α 0

=0 for cantilever beams
! "## $##

(i =1,2,3,...,n)
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Piecewise Nonlinear Strain Case 

Slope-angle equation in recursive form (Appendix C) is shown in equation (16a): 
 
 

     
;      (16a) 

                          
Deflection equation in recursive form (Appendix C) is shown in equation (16b): 
 
 

     
;      (16b)     

            
 

Deflection equation in dual summation form (Appendix D) is shown in equation (16c): 
 
 

 (16c) 

    

       
Equations (16a–16c) are called the Improved Curvilinear Displacement Transfer Functions for embedded 
curved beams.  

Two-End Supported Embedded Curved Beams  
 The Curvilinear Displacement Transfer Functions (15) and (16) formulated for cantilever embedded 
curved beams  can be used to calculate deflections  of the two-end 
supported (fixed or simply supported) embedded curved beams (fig. 5). By enforcing zero deflection 

 at the right support point (i = n), the deflection of the two-end supported embedded curved 
beams can be expressed as equation (17) (refs. 1, 2): 
 
 

     
;      (17) 

           
 In equation (17),  is the curved deflection of the cantilever embedded curved beam at , and can 

be calculated from equations (15) [or equation (16)] by setting . Equation (17) is called 
Curvilinear Displacement Transfer Function for two-end supported embedded curved beams.  
 Figure 5 graphically illustrates that, under a given strain condition, the deflection curve of  for the 
two-end supported curved beam can be graphically generated by rotating the deflection curve of  for the 
cantilever curved beam about the left-hand support point in a clockwise direction until the free end falls 
on the right-hand support point. In figure 5 the relative geometrical locations of 

 appearing in equation (17) are also shown.  

α i = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
Δl
12c

(5ε i−1 + 8ε i − ε i+1)+α i−1
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ri = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
(Δl)2

24c
(7ε i−1 + 6ε i − ε i+1)+ ri−1 + (Δl)α i−1

(i = 1,2,3,...,n)

 

ri = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

24c
(7ε j−1 + 6ε j − ε j+1)

j=1

i

∑
Contributions from deflection terms

! "###### $######
+ 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

12c
(i − j)(5ε j−1 + 8ε j − ε j+1)

j=1

i−1

∑
Contributions from slope terms

! "####### $#######

         + r0 + (i)(Δl)α 0

= 0 for cantilever beams
! "## $##

(α 0 = r0 = 0) ri
B(i = 0,1,2,3,...,n)

(rn
B = 0) ri

B

ri
B ≈ ri −

si
l
rn = ri −

i(Δl)
n(Δl)

rn = ri −
i
n
rn (i = 0,1, 2,3,...,n)

ri si
α 0 = r0 = 0

ri
B
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[ri
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Characteristics of the Displacement Transfer Functions 
 In the Displacement Transfer Functions, equations (15) and (16), the slope angle and deflection 

 at the strain-sensing station  are expressed in terms of the inboard beam depth factors

 and the associated inboard surface strains  [for eqs. (15)] or 
 [for eqs. (16)] including the values of  at the strain-sensing station  where 

 are calculated. It is important to mention that equations (15) and (16) are purely geometrical 
relationships, containing no material properties. However, the values of the surface strains  can be 
affected by material properties and internal structural configurations. Thus, in using equations (15) and 
(16) for shape predictions of complex structures such as aircraft wings, there is no need to know the 
material properties or the internal structural details, and there is no need to construct finite-element 
models. The shape prediction accuracies of Curvilinear Displacement Transfer Functions, equations (15) 
through (17) are discussed in detail in the subsequent sections. 

Neutral-Axis Offset in Curved Beams 
 When a curved beam is under bending deformation, the neutral axis may not coincide with the 
centroid axis (fig. 6). The distance between the neutral axis and the centroid axis is called the neutral-axis 
offset . For example, for a solid uniform curved beam with a rectangular cross section under pure 
bending, the neutral-axis offset  can be calculated from equation (18) (ref. 16, p. 148 and ref. 17, 
p. 183): 
 
 

      ;       
(18) 

                        
In equation (18),  is the beam depth,  is the centroid-axis depth factor, and  is the radius of 
curvature of the deformed curved beam. Table 1 lists the surface stresses and neutral-axis offsets  
[eq. (18)] associated with different curvatures of solid uniform curved beams with rectangular cross 
sections (data from ref. 16, p. 148).   
  

(α i ,ri ) si
(c0,c1,c2,...,ci ) (ε0,ε1,ε2, ...,ε i )
(ε0,ε1,ε2, ...,ε i+1) (ci,ε i ) si
(α i ,ri )

� 

εi

δ
δ

δ = R − h

loge
R + cc
R − cc

⎛
⎝⎜

⎞
⎠⎟

h = 2cc

h cc(= h 2) R
δ
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Table 1. List of surface stresses  and neutral-axis offsets  associated with different 

curvature  of solid curved beams with rectangular cross sections (ref. 16, p. 148). 
 

     
 1.2 2.89 0.57 0.3660 0.3050 
 1.4 2.13 0.63 0.2856 0.2040 
 1.6 1.79 0.67 0.2384 0.1490 
 1.8 1.63 0.70 0.2016 0.1120 
 2.0 1.52 0.73 0.1800 0.0900 
 3.0 1.30 0.81 0.1230 0.0410 
 4.0 1.20 0.85 0.0840 0.0210 
 6.0 1.12 0.90 0.0558 0.0093 
 8.0 1.09 0.92 0.0416 0.0052 
10.0 1.07 0.94 0.0330 0.0033 
17.0   1.00+  1.00-   0.0170 0.0010 

+Slightly greater than 1.00;       -Slightly less than 1.00. 
 

In table 1,  are respectively the magnitudes of the normalized surface bending stresses on the 
concave and convex sides of the curved beam defined by equation (19) as: 
 
 

     
;      (19) 

  
In equation (19), are respectively the magnitudes of the bending stresses on the concave and 
convex sides of the curved beam, and  is the magnitude of the surface bending stress for the equivalent 
straight beam.  
 In figure 6, the data of   and   listed in table 1 are plotted as functions of . Note 

from figure 6 that  is larger than , and both  rapidly approach unity  with 

increasing . Also, the value of  decreases sharply toward zero as  increases. At = 17, 

both  are nearly unity  and  is decreased to a negligible value of 

0.001. When  is greater than 17 ( ),  is very small , and the curved beam 
behaves like a straight beam because the neutral-axis offset effect diminishes. 

Elimination of Axial Strain Components  
 Unlike straight beams, in the bending of curved beams, the curvature effect will cause the magnitude 
of outer and inner surface strains at the same cross section to be slightly different because the surface strains 
contain both bending and axial strain components. To input the correct surface bending strains into the 
Displacement Transfer Functions, axial strain components must be removed from the total surface strains 
to obtain the true bending strains. To eliminate the axial strain effect of the embedded curved beams (with 
unit width), the Neutral-Axis Shifting Method or the Differential-Strain Method can be used. The two 
methods are described below.  
  

(kin,kout ) (δ ,δ R)
R cc

R cc kin kout δ δ R

(kin,kout )

kin =
σ in

σ
kout =

σ out

σ

{σ in , σ out}

� 

σ

(kin ,kout ) δ R R cc

� 

kin

� 

kout (kin ,kout ) [(kin ,kout )→1]
R cc δ R R cc R cc

(kin ,kout ) (kin ≈ kout ≈1) δ R δ R ≈
R cc R cc >17 δ R (δ R→ 0)
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Neutral-Axis Shifting Method 

 The neutral-axis shifting method is to calculate actual depth factors  using the 

outer and inner surface strains . Figure 7a shows a typical bending case, in 

which the two surface strains have opposite signs (for example, , ). The slightly curved 
strain distribution across the beam depth is represented with bilinear strain distribution (fig. 7a). By 
setting the total sum of bilinear strains across the beam depth to zero, one obtains equation (20): 
 
  ;      (20) 
                                                 
In equation (20),  is the depth of the embedded curved beam at . Rewriting 
equation (20), the depth factor  can be expressed by equation (21): 
 
 

  
  ;     (21) 

                                     
                      

 The depth factors  calculated from equation (21) must be used with the associated outer surface 
strains  for entering the Displacement Transfer Functions for deflection calculations. It must be 
mentioned that equation (21) may not be very accurate for a highly curved solid embedded beam with 

, because of the larger neutral-axis offset , and a highly nonlinear strain distribution across 
the beam depth. The neutral-axis shifting method [eq. (21)] can automatically nullify the axial strain 
contaminations. 

Differential-Strain Method  

 The differential-strain method presented here is applicable only to a special case for which the neutral 
axis is located at the half depth of the embedded beam (that is, . In view of figure 7b, by 
using the differential of the outer and inner surface strains, axial strain components can be eliminated to 
yield the true bending strains given by equation (22): 
 
 

True bending strains on outer-surface

 

    ;      (22) 

     
 For inputting the true outer-surface bending strains given by equation (22) into the Curvilinear 
Displacement Transfer Functions, the given depth factor  must be used. Note that, if both 
lower and upper strains , have the same signs and same magnitudes (that is, ) like in axial 
loading, then equation (22) will give zero bending strain. 

Analytical Shape Predictions 
  The present study of curved-beam structural shape prediction is called the analytical shape prediction 
study. Because no experimentally measured surface strains are available, MSC/Nastran (MSC Software 
Corporation, Newport Beach, California) linear analysis (ref. 18, Solution 101) was performed to 
analytically generate surface strains. The associated Nastran-generated deflections were used as reference 
yardsticks in the analytical shape prediction accuracy analysis. It is important to mention that when the 

ci (i = 0,1,2,3,...,n)
(ε i ,ε i ) (i = 0,1,2,3,...,n)

εi > 0 εi < 0

ciε i + (hi − ci )ε i = 0 (ε i > 0, ε i < 0)

hi (i = 0,1,2,3,...,n) s = si
ci

ci =
−ε i

ε i − ε i
hi (i = 0,1,2,3,...,n)

� 

ci

� 

εi

R cc <17 δ

ci = hi 2)

= ε i − ε i
2

(i = 0,1,2,3,...,n)

ci (= hi 2)
{ε i,ε i} ε i = ε i
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surface strains are generated from Nastran nonlinear analysis, the Curvilinear Displacement Transfer 
Functions will calculate nonlinear deflections for comparisons with Nastran-generated nonlinear 
deflections. 
 The analytical method is much cheaper and faster than the experimental method, for which one has to 
install strain sensors and position transducers (or photogrammetry) for measuring surface strains and 
deflections. Keep in mind that if the measured surface strain data are available, the analytical method is 
not needed. The Nastran-generated surface strains were then input to the Curvilinear Displacement 
Transfer Functions [eqs. (15), (16), or (17)] to calculate the theoretical deflections. By comparing the 
theoretical deflections with the corresponding Nastran-generated deflections (yardsticks), one can then 
determine the theoretical shape prediction accuracies.  

Shape Prediction Accuracies 
 To study the shape prediction accuracies of the Curvilinear Displacement Transfer Functions 
[eqs. (15), (16), or (17)], Nastran-generated deflections  were used as reference yardsticks. If  
(or  denotes the theoretically predicted deflections, then the prediction error of deflection  (or  
at the strain-sensing station  is defined by the following prediction error equation (23): 
 
 

Prediction error
     

;      (23) 

 
Equation (23) is to be used to determine the prediction errors of the Curvilinear Displacement Transfer 
Functions. 

Structures Used in Shape Prediction Analyses 
 For the shape prediction accuracy analyses of the Curvilinear Displacement Transfer Functions, the 
structures chosen are a family of curved beams with different initial radius of curvatures, having the 
dimensions listed in table 2.  
 

Table 2. Dimensions of curved beams analyzed. 
 

l, in. 
(length) 

, deg 
(curved-beam 

angle) 
, in. 

(initial radius 
of curvature) 

h, in. 
(depth) 

w, in. 
(width) 

 in. 
(centroid-axis 
depth factor) 

 
(normalized 

radius of 
curvature) 

100  0 (Straight)  ∞  2.00 2.00 1.00  ∞  
100  45 (1/8 circle) 127.32 2.00 2.00 1.00 127.32 
100  90 (1/4 circle)  63.66 2.00 2.00 1.00  63.66 
100 135 (3/8 circle)  42.44 2.00 2.00 1.00  42.44 
100 180 (1/2 circle)  31.83 2.00 2.00 1.00  31.83 

ri
(N ) ri

ri
B ) ri ri

B )
si

 

≡

ri
ri

(N ) −1
⎛
⎝⎜

⎞
⎠⎟
×100%

Cantilever curved beams
! "### $###

           or

 ri
B

ri
(N ) −1

⎛
⎝⎜

⎞
⎠⎟
×100%

Two-end supported curved beams
! "### $###

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

(i = 0,1,2,3,...,n)

� 

φn R0 cc (= h 2) R0 cc
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 All the curved beams listed in table 2 are made of an aluminum material lb/in2, 
), and have an identical curved length of 100 in., the same depth of 2 in., the same width 

of 2 in., and the same centroid-axis depth factor of 1 in. To maintain the same curved-
beam length 100 in., the initial radius of curvature  was changed with the change of the curved-
beam angle . 
 In view of figure 6, the range of  listed in table 2 lies in the region of 

 , for which the neutral-axis offset is nearly zero and could be neglected. However, the neutral-

axis depth factors  can be calculated from equation (21) for examining the 

proximity of the neutral-axis depth factor  and the centroid-axis depth factor . 
 Figure 8 shows sketches of a typical cantilever curved beam (fig. 8a), and a two-point supported 
(fixed or simply supported) curved beam (fig. 8b) analyzed. All the curved beams have constant depth of 

. Both outer and inner surfaces of each curved beam has  number of strain-sensing 

stations; indicated with  for the outer surface, and  for the inner 
surface. The curved beams are subjected to the following loading conditions: 

Case a:  Each cantilever curved beam is subjected to an inward radial load of lb at the 
curved-beam tip, pointing toward the center of curvature (fig. 8a). 

Case b: Each two-end supported (fixed or simply supported) curved beam is subjected to an inward 
radial load of lb at the curved-beam center, pointing toward the center of curvature (fig. 8b). 
Note from figure 7b that the radial and tangential motions of the support points are constrained. 
 The Nastran-generated deformed shapes of all the curved beams based on the dimension listed in 
table 2 were shown in the following sections. 

Shape Predictions of Cantilever Curved Beams 
 Figure 9 shows Nastran (linear analysis)-generated undeformed and deformed shapes of the different 
cantilever curved beams (dimensions listed in table 2). Note from figure 9 that the deformed beam-tips 
moved in both x- and y-directions. 

Nastran-Generated Curved Deflections 

 The theoretically predicted deflections are curved deflections. However, the Nastran-generated 
deflections for the cantilever curved beams do not give the curved deflections, but only x- and 
y-component deflections  at point  (fig. 10). For the purpose of comparison 
with the theoretically predicted curved deflections , the Nastran version of curved deflections is 
needed for yardsticks. 
 By using the Nastran component deflection data of , one can then geometrically generate the 

Nastran curved deflections  (yardsticks) with the aid of figure 10. As shown in figure 10,  is the 
straight distance between the undeformed and deformed positions of point  and is given by 
equation (24):  
 
 

     ;      (24) 
 

(E =10 ×106

ν = 0.3 l = h =
w = cc = h 2 =

l = R0

� 

φn
31.83≤ (R0 cc ) ≤ ∞

R cc >17
ci (i = 0,1,2,3,...,n)

ci cc = h 2

(h0 = hn ) (n +1)
(ε0,ε1,ε3,...,εn ) (ε0,ε1,ε3,...,εn )

P = 100

P = 100

(ui ,vi ) (i = 0,1,2,3,...,n) si
ri ri

(N )

(ui ,vi )
ri
(N ) di

si

di ≡ ui
2 + vi
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The distance  between the origin and point  is the chord length associated with radius  and arc 

angle , and can be expressed with equation (25): 
 
 

     ;      (25) 

 
Now considering  as a radius, and  as the chord subtending an angle , then  can be related to 

 through equation (26): 
 
 

  
   ;            (26) 

  
from which  can be expressed explicitly with equation (27): 
 
 

     ;      (27) 

 
The Nastran-generated curved deflection can then be considered as an arc length subtended by angle 

 with radius , and can be expressed as equation (28): 
 
 

     ;      (28) 

  
in which equation (27) was used. In view of equations (24)–(26), equation (28) can be written in the 
following final form as equation (29): 
 
 

         ;      (29) 

  
The Nastran-generated curved deflections  calculated from equation (29) can then be used as 
yardsticks in the shape prediction accuracy analysis of cantilever curved beams.  

Data in Table Forms 

 The Nastran-generated strain and deflection data for different cantilever curved beams are listed in 
Appendix E (for 20). The data (for 10) was added to Appendix E for studying the effect of 
domain density  on the prediction accuracies. The Nastran-generated curved deflection data of  
listed in Appendix E were calculated from equation (29), and the depth factors  listed were calculated 
from equation (21). The Nastran-generated outer surface strains  and the depth factor  [calculated 
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from eq. (21)] listed in Appendix E were then input to equations (15) and (16) for the calculations of 
theoretical curved deflections , which are also listed in Appendix E.  
 By comparing the theoretical curved deflections  with the corresponding Nastran-generated curved 

deflections  (yardsticks), one can then estimate the theoretical shape prediction accuracies based on 
equation (23).  

Strain Curves 

 Figure 11 shows the Nastran-generated surface strain curves of  for different cantilever 

curved beams  including the limit case of the straight beam . For the straight 

beam , the strain curve is a tilted (slanted) straight line, with maximum strain at the fixed end 
and tapering down linearly to zero at the free end. For the curved beams , the strain curves are 
nonlinear, and the degree of downward bend in the inboard region increases with increasing curved-beam 
angle . At (semicircular beam), the strain curve became a symmetrical mountain shape with 
a peak at half span and zeros at both fixed and free ends. In figure 11, the magnitudes of the inner surface 
strains  (negative) were also plotted (dashed curves) for comparisons with the associated strain curves 

of outward surface strains  (solid curves). Note from figure 11 that for the straight beam  the 

magnitudes of inner and outer surface strains are identical. For the curved beams , the 
inner strain curves lie slightly above the corresponding outer strain curves, and the difference between 
inner and outer strain curves increases with increasing  due to increasing curvature effect. The 
differentials between the inner and outer strain magnitudes indicate curvature-induced slight neutral-axis 
shifting from the centroid axis (fig. 6). 

Deflection Curves 

 The Nastran-generated surface strain data  listed in Appendix E (see also 
fig. 11) were inputs to equations (15) and (16) for the calculations of the theoretical deflections for the 
cantilever curved beams. The neutral-axis depth factors   needed for inputs to 
equations (15) and (16) were calculated from the depth-factor equation (21) using the Nastran-generated 
surface strain data listed in Appendix E.  
 Figure 12 shows the deflection curves calculated from the deflection equations (15) and (16) for the 
cantilever curved beams compared with the associated Nastran-generated deflection curves for the whole 
range of the curved-beam angles  considered. The deflection curves calculated from 
equations (15) and (16) are practically coincidental based on the strain curves shown in figure 11. The 
prediction differences between equations (15) and (16) can show up only when the strain curves are 
highly bent (ref. 7). For the straight beam (fig. 12), equations (15) and (16) provide practically 

perfect shape prediction. At  curved-beam case, equations (15) and (16) still give nice shape 
predictions with only about 2-percent error at the beam-tip. As the curved-beam angle  reached 

 and beyond, the beam-tip prediction errors gradually increased due to increasing curvature 
effect, and finally reached a maximum error of nearly 25 percent at . Details of prediction error 
analysis are presented in the subsequent section; Beam-Tip Prediction Error Reductions.  
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Curvature-Effect Correction Factors 

 Because the prediction errors increase with the curved-beam angle , correction factors are needed 
to bring down the over-prediction errors due to the curvature effect. In view of figure 10, the chord length 
to arc length ratio can be used to establish simple mathematical functions for the correction factors. The 
curvature-effect correction factors  to modify the original predicted deflection  
[eqs. (15) or (16)] at strain-sensing station , at an angular location , can be established as 
follows in equation (30) (fig. 10): 
 
 

 

     ;   

(30) 

        
Equation (30) is the square root of the chord length to arc length ratio, and for the straight beams, 1 
because the chord length and arc length are coincidental straight lines, and no correction is required. The 
correction factors  given by equation (30) were found to provide excellent deflection corrections.  

Beam-Tip Prediction Error Reductions 

 The correction factors  given by equation (30) were first applied to modify the original beam-tip 
deflections (i = n) calculated from equations (15) [or eqs. (16)] for studying the beam-tip prediction 

error reductions. Note that  calculated from equations (15), and (16) are extremely close (see figure 12 

and Appendix E). The prediction errors of the original deflections  [eqs. (15)] and the corrected beam-

tip deflections  are compared in table 3.  
 

Table 3. Beam-tip deflection prediction errors for different cantilever curved beams.  
 

, deg 
(curved-beam 

angle) 

, in. 
(Nastran 

deflections) 

, in. 
[Theory,         
eq. (15)] 

Percent error 
(No 

corrections) 

 
(Correction 

factor) 

 
(Corrected 
deflections) 

Percent error 
(With 

corrections) 

   0 (Straight) 2.50077 2.50125 0.0192  1.00000 2.50125 0.0192 
  45 2.30685 2.35569 2.1172  0.98717 2.32547 0.8072 
  90 1.80041 1.94475 8.0171  0.94885 1.84528 2.4922 
135 1.16759 1.36976 17.3152  0.88556 1.21301   3.8901* 
180 0.61306 0.76542   24.8524* 0.79789 0.61072 0.3817 

*Maximum error for each type of error 
 

 Figure 13 shows original and corrected prediction errors of the beam-tip deflections and the beam-tip 
correction factor  listed in table 4 plotted as functions of curve beam angle . Note that the original 
prediction error curve is a shallow s-shaped curve with peak prediction error of 24.8524 percent at 

. The corrected prediction error curve is a projectile-trajectory shaped with the peak error of 
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3.8901 percent occurring at . Note also from figure 13 that the value of  is unity  at

(straight beams) and decreases slowly down to 0.79789 at .  

Correction Factor Table 

 The complete set of the curvature-effect correction factors  calculated from 

equation (30) for a different strain-sensing station  and for the whole range of 
curved-beam angles  are listed in table 4. 
  

Table 4. Curvature-effect correction factors for different cantilever curved beams. 
 

   

i = 0° 45° 90° 135° 180° 
0 1.0000 1.0000 1.0000 1.0000 1.0000 
1 1.0000 1.0000 0.9999 0.9997 0.9995 
2 1.0000 0.9999 0.9995 0.9988 0.9979 
3 1.0000 0.9997 0.9988 0.9974 0.9954 
4 1.0000 0.9995 0.9979 0.9954 0.9918 
5 1.0000 0.9992 0.9968 0.9928 0.9872 
6 1.0000 0.9988 0.9954 0.9896 0.9815 
7 1.0000 0.9984 0.9937 0.9859 0.9749 
8 1.0000 0.9979 0.9918 0.9815 0.9672 
9 1.0000 0.9974 0.9896 0.9766 0.9585 
10 1.0000 0.9968 0.9872 0.9712 0.9489 
11 1.0000 0.9961 0.9845 0.9651 0.9382 
12 1.0000 0.9954 0.9815 0.9585 0.9265 
13 1.0000 0.9946 0.9783 0.9514 0.9138 
14 1.0000 0.9937 0.9749 0.9436 0.9002 
15 1.0000 0.9928 0.9712 0.9353 0.8856 
16 1.0000 0.9918 0.9672 0.9265 0.8700 
17 1.0000 0.9907 0.9630 0.9171 0.8534 
18 1.0000 0.9896 0.9585 0.9071 0.8359 
19 1.0000 0.9884 0.9538 0.8966 0.8174 
20 1.0000 0.9872 0.9489 0.8856 0.7979 

  
 The data of curvature-effect correction factors  listed in table 4 are plotted in 

figure 14 to show the functional behavior of  with the changing curved-beam angle . For each 
curved-beam angle, the correction factor is unity at the beam fixed end and gradually decreases in the 
span-wise direction and reach a minimum value at the beam tip. In figure 14, the values of the beam-tip 
correction factors (i = n) for different curved-beam angles are indicated. 

Corrected Deflection Curves 

 The deflection correction factors  listed in table 4 were then used to multiply the 
original deflection  calculated from equations (15) and (16). The resulting new set of 

φn =135° ηn (ηn = 1)
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corrected deflections  are plotted in figure 15. It is very encouraging to observe the graphical 
proximity of the corrected theoretical deflection curves and the associated Nastran-generated deflection 
curves for the whole range of curved-beam angles , and thus validating the empirically 

established correction factor  in simple mathematical functions. 
 Figure 16 shows the Nastran (linear analysis)-generated undeformed and deformed shapes of different 
two-end fixed curved beams (fig. 8b), each of which is subjected to an inward load of lb at the 
beam center.  

Data in Table Forms 

 The Nastran-generated strains and Nastran-generated deflections  for 
the two-end fixed curved beams (for 20) are listed in Appendix F. The data (for 10) was added to 
Appendix F for studying the effect of domain density  on the calculated deflections. For the two-end 
supported curved beams,  listed are the Nastran radial displacements and are not calculated from 

equation (29). The Nastran-generated strain data of  listed in Appendix F were then used to 
calculate the theoretical deflections  respectively from deflection equation (17) and corrected 
deflection to be discussed in the Deflection Corrections section). The resulting theoretical data of  
are also listed in Appendix F. Deflection equation (17) was used in conjunction with the cantilever-beam 
deflection equation (15). The cantilever-beam deflection equation (16) was not used because both 
equations (15) and (16) gave practically identical theoretical deflections for the present curved-beam 
geometries (see Appendix E).  
 In the theoretical deflection calculations, two data input cases were considered:  

• Case 1: using calculated depth factors [eq. (21)] and associated outer   
surface strains  (see fig. 6a). 

• Case 2: using given depth factors  and true bending strain  [eq. (22)] 
(see fig. 6b). 

 For certain curved-beam angles , Case 1 data inputs could provide more accurate theoretical 

deflections than Case 2 data inputs, however, for other curved-beam angles  the opposite is true. The 
depth factors  (given or calculated) are also listed in Appendix F. The detailed discussions of the 
theoretical deflections  are presented in the subsequent sections.  

Strain Curves  

 Figure 17 shows the strain curves for two-end fixed curved beams with different curved-beam angles 
 including the limit case of straight beam  based on Nastran-generated 

surface strains  listed in Appendix F. The strain curves for the outer surface strains  are shown 

with solid curves with solid circular symbols, and the strain curves for the inner surface strains  with 

dashed curves with open circular symbols. The strain curves of  are almost the mirror images of the 

corresponding strain curves of , indicating very little axial-strain contaminations. For the straight beam 

, the strain curves of  are linear and are V-shaped and inverted-V-shaped respectively. 
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For the curved beams , the strain curves of  become nonlinear and change very little 
with curve beam angle , and are respectively M-shaped and W-shaped (inverted-M-shaped). 

Deflection Curves 

 The Nastran-generated strain data  listed in Appendix F (see also fig. 17) 
were used to calculate theoretical deflections from equation (17) [in conjunction with the cantilever 
deflection equation (15)].  
 Figures 18 show the theoretical deflection curves, calculated from deflection equations (17) for two-
end fixed curved beams with different curved-beam angles , compared with associated 

Nastran-generated deflection curves. For the curved-beam angles of (figs. 18a, and 18b), 
the theoretical deflection curves were calculated by using Case 1 input. For the curved-beam angles of 

(figs. 18c–18e), the theoretical deflection curves were calculated by using Case 2 
input.  
 For the straight beam (fig. 18a), equation (17) gives practically perfect shape prediction 

with a beam-center prediction error of only 0.4 percent. At the  curved-beam case, equation (17) 
still gives nice shape predictions with beam-center prediction errors of only 1 percent. As the curved-
beam angle  continues to increase, the curvature-effect caused the prediction errors to increase and 

finally reached a maximum beam-center prediction error of nearly 20 percent at . 

Deflection Corrections 

 As shown in figures 18a–e, the theoretical deflection curves start to lie slightly below the associated 
Nastran-generated deflection curves as the curved-beam angle  increases. Note that the theoretical and 
Nastran deflection curves contain negative and positive deflection regions. In the negative deflection 
regions (for example, figs. 18d and 18e), less-than-unity correction factors (that is, reducing deflection 
magnitudes) are needed to bring up the theoretical deflection curve toward the Nastran deflection curve. 
However, in the central positive deflection region, greater-than-unity correction factors (that is, increasing 
deflection magnitudes) are needed to bring the theoretical deflection curve toward the Nastran deflection 
curve. Thus, two sets of correction factors must be developed for those regions. A simpler approach is to 
develop a single set of shifting correction factors for shifting both positive and negative deflection regions 
of each theoretical deflection curve upward toward the associated Nastran deflection curve. The following 
section describes the formulations of the shifting factors needed to shift the theoretical curves upward 
toward the associated Nastran deflection curves.  

Beam-Center Correction Factors 

 The correction factor  at the beam-center of the two-end fixed curved beam is the basis for 
formulating the shifting factors. Because of loading symmetry (figs. 18a–18e), half of each two-end fixed 
curved beam can be considered as a cantilever curved beam. For the cantilever-curved beams, the 
Displacement Theory over-predicts the deflections (fig. 12), and therefore, less-than-unity beam-tip 
correction factors < 1 are needed. However, for the two-end fixed curved beams (figs. 18a–18e) 

greater-than-unity beam center correction factors > 1 are needed because of under predictions. 
Therefore, the correction factor  at the beam center of each two-end fixed curved beam can be 
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assumed as the reciprocal of the beam-tip correction factor  of the cantilever curved beam (that is, 
) and can be expressed in the following functional form [eq. (31)]: 

 
 

 (31) 

  

 
 The values of beam-center correction factors  calculated from equation (31), and the original and 

corrected beam-center deflection prediction errors for different two-end fixed curved beams are listed in 
table 5. 
 

Table 5. Beam-center deflection prediction errors for different two-end fixed curved beams. 
  

, deg 
(Curved-

beam angle) 

, in. 
(Nastran 

deflections) 

,
in. 

[Predicted, 
eq. (17)] 

Percent 
error 
(No 

corrections) 

 
(Correction 

factor) 

 
in. 

(Corrected 
deflection) 

Percent 
error 
(With 

corrections) 

   0 (straight) 39.22598 39.06338 0.4145 1.00000 39.06338 0.4145 
  45   3.88487   3.83972 1.1622 1.01300       3.88964 0.1228 
  90   2.93245   2.86044 2.4555 1.05391   3.01464     2.8028*^ 
135   2.85180   2.58618 9.3142 1.12923   2.92039 2.4051 
180   2.95484   2.34952 20.4857* 1.25331   2.94469 0.3437 

 *Maximum errors     ^No improvement 
 
 Figure 19 shows the original and corrected beam-center prediction errors and the beam-center 
correction factor  of table 5 plotted as functions of curve beam angle . Note that the original beam-
center prediction error curve is concave upward with a peak prediction error of 20.4857 percent at 

. Note that the corrected prediction error decreases from 0.4145 percent error at  to a 

minimum error of 0.1228 percent at , and then reaches the peak error of 2.8028 percent at 

 (practically no improvement), and finally decreased to 0.3437 percent at  (great error 

reduction). Note also from figure 19 that the -curve is very similar to the original error curve, giving 
unity  at (straight beams), and bend upwardly giving a peak value of 1.25331 at 

.  

Shifting Factors 

 In view of the beam center correction factor , one can now define  as the beam-center 
shifting factor to shift each original deflection curve at the beam center toward the corresponding Nastran 
deflection curve at the beam center (figs. 18a–18e). For shifting other points, the magnitude of shift factor 

 must be adjusted. Note that the amount of upward shifting of each original deflection curve 
toward the associated Nastran deflection curve is zero at the left support point (i = 0), and increases 
nonlinearly with i and reaching a maximum shifting factor of 

 
at the beam center  

because of symmetrical loading. Then, the upward shifting factor at strain-sensing station 
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 on the left half of the two-end fixed curved beam can be expressed with a simple 
function given by equation (32): 
 
 

(Shifting factor at ) =
    

 ;     (32) 

         
Using equation (32), the corrected deflection  at strain-sensing station  on the left half of the two-end 
fixed curved beam can be expressed with equation (33) as:  
 
 

 

 

(33) 

 
Equation (33) is for the left half of the two-end fixed curved beam under symmetrical loading. 

Therefore, the corrected deflection curve for the right-hand side will be the mirror image of the left-hand 
side deflection curve calculated from equation (33). It must be mentioned that if the loading point is not at 
the exact center of the two-end fixed curved beam, two different shifting factors [similar to eq. (33)] must 
be formulated for left and right sides of the loading point. The data from equation (33) is listed in the last 
column of Appendix F. 
 The corrected-prediction errors at  can then be calculated from equation (34): 
 
 

Corrected-prediction error 
    

 ;      
(34) 

Corrected Deflection Curves 

 Figures 20a–20e show the corrected deflection curves calculated from equation (33) compared with 
the corresponding Nastran-generated deflection curves for the two-end fixed curved beams. Note that 
excellent agreement can be achieved between the theory and Nastran by using the shifting factor of a 
simple mathematical functional form [eq. (32)]. 

Shape Predictions of Two-End Simply Supported Curved Beams 
 Figure 21 shows the Nastran (linear analysis)-generated undeformed and deformed shapes of different 
two-end simply supported curved beams (fig. 8b), each of which is subjected to an inward load of 

lb at the beam center.  

Data in Table Forms 

 The Nastran-generated strains and Nastran-generated deflections  for 
the two-end simply supported curved beams are listed in Appendix G. For the two-end simply supported 
curved beams, listed in Appendix G are the Nastran-generated radial displacements and are not 
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calculated from equation (29). The Nastran-generated strain data of  listed in Appendix G were 
then used to calculate the theoretical deflections  respectively from deflection equation (17) and 
the corrected deflection equation (33). The resulting theoretical data of  are also listed in 
Appendix G. Both deflection equations (17) and (33) were used in conjunction with the cantilever-beam 
deflection equation (15). The cantilever-beam deflection equation (16) was not used because both 
equations (15) and (16) gave very close theoretical deflections for the present curved-beam geometries 
(see Appendix E).  
 Similar to the two-end fixed cases, in the calculations of the theoretical deflections for the two-end 
simply supported cases, two input cases were considered:  

• Case 1 input: using calculated depth factors [eq. (21)] and outer 
surface strains  (Appendix G) (see fig. 7a). 

• Case 2 input: using given depth factor  and true bending strain  
[eq. (22)] (see fig. 7b). 

 Similar to the two-end fixed cases, for certain curved-beam angles , Case 1 data inputs could give 

more accurate theoretical deflections than Case 2 data inputs, however, for other curved-beam angles  
the reverse is true. The depth factors  (given or calculated) are also listed in Appendix G. The detailed 
discussions of the theoretical deflections  are presented in the subsequent sections. 

Strain Curves  

 Figure 22 shows the plots of Nastran-generated surface strains  (data listed in Appendix G) 

for two-end simply supported curved beams with different curved-beam angles  
including the limit case of the straight beam . The strain curves for the outer surface strains 
are shown with solid curves with solid circular symbols, and the strain curves for the inner surface strains 

 are shown with dashed curves with open circular symbols. The strain curves of  are practically the 

mirror images of the corresponding strain curves of . For the straight beam , the strain curves 

of  are linear, V-shaped, and inverted V-shaped respectively. For the curved beams , 
the strain curves of become M- and W-shaped respectively, and the shapes of the strain curves 

change very little with the curve-beam angle .  

Deflection Curves 

 The Nastran-generated surface strain data  listed in Appendix G (see also 
fig. 22) were inputs to deflection equation (17) [in conjunction with the cantilever deflection 
equation (15)] for the calculation of theoretical deflections.  
 Figures 23a–23e show the theoretical deflection curves calculated from deflection equations (17) for 
two-end simply supported curved beams with different curved-beam angles  compared 

with the associated Nastran-generated deflection curves. For the curved-beam angles of 
(figs. 23a–23c), the theoretical deflection curves were calculated by using Case 1 input. For the curved-
beam angles (fig. 23d and 23e), the theoretical deflection curves were calculated by using 
Case 2 input. 
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 For the straight beam  (fig. 23a), equations (17) give practically perfect shape prediction 
with a beam-center prediction error of the minuscule amount of 0.1 percent. As the curved-beam angle  
continues to increase, the curvature-effect caused the prediction errors to increase and finally reached a 
maximum beam-center prediction error of nearly 24 percent at (see following sections). 

Deflection Corrections 

 As shown in figures 23a–23e, as the curved-beam angle increases, the theoretical deflection curves 
start to lie slightly below the associated Nastran-generated deflection curves. Therefore, the process of 
deflection corrections for the two-end simply supported curved beams is similar to that developed for the 
two-end fixed curved beams presented earlier. 

Beam-Center Correction Factors 

 The beam-center correction factor  [eq. (31)] used for the two-end fixed cases can also be used 

for the two-end simply-supported cases. The values of beam-center correction factor  from table 5 
and the original and corrected beam-center deflection prediction errors for different two-end simply 
supported curved beams are listed in table 6. 
 

Table 6. Beam-center prediction errors of different two-end simply supported curved beams. 
 

, deg 
(Curved-beam 

angle) 

, in. 
(Nastran 

deflections) 

, in. 
[Predicted, 
eq. (17)] 

Percent 
error 
(No 

corrections) 

 
(Correction 

factor) 

 
in. 

(Corrected 
deflections) 

Percent 
error 
(With 

corrections) 

0 (Straight) 156.41640 156.25385   0.1039 1.00000 156.25385 0.1039 
 45     4.71772     4.63543  1.7444 1.01300     4.69569 0.4670 
 90     4.12791     3.85040  6.7228 1.05391     4.05798 1.6941 
135     4.26094     3.86657  9.2554 1.12923     4.36625 2.4715 
180     4.64366     3.51465 24.3129* 1.25331     4.40495   5.1406* 

*Maximum errors 
 
 Figure 24 shows the original and corrected beam-center prediction errors (table 6) and the beam-
center correction factor  (table 6) plotted as functions of the curve beam angle . Note that the 
original beam-center prediction error is 0.1039 percent at (straight beam) and increases wavy-

upward to a maximum prediction error of 24.3129 percent at . Note also that the corrected 

prediction error curve is also slightly wavy-upward with peak error of 5.1406 percent at 
(great error reduction). Keep in mind that the -curve (dashed curve) of figure 24 for the two-end 
simply supported cases is identical to the -curve (dashed curve) of figure 19 for the two-end fixed 
cases.  

Shifting Factors 

 There is no need to develop different shifting factors for the two-end simply supported curved beams. 
The shifting factors [eq. (22)] and the corrected deflection equation (33) developed for the two-end fixed 
supported curved beams can also be used for the upward shifting of the original deflection curves 
(figs. 23a–23e) of the two-end simply supported cases. 
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Corrected Deflection Curves 

 The corrected deflection equation (33) can also be used for upward shifting of the original deflection 
curves (figs. 23a–23e) of the two-end simply supported cases. The corrected deflection curves calculated 
from equation (33) for the two-end simply supported curved beams are plotted in figures 25a–25e for 
comparisons with the associated Nastran-generated deflection curves (yardstick). Note that by using the 
shifting factor of simple mathematical functional form [eq. (32)], excellent correlations between the 
theory and Nastran could be achieved except for case, for which the correlation is slightly off 
(fig. 25e). 

Effect of Domain Density on Prediction Accuracies 
 This section examines the effect of domain density  on the shape prediction accuracies. Two 
domain densities:  and were 
considered in the accuracy analysis. For studying the effect of domain density  on the prediction 
accuracies, two cases of cantilever-curved beams were considered because of marked 
different shapes of the two associated strain curves (fig. 11). Also, because the strain curves of different 
two-end supported curved beams  have very similar shapes (figs. 17 and 22), only one 

case of the two-end fixed curved beam  was considered.  

Cantilever Curved Beams 

 The Nastran-generated strain and deflection data, and the theoretical deflection data for the two 
cantilever curved beams based on two domain densities  are listed in 
Appendix E. Tables 7a and 7b compare the theoretical deflections  calculated from equation (15) for the 

two domain densities  (see Appendix E), and the corrected deflections  using 

correction factors  for  listed in table 4. Equation (16) was not used because the 
values of deflections  calculated from equations (15) and (16) are extremely close (see Appendix E). 
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Table 7a. Comparisons of theoretical deflections  calculated from equation (15) and corrected 

deflections  for cantilever curved beam based on two domain densities 

 and a beam-tip load of lb. 
 

, in.   
      [Predicted deflections, eq. (15)] 

in. 
                                 (Corrected deflections) 

   i    i i    
0 0.00000 0.00000 0 0 0.00000 0.00000 0 
1 0.00836   1 0.00836   
2 0.03298 0.03297 1 2 0.03298 0.03297 1 
3 0.07315   3 0.07314   
4 0.12815 0.12810 2 4 0.12809 0.12804 2 
5 0.19722   5 0.19706   
6 0.27958 0.27949 3 6 0.27925 0.27916 3 
7 0.37445   7 0.37385   
8 0.48100 0.48087 4 8 0.47999 0.47986 4 
9 0.59841   9 0.59065   
10 0.72583 0.72564 5    10 0.72351 0.72332 5 
11 0.86240   11 0.85904   
12 1.00726 1.00695 6 12 1.00263 1.00232 6 
13 1.15952   13 1.15326   
14 1.31827 1.31775 7 14 1.30997 1.30945 7 
15 1.48260   15 1.47193   
16 1.65160 1.65082 8 16 1.63806 1.63728 8 
17 1.82434   17 1.80737   
18 1.99990 1.99885 9 18 1.97910 1.97806 9 
19 2.17733   19 2.15298   
20 2.35569 2.35442 10 20 2.32547 2.32428 10 

                      Nastran = 2.30685 in.  Nastran = 2.30514 in. 
  

ri
(ηi ⋅ri ) φn = 45° (n = 20,

n = 10) P = 100

ri (ηi ⋅ri )

n = 20 n = 10 n = 20 n = 10
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Table 7b. Comparisons of theoretical deflections  calculated from equation (15) and corrected 

deflections  for cantilever curved beam based on two domain densities 
 and a beam-tip load of lb. 

 
, in.       

      [Predicted deflections, eq. (15)] 
in. 

(Corrected deflections) 
i   i i   i 
0 0.00000 0.00000 0 0 0.00000 0.00000 0 
1 0.00016   1 0.00016   
2 0.00126 0.00125 1 2 0.00125 0.00124 1 
3 0.00420   3 0.00418   
4 0.00987 0.00983 2 4 0.00979 0.00975 2 
5 0.01906   5 0.01881   
6 0.03249 0.03236 3 6 0.03189 0.03176 3 
7 0.05078   7 0.04950   
8 0.07440 0.07409 4 8 0.07196 0.07166 4 
9 0.10375   9 0.09944   
10 0.13902 0.13842 5    10 0.13191 0.13134 5 
11 0.18029   11 0.16914   
12 0.22749 0.22649 6 12 0.21077 0.20985 6 
13 0.28040   13 0.25624   
14 0.33866 0.33717 7 14 0.30486 0.30351 7 
15 0.40177   15 0.35579   
16 0.46912 0.46705 8 16 0.40811 0.40631 8 
17 0.54000   17 0.46083   
18 0.61359 0.61087 9 18 0.51287 0.51060 9 
19 0.68904   19 0.56319   
20 0.76542 0.76203 10 20 0.61072 0.60801 10 

                                Nastran: 0.61306 in.    Nastran: 0.60598 in. 
 
 Note from tables 7a and 7b that the two sets of deflection data based on and  are quite 
close, indicating that using less domain density of  (less strain sensors), one can still obtain 
comparable theoretical deflections. The footnotes of tables 7a and 7b show Nastran-generated beam tip 
deflections  (see Appendix E) based on the two domain densities . Note that for 

 (table 7a), the two Nastran-generated beam-tip deflections for  are extremely 

close [ (2.30685, 2.30514) in.] with negligible difference of only 0.0741 percent. For   
(table 7b), the two Nastran-generated beam-tip deflections are also very close [ (0.60136, 
0.60598) in.] with a small difference of only 0.8226 percent.  

Deflection Curves Comparisons 

 Figures 26 and 27 show the theoretical deflection curves of  (figs. 26a and 27a) and the corrected 

deflection curves of  (figs. 26b and 27b) for the cantilever-curved beams  based 
on the data listed in tables 7a and b. The associated Nastran-generated deflection curve shown in 
figures 26 and 27 are for the domain density  (data in Appendix E). Note from figures 26a 
and 27a that the theoretical deflection curves based on the two domain densities  are 

ri
(ηi ⋅ri ) φn =180

 (n = 20,
n = 10) P = 100

ri (ηi ⋅ri ),

n = 20 n = 10 n = 20 n = 10

n = 20 n = 10
n = 10

rn
(N ) (n = 20, n = 10)

φn = 45° (n = 20, n = 10)
rn
(N ) = φn = 180°

rn
(N ) =

ri
(ηi ⋅ri ) (φn = 45°,180°)

n = 20
(n = 20, n = 10)
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graphically indistinguishable. For the case (fig. 26a), the two theoretical deflection curves are 

slightly off from the Nastran-generated deflection curve. For the case (fig. 27a), the two 
theoretical deflection curves diverged from the Nastran-generated deflection curve in the outboard region. 
 With the corrections (figs. 26b and 27b), the two theoretical curves and the associated Nastran 
deflection curves practically collapsed into a single deflection curve. The good agreement indicates that 
using the domain density  (instead of ) can be adequate for sufficiently accurate shape 
predictions.  

Beam-Tip Prediction Error Comparisons   
 The beam-tip deflection data listed in tables 7a and b were used to compare the beam-tip prediction 
errors based on the two domain densities . Table 8 lists the beam-tip deflection 

prediction errors for the cantilever curved beams  based on the two domain densities 

. 
 
Table 8. Beam-tip deflection prediction errors for cantilever curved beams  based on 

two domain densities  and a beam-tip load of lb. 
 

n 
(Domain 
density) 

, in.    
[Nastran  
eq. (28)]          

, in. 
[Predicted  
eq. (15)] 

Percent error 
(No 

corrections) 

 
(Correction 

factor) 

 in. 
(Corrected 
deflection)             

Percent error 
(With 

corrections) 

 
20 2.30685 2.35569 2.1172 0.9872 2.32554 0.8102 
10 2.30514 2.35442 2.1378 0.9872 2.32428 0.8303 

 
20 0.61036 0.76542 25.4047 0.7979 0.61072 0.0590 
10 0.60598 0.76203 25.7517 0.7979 0.60801 0.3350 

 
Note from table 8 that the beam-tip deflections  calculated from equation (15) and the corrected 

deflections  based on the two domain densities  are extremely close. Without 

correction factors, the beam-tip prediction errors are (2.1172, 2.1378) percent , and (25.4047, 

25.7517) percent  respectively for . With the corrections, the beam tip 

prediction errors can be greatly reduced to a negligible range of (0.8102, 0.8303) percent , 

and {0.0590, 0.3350) percent  respectively for . This finding indicates that 
using less domain density,  (less number of strain sensors), can be considered adequate for the 
shape predictions of current curved-beam geometry. The insensibility of the domain density n on the 
shape prediction accuracies was also investigated earlier for the straight beam cases  (ref. 1). 

Two-End Fixed Curved Beam  

 A typical two-end fixed curved beam  was chosen to study the effect of the domain 
density . The Nastran-generated strain and deflection data, and the theoretical deflections of the 

 two-end fixed curved beam based on two domain densities   are listed in 

φn = 45°
φn = 180°

n = 10 n = 20

(n = 20, n = 10)
(φn = 45°, 180°)

(n = 20, n = 10)
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(n = 20, n = 10) P = 100

rn
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Appendix F. From Appendix F, the theoretical deflections  calculated respectively from equations 

(17) and (33) for the two-end fixed curved beam  for the two domain densities 

 are compared in table 9. 
  
Table 9. Comparison of theoretical deflections of the two-end fixed curved beam  calculated 

from equations (17) and (33) based on two domain densities  and a central load of 
lb.   

                                                                                              

in. 
      [Predicted deflections, eq. (17)]                        

in. 
[Corrected deflections, eq. (33)] 

i   i i   i 
0  0.00000  0.00000 0 0  0.00000  0.00000 0 
1 -0.18173   1 -0.18123   
2 -0.51496 -0.51540 1 2 -0.51296 -0.51341 1 
3 -0.74583   3 -0.74134   
4 -0.70590 -0.70716 2 4 -0.69792 -0.69918 2 
5 -0.31252   5 -0.30004   
6  0.43107  0.42889 3 6  0.44905  0.44685 3 
7  1.43581   7  1.46027   
8  2.52679  2.52338 4 8  2.55874  2.55530 4 
9  3.44331   9  3.48375   

 10*  3.83972  3.83572  5*     10*  3.88964  3.88559   5* 
11  3.44325   11  3.48375   
12  2.52663  2.52338 6 12  2.55874  2.55530 6 
13  1.43549   13  1.46027   
14  0.43056  0.42889 7 14  0.44905  0.44685 7 
15 -0.31310   15 -0.30004   
16 -0.70644 -0.70716 8 16 -0.69792 -0.69918 8 
17 -0.74627   17 -0.74134   
18 -0.51524 -0.51540 9 18 -0.51296 -0.51341 9 
19 -0.18180   19 -0.18123   
20  0.00000  0.00000 10 20  0.00000  0.00000 10 

  *Beam center        Beam center: Nastran = 3.88487x10-3 in. Nastran = 3.87851x10-3 in. 
 
Note from table 9 that the two sets of deflection data based on  are quite close, 
indicating that by using less domain density of  (less strain sensors), one can still obtain 
comparable theoretical deflections. In the footnote of table 9, the Nastran-generated beam-center 
deflection (3.88473´10-3, 3.87851´10-3) in. (Appendix F) based on the two domain densities 

 are shown for comparisons. Note that the two Nastran-generated beam-center 
deflections are extremely close with an infinitesimal difference of only 0.1637 percent. 

Deflection Curves Comparisons 
 Figures 28a and 28b show the theoretical deflection curves of the two-end fixed curved beam 

 calculated respectively from equations (17) and (33) compared with the associated Nastran-
generated deflection curves (Appendix F) based on the domain density  (table 9). The good 

(ri
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P = 100 n = 20

ri
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agreement indicates that by using the domain density , the shape predictions can still be 
sufficiently accurate. 
 Figures 29a and 29b compare the theoretical deflection curves of the two-end fixed curved beam 

 calculated respectively from equations (17) and (33) based on the two domain densities 

 (table 9). The Nastran-generated deflection curves shown in figures 29a and 29b are for 
domain density  (Appendix F). Note from figures 29a and 29b that the theoretical deflection 
curves based on  are practically coincidental with the theoretical deflection curves based on 

 and the Nastran-generated deflection curve. However, near the two support regions, the 
difference between the two theoretical deflection curves of  is slightly visible.  

Beam-Center Prediction Error Comparisons   
 The beam center deflection data listed in table 9 were used to compare the beam-center prediction 
errors based on the two domain densities . Table 10 shows the beam-center deflection 

prediction errors for the two-end fixed curved beam  based on the two domain densities

. 
 
Table 10. Beam-center deflection prediction errors for the two-end fixed curved beam  based 

on two domain densities  and a central load of lb. 
 

n 
(Domain 
density) 

, in. 
(Nastran 

deflections) 

, in. 
[Predicted,  
eq. (17)] 

Percent error 
(No 

corrections) 

 
(Correction 

factor) 

 
in. 

(Corrected 
deflection) 

Percent error 
(With 

corrections) 

20 3.88487 3.83972 1.1622 1.01300 3.88964 0.1228 
10 3.87851 3.83572 1.1033 1.01300 3.88559 0.1825 

  
 Note from table 10 that the beam-center deflections  calculated from equations (17) and the 

corrected deflections  based on the two domain densities  are extremely 
close. The beam-center prediction errors are in the negligible ranges of (1.1622–0.1228) percent and 
(1.1033–0.1825) percent respectively for  and  cases. The current finding indicates that 
using less domain density  (less number of strain sensors) is adequate for the shape predictions of 
current curved-beam geometry. The insensibility of the shape prediction accuracies on the domain density 

 was also found earlier for the straight beam cases  (ref. 1). 
 It is important to mention that if the domain density  is further decreased from , one can 
expect that the theoretical deflections will be different, and thereby, the prediction errors can increase in 
view of figure 30, the prediction error curve established by Lung and Ko (fig. 13 of ref. 11) for GIII swept 
wings (fig. 1b).  

Alternative Formulation 
 The formulations of the Curvilinear Displacement Transfer Functions presented above are based on 
the relative slope angle  (called -formulation), which is in reference to the curved s-axis 
of the undeformed curved beam. Alternatively, one can also formulate the Curvilinear Displacement 
Transfer Functions using the absolute slope angle  (called -formulation), which is in reference to the 
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x-axis (fig. 31). The -formulation is presented in Appendix H for reference. It is important to mention 
that for a given set of surface strains, both formulations give identical strain-induced deflections (measured 
from an undeformed configuration) of the cantilever curved beams. 

Concluding Remarks 
 The Curvilinear Displacement Transfer Functions for embedded curved beams were formulated by 
piecewise integrations of the curvature-strain differential equation. The formulation is based on a true 
displacement (curvilinear distance traced by a material point from its initial undeformed position to its final 
deformed position).  
 The shape prediction analysis was performed on curved beams (cantilever and two-end supported) with 
different curvatures up to a semicircle. Nastran analysis was performed on the curved beams to analytically 
generate surface strains for inputs to the Curvilinear Displacement Transfer Functions for deflection 
calculations. The Nastran-generated deflections were then used as reference yardsticks for studying the 
shape prediction accuracies of the Curvilinear Displacement Transfer Functions. Some key highlights of 
the results are included in the following list. 

1. Using the Displacement Transfer Functions for transforming surface strains into deflections for 
structure deformed shape predictions, there is no need to know material properties, nor the complex 
geometries of the internal structures, and the traditional complex finite-element modeling for 
deflection calculations is eliminated. 

2. The Curvilinear Displacement Transfer Functions can be formulated in reference to the curved 
s-axis of the undeformed curved beam ( -formulation), or in reference to horizontal x-axis 
( -formulation). 

3. Shape prediction accuracy is insensitive to the change of domain density n (strain-sensor separation 
distance). For the current curved-beam geometries, the differences in shape prediction accuracy 
based on domain densities  are in the negligible range of (0.02010–0.2760) 
percent.  

4. For the cantilever curved beams, both -formulation and -formulation give identical theoretical 
strain-induced deflections for a given set of surface strains. 

5. The Curvilinear Displacement Transfer Functions are extremely accurate for the shape predictions 
of straight cantilever beams (limit case, ) with infinitesimal error of merely 0.0192 percent. 

However, the prediction error increased with increasing curved-beam angle , and reached a 

maximum error of 24.8524 percent at . 
6. With the introduction of curvature-effect correction factor expressed in simple mathematical 

functional forms, the prediction errors for the cantilever-curved beams  can be 
reduced greatly from (2.1172–24.8524) percent error range down to (0.8072–3.8901) percent error 
range. 

7. The Curvilinear Displacement Transfer Functions are also quite accurate for the shape predictions 
of the limit case of the two-end supported straight beams with a negligible error of 
0.4145 percent and 0.1039 percent, respectively for the two-end fixed and two-end simply supported 
cases.  

8. For the two-end supported curved beams , the prediction error increased with 

increasing the curved-beam angle , and reached maximum errors of 20.4857 percent and 

24.3129 percent at , respectively for the two-end fixed and two-end simply supported 
cases.  

θ
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θ
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9. With the introduction of the correction factor expressed in simple mathematical functional form, 
the prediction errors for the two-end supported curved beams  could be reduced 
greatly from (1.1622–20.4857) percent error range down to (0.1228–2.8028) percent for the two-
end fixed cases; and from (1.7444–24.3129) percent error range down to (0.4670–5.1406) percent 
error range for the two-end simply supported cases. 

10. Using domain densities of  or , the Curvilinear Displacement Transfer Functions 
can calculate quite accurate deformed shapes of the curved beams, and there is no need to use an 
excessively large number of strain-sensing stations. However, if the domain density  is further 
decreased from , the prediction errors can increase.  

  

(φn = 45°−180°)

n = 10 n = 20

n
n = 10
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Figures 
 

 
       ED07-0186-01 

Figure 1a. Ikhana unmanned aircraft (66-ft wingspan) (ref. 10).  
 

 
     ED12-0191-47 

Figure 1b. GIII swept-wing aircraft (77.83-ft wingspan) (ref. 11).  
 

Figure 1. Shape prediction accuracies of earlier Displacement Transfer Functions (refs. 1–9) were 
validated by using Ikhana and GIII aircraft wings subjected to combined bending and torsion (ref. 11). 
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Figure 2. Small segment of a deformed in-extensional embedded curved beam for geometrically relating 
deformed and undeformed radii of curvature  to the outer surface bending strain . 

 

 
 

Figure 3. A discretized embedded cantilever curved beam (depthwise cross section along strain-sensing 
lines) with strain-sensing stations evenly distributed along outer (lower) and inner (upper) strain-sensing 
lines. 

 

{R(s),R0} ε(s)
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Figure 4. Small segment of undeformed and deformed embedded curved beam for geometrically 
relating curved deflection increment to slope angle  through . 

 

 
 

Figure 5. Deflection curve of the two-end supported curved beam generated by graphically rotating the 
cantilever deflection curve by nullifying the free-end deflection. 

 

ds
dr α dr ≈ (θ −θ0 )ds =αds
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Figure 6. Plots of normalized bending stresses and normalized neutral-axis offset  as 

functions of normalized radius of curvature of curved beams. 

  

{kin,kout} δ R
R cc
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Figure 7a. Using outer and inner surface strains  to obtain depth factors  for a shallow curved 
beam. 

 

 
 

Figure 7b. Using outer and inner surface strains  to obtain true bending strains,  for a 

shallow curved beam using given depth factors . 
 

Figure 7. Using outer and inner surface strains to obtain depth factors or true bending strains for a shallow 
curved beam. 

{ε i ,ε i}

� 

ci

{ε i ,ε i} (ε i − ε i ) / 2
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 Figure 8a. Cantilever curved beam; uniform depth . 
 

 
 

Figure 8b. Two-end supported curved beam; uniform depth . 
 

Figure 8. Geometries of typical curved beams with different end-support conditions. 
 
 

(h0 = hn )

(h0 = hn )
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Figure 9. Nastran-generated undeformed and deformed shapes of cantilever curved beams with a different 
curved-beam angle  subjected to a beam-tip radial load lb, in., and 2 in. 

 
φn P =100 l = 100 h = w =



40 
 

 
 

Figure 10. Graphical generation of Nastran curved deflection of point  using geometry of deformed 
and undeformed embedded cantilever curved beam. 

 

 
 

Figure 11. Nastran-generated surface strain curves for different cantilever curved beams; lb and 
. 

ri
(N ) si

P = 100
n = 20
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Figure 12. Deflection curves calculated from equations (15) and (16) compared with Nastran-generated 
deflection curves for different cantilever curved beams; lb and . 

 

 
 

Figure 13. Comparison of original and corrected beam-tip prediction error curves for cantilever curved 
beams.  

 

P = 100 n = 20
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Figure 14. Variations of correction factors  along a span-wise direction for cantilever curved beams 

with different curved-beam angles . 
 

 
 

Figure 15. Corrected theoretical deflection curves compared with Nastran-generated deflection curves for 
different cantilever curved beams; lb and . 

 

ηi

φn (= 0°−180°)

P = 100 n = 20
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Figure 16. Nastran-generated undeformed and deformed shapes of two-end fixed curved beams with a 
different curved-beam angle  subjected to a central load lb, in., and 2 in. 

 
φn P = 100 l = 100 h = w =
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Figure 17. Nastran-generated surface strain curves for different two-end fixed curved beams; lb 
at the curved-beam center and . 

 

 
 

Figure 18a. . 
 

Figure 18. Theoretical deflection curves calculated from equation (17) compared with Nastran-generated 
deflection curves for different two-end fixed curved beams; lb and . 

P = 100
n = 20

φn = 0°

P = 100 n = 20
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Figure 18b. . 
 

 
 

Figure 18c. . 
 

Figure 18. Continued. 
 

φn = 45°

φn = 90°
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Figure 18d. . 
 

 
 

Figure 18e. . 
 

Figure 18. Concluded. 
 

φn = 135°

φn = 180°
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Figure 19. Comparison of original and corrected beam-center prediction error curves for two-end fixed 
curved beams. 
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Figure 20a. . 
 

 
 

Figure 20b. . 
 

Figure 20. Corrected theoretical deflection curves calculated from equation (33) compared with Nastran-
generated deflection curves for different two-end fixed curved beams; lb and . 
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Figure 20c. . 
 

 
 

Figure 20d. . 
 

Figure 20. Concluded. 
 

φn = 135°

φn = 180°
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Figure 21. Nastran-generated undeformed and deformed shapes of two-end simply supported curved 
beams with different curved-beam angles  subjected to a central load of lb, in., and 

 in. 
 

φn P = 100 l = 100
h = w = 2
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Figure 22. Nastran-generated surface strain curves for different two-end simply supported curved beams; 
lb at a curved-beam center and . 

 

 
 

Figure 23a. . 
 

Figure 23. Theoretical deflection curves calculated from equation (17) compared with Nastran-generated 
deflection curves for different two-end simply supported curved beams; lb and . 

 

P = 100 n = 20
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P = 100 n = 20
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Figure 23b. . 
 

 
 

Figure 23c. . 
 

Figure 23. Continued. 
 

φn = 45°

φn = 90°
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Figure 23d. . 
 

 
 

Figure 23e. . 
 

Figure 23. Concluded. 
 

φn = 135°

φn = 180°
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Figure 24. Comparison of original and corrected beam-center prediction error curves for two-end simply 
supported curved beams.  
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Figure 25a. . 
 

 
 

Figure 25b. . 
 

Figure 25. Corrected theoretical deflection curves calculated from equation (33) compared with Nastran-
generated deflection curves for different two-end simply supported curved beams; lb and 

. 
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Figure 25c. . 
 

 
 

Figure 25d. . 
 

Figure 25. Concluded. 
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57 
 

 
 

Figure 26a. Predicted deflections, eq. (15). 

 

 
 

Figure 26b. Corrected deflections, eq. (15) . 
 

Figure 26. Comparisons of theoretical deflection curves  and the Nastran deflection 

curve  for the cantilever curved beam  under a beam-tip radial load of lb.  
 

×ηi
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Figure 27a. Predicted deflections, eq. (15). 

 

 
 

Figure 27b. Corrected deflections, eq. (15) .  
 

Figure 27. Comparisons of theoretical deflection curves  and the Nastran deflection 

curve  for the cantilever curved beam  under a beam-tip radial load of lb.  
 

×ηi
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Figure 28a. Original, eq. (17). 
 

 
 

Figure 28b. Corrected, eq. (33). 
 

Figure 28. Theoretical deflection curves calculated from equations (17) and (33) compared with Nastran-
generated deflection curves based on a domain density  for the two-end fixed curved beam 

 under a central load of lb. 
 

n =10
(φn = 45°) P = 100
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Figure 29a. Original, eq. (17).  
 

 
 

Figure 29b. Corrected, eq. (33). 
 

Figure 29. Theoretical deflection curves calculated from equations (17) and (33) based on the domain 
densities  compared with the Nastran-generated deflection curve  for the two-

end fixed curved beam  under a central load of lb.  
 

(n = 20, n = 10) (n = 20)
(φn = 45°) P = 100



61 
 

 
 

Figure 30. Plot of the wing-tip deflection prediction error as a function of the domain density  (figure 13 
of ref. 11). 

 

 
 

Figure 31. Small segment  of undeformed and deformed embedded curved beam for geometrically 
relating the curved deflection increment  to slope angle  through  
  

n

ds
dy θ  d

y = θds.
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Appendix A 
Derivations of Slope Angle and Deflection Equations  

in Recursive Forms for Embedded Curved Beams 
 Appendix A presents mathematical details of piecewise integrations of the slope equation (12) and the 
deflection equation (14) for the embedded curved beams based on piecewise linear strain representations. 
Keep in mind that within a small domain  between the two adjacent strain-

sensing stations , the variation of the depth factor is extremely small. If  are 

respectively the depth factors at the strain-sensing stations , then  can be approximated 
with the averaged depth factor . Therefore, to simplify mathematics, the factor 

 can be moved outside the integral signs as shown in the following section. 

Slope-Angle Equation 

 The slope equation (12) for the embedded curved beam within the small domain  
between the two adjacent strain-sensing stations  is duplicated as equation (A1): 
 
 

     ;      (A1) 

                  

   
Based on the linear representation of surface strains  within the domain  given by 
equation (A2): 

 
 

     
;      (A2) 

  
equation (A1) can be integrated to yield equation (A3) (ref. 14):  
 
 

 

                

(A3) 

 
At the strain-sensing station , one can write , and equation (A3) yields the slope angle 

 at the strain-sensing station  as equation (A4): 
 
 

     
;      (A4) 
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After grouping terms, equation (A4) takes on the final recursive form of slope-angle equation for the 
embedded curved beam as equation (A5); 
 
 

     
;      (A5) 

 
Equation (A5) is identical to equation (15a) in the text. 

 Deflection Equations 

 The deflection equation (14) for the embedded curved beam within the domain  between 
the two adjacent strain-sensing stations  is duplicated below as equation (A-6): 
 
 

  

     ;      (A6) 

            

          Substituting equation (A2) into equation (A6), and carrying out the integrations, one obtains 
equation (A7) (ref. 14): 
 
 

 

 

                                                                                                                           
 

(A7) 

 
At the strain-sensing station , one can write , and equation (A7) yields the curvilinear 
deflection  at the strain-sensing station  as equation (A8): 
 
 

     ;      (A8) 

 
After grouping terms, equation (A8) takes on the final form of a deflection equation for the embedded 
curved beam as equation (A9): 
 
 

    ;      (A9) 

  
Equation (A9) is the recursive form of the deflection equation (15b) in the text. 
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Appendix B 
Derivations of the Deflection Equation in Summation 

Form for Embedded Curved Beams 
 Appendix B presents the mathematical steps for obtaining the final summation form of the deflection 
equation given by equation (15c). The slope-angle equation (A5) and the deflection equation (A9) in 
recursive forms for embedded curved beams are duplicated below respectively as equations (B1) and 
(B2): 
 
 

     
;      (B1) 

 
 

    ;      (B2) 

 

 
Equations (B1) and (B2) can now be combined into a single deflection equation in summation form 

as follows. Writing out equation (B2) for different indices i, and making use of the indicial relationships 
expressed in equations (B1) and (B2), one obtains equations (B3)–(B5): 
 
 For i = 1:  

 
(B3) 

 
 For i = 2:  
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     For i =3 
 

 

 

(B5)
 

 
 Based on the indicial progression patterns in equations (B3)−(B5), one can write the deflection, , in 
a generalized form with two summations (with different summation limits) as equation (B6): 
 
 

 

                    

(B6) 

 
 Equation (B6) is identical to equation (15c) in the text. A set of three equations {(B1), (B2), and 
(B6)} are called Curvilinear Displacement Transfer Functions for the embedded curved beams. 
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Appendix C 
Derivations of Improved Slope Angle and Deflection Equations  

in Recursive Forms for Embedded Curved Beams 
 Appendix C presents the details of integrations of the slope equation (12) and the deflection 
equation (14) for the embedded curved beams based on piecewise nonlinear strain representations to 
obtain slope-angle and deflection equations in recursive forms.  

Slope-Angle Equation 

 The slope equation (12) for the embedded curved beam within the small domain  between 

the two adjacent strain-sensing stations  is duplicated as equation (C1): 
 
 

     ;      (C1) 

 
 The nonlinear representation of strain  in the domain  between the two adjacent 

strain-sensing stations  described by equation (9a), is duplicated below as equation (C2): 
 
 

 

                   

(C2) 

 
In view of equation (C2), equation (C1) can be integrated to yield equation (C3) (ref. 14): 
 

 
 

    

                    

(C3) 

 
At the strain-sensing station , one can write , and equation (C3) yields the slope angle 

 at the strain-sensing station  as equation (C4): 
 
 

   ;      (C4) 

 
After grouping terms, equation (C4) takes on the final form shown as equation (C5): 
 

si−1 ≤ s ≤ si
{si−1, si}

 

α (s) = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

1
c

ε(s)dssi−1

s
∫

Slope angle increment due to ε (s)
! "### $###

+ α i−1
Slope angle 
   at si−1

% (si−1 ≤ s ≤ si )

ε(s) si−1 ≤ s ≤ si
{si−1, si}

ε(s) = εi−1 −
3εi−1 − 4εi + εi+1

2Δl
(s − si−1)+

εi−1 − 2εi + εi+1
2(Δl)2

(s − si−1)
2

(si−1 ≤ s ≤ si )

α (s) = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
1
c

ε i−1 −
3ε i−1 − 4ε i + ε i+1

2Δl
(s − si−1)+

ε i−1 − 2ε i + ε i+1
2(Δl)2

(s − si−1)
2⎡

⎣⎢
⎤
⎦⎥
dssi−1

s
∫ +α i−1

= 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
1
c

ε i−1(s − si−1)−
3ε i−1 − 4ε i + ε i+1

4Δl
(s − si−1)

2 + ε i−1 − 2ε i + ε i+1
6(Δl)2

(s − si−1)
3⎡

⎣⎢
⎤
⎦⎥
+α i−1

(si−1 ≤ s ≤ si )

si (si − si−1) ≡ Δl
α i[≡α (si )] si

α i = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
Δl
c

ε i−1 −
3ε i−1 − 4ε i + ε i+1

4
+ ε i−1 − 2ε i + ε i+1

6
⎡
⎣⎢

⎤
⎦⎥
+α i−1

(i = 1,2,3,...,n)



67 
 

 

     
;      (C5) 

 
Equation (C5) is identical to equation (16a) in the text. 

Deflection Equations 

 The curvilinear deflection  in a small domain  between the two adjacent strain-

sensing stations  for the embedded curved beams, can be obtained by carrying out the 
integration of the deflection equation (14), which is duplicated below as equation (C6)]: 
 
 

     ;      (C6) 

 
 Substituting equation (C3) into equation (C6), and carrying out integrations (ref. 14), one obtains the 
curvilinear deflection  at any point within the domain  as equation (C7): 
 
 

 

        

                    

(C7) 

 
At the strain-sensing station , one can write , and equation (C7) gives the deflection, 

, at the strain-sensing station  as equation (C8): 
 
 

 

                   

(C8) 

 
After grouping terms, equation (C8) takes on the final form as equation (C9): 
 
 

   ;      (C9) 

 
Equation (C9) is identical to equation (16b) in the text. 
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Appendix D 
Derivations of the Improved Deflection Equation in  

 Summation Form for Embedded Curved Beams  
 Appendix D derives the final deflection equation in dual summation form for the embedded curved 
beams using nonlinear strain representations. Equations (C5) and (C9) are duplicated below respectively 
as equations (D1) and (D2). 
 
 

  ;  (D1) 

 
 

 ;      (D2) 

 
 Equations (D1) and (D2) can be combined into a single deflection equation with summation form as 
follows. Writing out equation (D2) for different indices i, and making use of the indicial relationships 
expressed in equations (D1) and (D2), one obtains equations (D3), (D5), (D7) respectively for indices 
i = 1, 2, 3: 
 
 For : 

       (D3) 

 
 For : 
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After grouping terms, equation (D4) becomes equation (D5): 
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 For : 

    
 

        

      

 

                  

(D6) 

 
After grouping terms, equation (D6) becomes equation (D7): 
 
 

 (D7) 

 
 Observing the indicial behavior, equation (D7) can be generalized for index i, the curved deflection, 

, can be expressed in a generalized form with two summations (with different summation limits) as 
equation (D8): 
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Equation (D8) can be rewritten in the following form as equation (D9): 
 
 

 

                                                                                                                         

(D9) 

 
Equation (D9) is identical to the deflection equation (16c) in the text. A set of three equations {(D1), 
(D2), and (D9)} are called the Improved Curvilinear Displacement Transfer Functions for the embedded 
curved beams. 
 

  

 

ri = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

24c
(7ε j−1 + 6ε j − ε j+1)

j=1

i

∑
Contributions from deflection terms

! "###### $######
+ 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

12c
(i − j)(5ε j−1 + 8ε j − ε j+1)

j=1

i−1

∑
Contributions from slope-angle terms

! "####### $#######

     + r0 + (i)(Δl)α 0

= 0 for cantilever beams
! "## $##

(i = 1,2,3,...,n)
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Appendix E 
Nastran and Theoretical Data for Cantilever Curved Beams 

Table E1. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
cantilever straight beam under a tip load of 100 lb and curved-beam angle , 20. 

 
i ,  

in/in 
(inner) 

 ,  
in/in 

(outer)
 

, in. 
(Nastran) 

, in. 
(Nastran)

 

, 

 

, in. 
(Nastran) 
[eq. (29)] 

, in. 
(Given) 

, in. 
(Disp. 

Theory) 
[eq. (15)] 

, in. 
(Disp. 

Theory) 
[eq. (16)] 

0 -7.50019 7.50019 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 
1 -7.12518 7.12518 0.00000 0.00925 0.00925 0.00925 1.00000 0.00922 0.00922 
2 -6.75017 6.75017 0.00000 0.03632 0.03632 0.03632 1.00000 0.03626 0.03627 
3 -6.37516 6.37516 0.00000 0.08026 0.08026 0.08026 1.00000 0.08018 0.08019 
4 -6.00015 6.00015 0.00000 0.14013 0.14013 0.14013 1.00000 0.14005 0.14005 
5 -5.62514 5.62514 0.00000 0.21501 0.21501 0.21501 1.00000 0.21492 0.21493 
6 -5.25013 5.25013 0.00000 0.30395 0.30395 0.30395 1.00000 0.30386 0.30387 
7 -4.87512 4.87512 0.00000 0.40602 0.40602 0.40612 1.00000 0.40593 0.40594 
8 -4.50011 4.50011 0.00000 0.52027 0.52027 0.52027 1.00000 0.52020 0.52021 
9 -4.12510 4.12510 0.00000 0.64578 0.64578 0.64578 1.00000 0.64572 0.64573 

10 -3.75009 3.75009 0.00000 0.78159 0.78159 0.78160 1.00000 0.78156 0.78157 
11 -3.37508 3.37508 0.00000 0.92679 0.92679 0.92680 1.00000 0.92678 0.92680 
12 -3.00008 3.00008 0.00000 1.08042 1.08042 1.08042 1.00000 1.08045 1.08046 
13 -2.62507 2.62507 0.00000 1.24155 1.24155 1.24156 1.00000 1.24162 1.24163 
14 -2.25006 2.25006 0.00000 1.40924 1.40924 1.41026 1.00000 1.40936 1.40938 
15 -1.87505 1.87505 0.00000 1.58256 1.58256 1.58258 1.00000 1.58273 1.58275 
16 -1.50004 1.50004 0.00000 1.76056 1.76056 1.76057 1.00000 1.76080 1.76082 
17 -1.12503 1.12503 0.00000 1.94232 1.94232 1.94239 1.00000 1.94262 1.94264 
18 -0.75002 0.75002 0.00000 2.12689 2.12689 2.12711 1.00000 2.12726 2.12728 
19 -0.37501 0.37501 0.00000 2.31333 2.31333 2.31337 1.00000 2.31378 2.31380 
20   0.00000 0.00000 0.00000 2.50071 2.50071 2.50077 1.00000 2.50125 2.50127 

 
  

P = φn = 0° n =

ε i ×10−4

� 

εi ×10−4 ui vi di
≡ ui

2 + vi
2

ri
(N )

� 

ci ri ri
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Table E2a. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
cantilever curved beam under a tip load of 100 lb and curved-beam angle , 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

, in. 
(Nastran) 

, in. 
(Nastran) 

, 

 

, in. 
(Nastran) 
[eq. (29)] 

, in. 
(Given) 

, in. 
(Disp. 

Theory) 
[eq. (15)] 

, in. 
(Disp. 

Theory) 
[eq. (16)] 

0 -6.76988 6.73522  0.00000 0.00000 0.00000 0.00000 1.00222 0.00000 0.00000 
1 -6.49922 6.46528 -0.00017 0.00835 0.00835 0.00835 1.00231 0.00836 0.00836 
2 -6.21814 6.18568 -0.00163 0.03286 0.03290 0.03290 1.00242 0.03298 0.03298 
3 -5.92752 5.89657 -0.00556 0.07271 0.07292 0.07292 1.00254 0.07315 0.07316 
4 -5.62775 5.59837 -0.01308 0.12702 0.12769 0.12769 1.00267 0.12815 0.12817 
5 -5.31931 5.29153 -0.02519 0.19480 0.19642 0.19642 1.00283 0.19722 0.19724 
6 -5.00269 4.97656 -0.04279 0.27500 0.27831 0.27831 1.00200 0.27958 0.27962 
7 -4.67834 4.65392 -0.06667 0.36652 0.37253 0.37254 1.00322 0.37445 0.37450 
8 -4.34673 4.32404 -0.09753 0.46819 0.47824 0.47824 1.00346 0.48100 0.48106 
9 -4.00846 3.98753 -0.13589 0.57881 0.59455 0.59455 1.00250 0.59841 0.59848 

10 -3.66402 3.64489 -0.18221 0.69713 0.72055 0.72056 1.00274 0.72583 0.72592 
11 -3.31389 3.29659 -0.23680 0.82192 0.85535 0.85536 1.00151 0.86240 0.86251 
12 -2.95867 2.94322 -0.29986 0.95190 0.99801 0.99802 1.00339 1.00726 1.00739 
13 -2.59894 2.58536 -0.37141 1.08581 1.14758 1.14759 1.00193 1.15952 1.15966 
14 -2.23515 2.22349 -0.45146 1.22239 1.30309 1.30311 1.00448 1.31827 1.31843 
15 -1.86790 1.85815 -0.53984 1.36042 1.46362 1.46364 1.00268 1.48260 1.48279 
16 -1.49778 1.48996 -0.63622 1.49869 1.62814 1.62817 1.00334 1.65160 1.65181 
17 -1.12536 1.11949 -0.74020 1.63605 1.79570 1.79574 1.00444 1.82434 1.82457 
18 -0.75120 0.74728 -0.85127 1.77139 1.96532 1.96536 1.00000 1.99990 2.00015 
19 -0.37589 0.37393 -0.96881 1.90367 2.13601 2.13606 1.01333 2.17733 2.17760 
20 -0.00049 0.00049 -1.09211 2.03190 2.30680 2.30685 1.00000 2.35569 2.35598 

Additional table for and n = 10 

Table E2b. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
cantilever curved beam under a tip load of 100 lb and curved-beam angle , 10. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

, in. 
(Nastran) 

, in. 
(Nastran) 

, 

 

, in. 
(Nastran) 
[eq. (29)] 

, in. 
(Given) 

, in. 
(Disp. 

Theory) 
[eq. (15)] 

, in. 
(Disp. 

Theory) 
[eq. (16)] 

0 -6.76952  6.73558  0.00000 0.00000 0.00000 0.00000 1.00222 0.00000 0.00000 
1 -6.21813  6.18568 -0.00131 0.03285 0.03288 0.03288 1.00242 0.03297 0.03298 
2 -5.62774  5.59837 -0.01247 0.12699 0.12760 0.12760 1.00267 0.12810 0.12816 
3 -5.00267  4.97657 -0.04190 0.27494 0.27811 0.27812 1.00200 0.27949 0.27963 
4 -4.34672  4.32404 -0.09639 0.46808 0.47790 0.47790 1.00346 0.48087 0.48111 
5 -3.66401  3.64489 -0.18083 0.69696 0.72004 0.72004 1.00274 0.72564 0.72600 
6 -2.95872  2.94328 -0.29824 0.95164 0.99728 0.99729 1.00339 1.00695 1.00744 
7 -2.23515  2.22349 -0.44968 1.22204 1.30215 1.30217 1.00448 1.31775 1.31839 
8 -1.49777  1.48995 -0.63426 1.49823 1.62695 1.62698 1.00334 1.65082 1.65161 
9 -0.75121  0.74729 -0.84913 1.77081 1.96387 1.96391 1.00000 1.99885 1.99981 

10 -0.00098 -0.00098 -1.08982 2.03118 2.30508 2.30514 1.00000 2.35442 2.35554 
 
 

P = φn = 45° n =

ε i ×10−4

� 

εi ×10−4 ui vi di
≡ ui

2 + vi
2

ri
(N )

� 

ci ri ri

φn = 45°

P = φn = 45° n =

ε i ×10−4

� 

εi ×10−4 ui vi di
≡ ui

2 + vi
2

ri
(N )

� 

ci ri ri
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Table E3. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
cantilever curved beam under a tip load of 100 lb and curved-beam angle , 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

, in. 
(Nastran) 

, in. 
(Nastran) 

, 

 

, in. 
(Nastran) 
[eq. (29)] 

, in. 
(Given) 

, in. 
(Disp. 

Theory) 
[eq. (15)] 

, in. 
(Disp. 

Theory) 
[eq. (16)] 

0 -4.79975 4.74979  0.00000 0.00000 0.00000 0.00000 1.00524 0.00000 0.00000 
1 -4.78495 4.73514 -0.00025 0.00596 0.00597 0.00597 1.00420 0.00600 0.00600 
2 -4.74066 4.69131 -0.00236 0.02368 0.02380 0.02380 1.00530 0.02396 0.02398 
3 -4.66713 4.61855 -0.00815 0.05272 0.05335 0.05335 1.00538 0.05377 0.05380 
4 -4.56483 4.51731 -0.01934 0.09238 0.09438 0.09438 1.00441 0.09523 0.09528 
5 -4.43439 4.38823 -0.03754 0.14168 0.14657 0.14657 1.00454 0.14811 0.14819 
6 -4.27661 4.23209 -0.06417 0.19940 0.20947 0.20947 1.00588 0.21206 0.21218 
7 -4.09245 4.04986 -0.10042 0.26412 0.28257 0.28257 1.00491 0.28670 0.28685 
8 -3.88308 3.84266 -0.14729 0.33425 0.36526 0.36526 1.00518 0.37155 0.37175 
9 -3.64975 3.61176 -0.20549 0.40805 0.45687 0.45687 1.00551 0.46610 0.46635 

10 -3.39393 3.35860 -0.27546 0.48373 0.55666 0.55667 1.00444 0.56976 0.57006 
11 -3.11718 3.08473 -0.35733 0.55940 0.66379 0.66379 1.00645 0.68189 0.68225 
12 -2.82122 2.79185 -0.45096 0.63321 0.77738 0.77739 1.00535 0.80180 0.80222 
13 -2.50786 2.48175 -0.55593 0.70333 0.89651 0.89652 1.00601 0.92874 0.92923 
14 -2.17903 2.15635 -0.67151 0.76805 1.02021 1.02022 1.00461 1.06195 1.06250 
15 -1.83677 1.81765 -0.79673 0.82577 1.14746 1.14748 1.00546 1.20060 1.20122 
16 -1.48319 1.46776 -0.93036 0.87507 1.27723 1.27725 1.00339 1.34385 1.34454 
17 -1.12047 1.10880 -1.07100 0.91473 1.40846 1.40848 1.00448 1.49081 1.49158 
18 -0.75083 0.74302 -1.21705 0.94377 1.54010 1.54012 1.00671 1.64057 1.64141 
19 -0.37657 0.37265 -1.36677 0.96149 1.67108 1.67111 1.01333 1.79220 1.79312 
20 -0.00098 0.00098 -1.51836 0.96745 1.80038 1.80041 1.00000 1.94475 1.94575 

  

P = φn = 90° n =

ε i ×10−4

� 

εi ×10−4 ui vi di
≡ ui

2 + vi
2

ri
(N )

� 

ci ri ri
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Table E4. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
cantilever curved beam under a tip load of 100 lb and curved-beam angle , 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

, in. 
(Nastran) 

, in. 
(Nastran) 

, 

 

, in. 
(Nastran) 
[eq. (29)] 

, in. 
(Given) 

, in. 
(Disp. 

Theory) 
[eq. (15)] 

, in. 
(Disp. 

Theory) 
[eq. (16)] 

0 -2.26954 2.23216  0.00000 0.00000 0.00000 0.00000 1.00889 0.00000 0.00000 
1 -2.51940 2.48021 -0.00018 0.00289 0.00290 0.00290 1.00800 0.00294 0.00294 
2 -2.73539 2.69283 -0.00179 0.01187 0.01200 0.01200 1.00921 0.01215 0.01216 
3 -2.91345 2.86812 -0.00642 0.02707 0.02782 0.02782 1.00692 0.02818 0.02821 
4 -3.05112 3.00365 -0.01568 0.04822 0.05071 0.05071 1.00826 0.05147 0.05154 
5 -3.14649 3.09754 -0.03119 0.07465 0.08090 0.08090 1.00800 0.08237 0.08247 
6 -3.19825 3.14849 -0.05438 0.10528 0.11849 0.11850 1.00787 0.12112 0.12127 
7 -3.20566 3.15579 -0.08651 0.13866 0.16343 0.16343 1.00785 0.16785 0.16806 
8 -3.16864 3.11934 -0.12846 0.17308 0.21554 0.21554 1.00795 0.22259 0.22286 
9 -3.08768 3.03964 -0.18076 0.20654 0.27447 0.27447 1.00816 0.28523 0.28557 

10 -2.96393 2.91781 -0.24351 0.23697 0.33978 0.33978 1.00680 0.35557 0.35600 
11 -2.79908 2.75553 -0.31632 0.26220 0.41086 0.41086 1.00719 0.43332 0.43384 
12 -2.59543 2.55505 -0.39836 0.28019 0.48703 0.48703 1.00775 0.51806 0.51868 
13 -2.35580 2.31915 -0.48833 0.28904 0.56746 0.56746 1.00855 0.60929 0.61001 
14 -2.08351 2.05109 -0.58454 0.28714 0.65126 0.65126 1.00726 0.70639 0.70723 
15 -1.78233 1.75460 -0.68496 0.27325 0.73745 0.73746 1.00850 0.80869 0.80964 
16 -1.45645 1.43379 -0.78733 0.24653 0.82502 0.82503 1.01038 0.91542 0.91650 
17 -1.11037 1.09310 -0.88919 0.20665 0.91289 0.91289 1.00909 1.02577 1.02697 
18 -0.74891 0.73726 -0.98809 0.15379 0.99999 0.99999 1.00671 1.13887 1.14021 
19 -0.37706 0.37120 -1.08161 0.08861 1.08523 1.08524 1.01333 1.25385 1.25531 
20 -0.00147 0.00147 -1.16751 0.01227 1.16757 1.16759 1.00000 1.36976 1.37136 

 
  

P = φn =135° n =

ε i ×10−4

� 

εi ×10−4 ui vi di
≡ ui

2 + vi
2

ri
(N )

� 

ci ri ri
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Table E5a. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
cantilever curved beam under a tip load of 100 lb and curved-beam angle ,  20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

, in. 
(Nastran) 

, in. 
(Nastran) 

, 

 
, in. 

(Nastran) 
[eq. (29)] 

, in. 
(Given) 

, in. 
(Disp. 

Theory) 
[eq. (15)] 

, in. 
(Disp. 

Theory) 
[eq. (16)] 

0 -0.00196 0.00196  0.00000  0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 
1 -0.37737 0.36957 -0.00001  0.00012 0.00012 0.00012 1.01333 0.00016 0.00016 
2 -0.74545 0.73004 -0.00026  0.00114 0.00117 0.00117 1.01351 0.00126 0.00126 
3 -1.09517 1.07254 -0.00137  0.00381 0.00405 0.00405 1.01383 0.00420 0.00422 
4 -1.41792 1.38862 -0.00429  0.00856 0.00957 0.00957 1.01068 0.00987 0.00990 
5 -1.70577 1.67052 -0.01019  0.01546 0.01852 0.01852 1.01183 0.01906 0.01911 
6 -1.95161 1.91128 -0.02028  0.02407 0.03147 0.03147 1.01036 0.03249 0.03258 
7 -2.14939 2.10497 -0.03570  0.03350 0.04896 0.04896 1.01177 0.05078 0.05090 
8 -2.29424 2.24684 -0.05729  0.04243 0.07129 0.07129 1.00881 0.07440 0.07458 
9 -2.38261 2.33338 -0.08550  0.04919 0.09864 0.09864 1.01062 0.10375 0.10400 

10 -2.41231 2.36246 -0.12026  0.05191 0.13099 0.13099 1.01048 0.13902 0.13935 
11 -2.38261 2.33338 -0.16094  0.04870 0.16815 0.16815 1.01062 0.18029 0.18071 
12 -2.29424 2.24683 -0.20632  0.03779 0.20975 0.20975 1.00881 0.22749 0.22801 
13 -2.14937 2.10496 -0.25466  0.01776 0.25528 0.25528 1.01177 0.28040 0.28104 
14 -1.95159 1.91126 -0.30377 -0.01235 0.30402 0.30402 1.01036 0.33866 0.33942 
15 -1.70575 1.67051 -0.35122 -0.05289 0.35518 0.35518 1.01183 0.40177 0.40266 
16 -1.41791 1.38861 -0.39448 -0.10355 0.40784 0.40785 1.01068 0.46912 0.47016 
17 -1.09515 1.07252 -0.43110 -0.16332 0.46100 0.46100 1.01383 0.54000 0.54118 
18 -0.74543 0.73003 -0.45895 -0.23058 0.51362 0.51362 1.01351 0.61359 0.61493 
19 -0.37735 0.36955 -0.47637 -0.30314 0.56464 0.56465 1.01333 0.68904 0.69053 
20 -0.00196 0.00196 -0.48229 -0.37847 0.61306 0.61306 1.00000 0.76542 0.76708 

Additional Table for and n = 10 

Table E5b. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
cantilever curved beam under a tip load of 100 lb and curved-beam angle ; 10. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer)
 

, in. 
(Nastran) 

, in. 
(Nastran)

 

, in. 

 

, in. 
(Nastran) 
[eq. (29)] 

, in. 
(Calculated) 
 [eq. (21)] 

, in. 
(Disp. 

Theory) 
[eq. (15)] 

, in. 
(Disp. 

Theory) 
[eq. (16)] 

0 -0.00391 -0.00391  0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 
1 -0.74538  0.73011 -0.00018 0.00114 0.00115 0.00115 1.01351 0.00125 0.00128 
2 -1.41778  1.38876 -0.00399 0.00858 0.00946 0.00946 1.01068 0.00983 0.00998 
3 -1.95142  1.91146 -0.01960 0.02417 0.03112 0.03112 1.01036 0.03236 0.03276 
4 -2.29402  2.24706 -0.05607 0.04273 0.07050 0.07050 1.00881 0.07409 0.07492 
5 -2.41208  2.36269 -0.11839 0.05258 0.12954 0.12954 1.01048 0.13842 0.13988 
6 -2.29402  2.24705 -0.20373 0.03903 0.20743 0.20744 1.00881 0.22649 0.22876 
7 -1.95140  1.91145 -0.30046 -0.01028 0.30064 0.30064 1.01036 0.33717 0.34043 
8 -1.41777  1.38874 -0.39056 -0.10040 0.40326 0.40326 1.01068 0.46705 0.47143 
9 -0.74536  0.73010 -0.45463 -0.22616 0.50778 0.50778 1.01351 0.61087 0.61646 

10 -0.00391 -0.00391 -0.47783 -0.37268 0.60598 0.60598 1.00000 0.76203 0.76890 

 
  

P = φn =180° n =

ε i ×10−4

� 

εi ×10−4 ui vi di
≡ ui

2 + vi
2

ri
(N )

� 

ci ri ri
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� 
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Appendix F 
Nastran and Theoretical Data for Two-End Fixed Curved Beams 

Table F1. Nastran-generated surface strain and deflection data, and theoretical deflection data for the two-
end fixed straight beam under a central load of 100 lb and curved-beam angle , 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer)
 

, , in. 
(Nastran) 

, ,  
in. 

(Nastran) 
 

 
in.  

(Nastran) 

, in. 
(Given) 

in. 
(Disp. Theory) 

[eq.(17)] 

0 -0.93752  0.93752 0.00000  0.00000   0.00000   1.00000  0.00000 
1 -0.75002  0.75002 0.00000  1.11003  1.11003  1.00000  1.09378 
2 -0.56251  0.56251 0.00000  4.09510   4.09510  1.00000  4.06260 
3 -0.37501  0.37501 0.00000  8.48646   8.48646  1.00000  8.43770 
4 -0.18750  0.18750 0.00000 13.81534 13.81534  1.00000 13.75032 
5  0.00000  0.00000 0.00000 19.61299 19.61299  1.00000 19.53169 
6  0.18750 -0.18750 0.00000 25.41063 25.41063  1.00000 25.31307 
7  0.37501 -0.37501 0.00000 30.73952 30.73952  1.00000 30.62569 
8  0.56251 -0.56251 0.00000 35.13087 35.13087  1.00000 35.00079 
9  0.75002 -0.75002 0.00000 38.11595 38.11595  1.00000 37.96961 

10*  0.93752 -0.93752 0.00000 39.22598 39.22598  1.00000 39.06338 
11  0.75002 -0.75002 0.00000 38.11595 38.11595  1.00000 37.96961 
12  0.56251 -0.56251 0.00000 35.13087 35.13087  1.00000 35.00079 
13  0.37501 -0.37501 0.00000 30.73952 30.73952  1.00000 30.62569 
14  0.18750 -0.18750 0.00000 25.41063 25.41063  1.00000 25.31307 
15  0.00000   0.00000 0.00000 19.61299 19.61299  1.00000 19.53169 
16 -0.18750   0.18750 0.00000 13.81534 13.81534  1.00000 13.75032 
17 -0.37501   0.37501 0.00000   8.48646   8.48646  1.00000   8.43770 
18 -0.56251   0.56251 0.00000   4.09510   4.09510   1.00000   4.06260 
19 -0.75002   0.75002 0.00000   1.11003   1.11003  1.00000   1.09378 
20 -0.93752   0.93752 0.00000   0.00000   0.00000  1.00000   0.00000 

 *Beam center  
  

P = φn = 0° n =

ε i ×10−4

� 

εi ×10−4 ui ×10−3 vi 310-´ ri
(N ), 310-´

� 

ci ri
B 310-´
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Table F2a. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
two-end fixed curved beam under a central load of 100 lb and curved-beam angle , 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer)
 

 
in. 

(Nastran-
radial) 

 
rad 

(Nastran-
tangential) 

, in. 
(Given) 

 

in. 
(Disp. Theory) 
[eq. (17)] 

in. 
(Corrected) 
[eq. (33)] 

0  0.13191 -0.24638  0.00000  0.00000 1.00000  0.00000  0.00000 
1 -0.00292 -0.11185 -0.19143 -0.03238 1.00000 -0.18173 -0.18123 
2 -0.10391 -0.01139 -0.52888 -0.07530 1.00000 -0.51496 -0.51296 
3 -0.17098  0.05533 -0.75985 -0.12949 1.00000 -0.74583 -0.74134 
4 -0.20388  0.08806 -0.71687 -0.18744 1.00000 -0.70590 -0.69792 
5 -0.20257  0.08675 -0.31799 -0.23673 1.00000 -0.31252 -0.30004 
6 -0.16714  0.05151  0.43292 -0.26342 1.00000  0.43107  0.44905 
7 -0.09755 -0.01772  1.44622 -0.25540 1.00000  1.43581  1.46027 
8  0.00626 -0.12099  2.54676 -0.20575 1.00000  2.52679  2.55874 
9  0.14383 -0.25784  3.47441 -0.11611 1.00000  3.44331  3.48375 

10*  0.31479 -0.42840  3.88487  0.00000 1.00000  3.83972  3.88964 
11  0.14385 -0.25785  3.47441  0.11611 1.00000  3.44325  3.48375 
12  0.00629 -0.12102  2.54676  0.20575 1.00000  2.52663  2.55874 
13 -0.09753 -0.01774  1.44622  0.25540 1.00000  1.43549  1.46027 
14 -0.16720  0.05156  0.43292  0.26342 1.00000  0.43056  0.44905 
15 -0.20263  0.08681 -0.31799  0.23673 1.00000 -0.31310 -0.30004 
16 -0.20389  0.08806 -0.71687  0.18744 1.00000 -0.70644 -0.69792 
17 -0.17101  0.05536 -0.75985  0.12949 1.00000 -0.74627 -0.74134 
18 -0.10395 -0.01135 -0.52888  0.07530 1.00000 -0.51524 -0.51296 
19 -0.00284 -0.11193 -0.19143  0.03238 1.00000 -0.18180 -0.18123 
20  0.13197 -0.24643   0.00000  0.00000 1.00000  0.00000   0.00000 

 *Beam center 
 

Table F2b. Nastran-generated surface strain and deflection data, and theoretical deflection data for the 
two-end fixed curved beam under a central load of 100 lb and curved-beam angle , 10. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer)
 

 
in. 

(Nastran-
radial) 

 
rad 

(Nastran-
tangential) 

, in. 
(Given) 

 

in. 
(Disp. Theory) 

[eq. (17)] 

 in. 
(Corrected) 
[eq. (33)] 

0  0.12339 -0.23820  0.00000  0.00000 1.00000  0.00000 0.00000 
1 -0.11237 -0.00288  0.52890 -0.07821 1.00000 -0.51540 -0.51341 
2 -0.21237  0.09660  0.71755 -0.18506 1.00000 -0.70716 -0.69918 
3 -0.17558  0.06001 -0.43035 -0.25429 1.00000  0.42889  0.44685 
4 -0.00225 -0.11242 -2.54169 -0.19520 1.00000  2.52338  2.55530 
5*  0.30607 -0.42011 -3.87851  0.00000 1.00000  3.83572  3.88559 
6 -0.00225 -0.11242 -2.54169  0.19520 1.00000  2.52338  2.55530 
7 -0.17558  0.06001 -0.43035  0.25429 1.00000  0.42889  0.44685 
8 -0.21237  0.09660  0.71755  0.18506 1.00000 -0.70716 -0.69918 
9 -0.11237 -0.00288  0.52890  0.07821 1.00000 -0.51540 -0.51341 
10  0.12339 -0.23820  0.00000  0.00000 1.00000  0.00000  0.00000 

 *Beam center 
 
 
 

P = φn = 45° n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3

P = φn = 45° n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3
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Table F3. Nastran-generated surface strain and deflection data, and theoretical deflection data for the two-
end fixed curved beam under a central load of 100 lb; and curved-beam angle , 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer)
 

 
in. 

(Nastran-
radial) 

 
rad 

(Nastran- 
tangential) 

, in. 
(Given) 

 

in. 
(Disp. 

Theory) 
[eq. (17)] 

 in. 
(Corrected) 
[eq. (33)] 

0  0.19795 -0.25582  0.00000  0.00000 1.12753  0.00000  0.00000 
1  0.05178 -0.11033 -0.23461 -0.02369 1.36118 -0.16063 -0.15909 
2 -0.06014  0.00043 -0.68037 -0.07445 0.01420 -0.61881 -0.61264 
3 -0.13669  0.07619 -1.05673 -0.15776 0.71580 -1.05557 -1.04169 
4 -0.17740  0.11648 -1.17139 -0.26052 0.79271 -1.16661 -1.14193 
5 -0.18204  0.12106 -0.92258 -0.35806 0.79881 -0.91715 -0.87860 
6 -0.15055  0.08990 -0.30035 -0.42134 0.74777 -0.29651 -0.24100 
7 -0.08314  0.02319  0.61333 -0.42415 0.43619  0.63242  0.70798 
8  0.01977 -0.07865  1.64550 -0.35028 1.59825  1.64473  1.74342 
9  0.15757 -0.21501  2.53436 -0.20063 1.15417  2.48607  2.61097 
10*  0.32889 -0.38552  2.93245   0.00000 1.07927  2.86044  3.01464 
11  0.15757 -0.21501  2.53436   0.20063 1.15417  2.48609  2.61097 
12  0.01978 -0.07865  1.64550   0.35028 1.59809  1.64475  1.74342 
13 -0.08314  0.02319  0.61333   0.42415 0.43619  0.63244  0.70798 
14 -0.15055  0.08990 -0.30035   0.42134 0.74777 -0.29649 -0.24100 
15 -0.18204  0.12106 -0.92258   0.35806 0.79881 -0.91714 -0.87860 
16 -0.17741  0.11648 -1.17139   0.26052 0.79268 -1.16659 -1.14193 
17 -0.13669  0.07618 -1.05673   0.15776 0.71574 -1.05555 -1.04169 
18 -0.06013  0.00043 -0.68037   0.07445 0.01420 -0.61880 -0.61264 
19  0.05178 -0.11033 -0.23461   0.02369 1.36118 -0.16063 -0.15909 
20  0.19794 -0.25581  0.00000   0.00000 1.12754  0.00000   0.00000 

 *Beam center 
  

P = φn = 90° n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3
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Table F4. Nastran-generated surface strain and deflection data, and theoretical deflection data for the two-
end fixed curved beam under a central load of 100 lb and curved-beam angle , 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

 
in. 

(Nastran-radial) 

 rad 
(Nastran-
tangential) 

, in. 
(Given) 

 

in. 
(Disp. Theory) 

[eq. (17)] 

in. 
(Corrected) 
[eq. (33)] 

0  0.22350 -0.26105  0.00000  0.00000 1.07750  0.00000  0.00000 
1  0.07214 -0.11074 -0.25180 -0.02425 1.21107 -0.18381 -0.18046 
2 -0.04549  0.00506 -0.73812 -0.09255 0.20020 -0.67797 -0.66460 
3 -0.12710  0.08540 -1.16178 -0.21491 0.80377 -1.15231 -1.12223 
4 -0.17155  0.12916 -1.31537 -0.37155 0.85903 -1.32568 -1.27221 
5 -0.17822  0.13573 -1.08703 -0.52389 0.86466 -1.12905 -1.04549 
6 -0.14704  0.10503 -0.46340 -0.62593 0.83334 -0.54632 -0.42601 
7 -0.07842  0.03748  0.46984 -0.63597 0.64676  0.35130  0.51507 
8  0.02667 -0.06598  1.53034 -0.52809 1.42429  1.35573  1.56963 
9  0.16679 -0.20392  2.44388 -0.30332 1.10016  2.20704  2.47776 
10*  0.33925 -0.37515  2.85180  0.00000 1.05025  2.58618  2.92040 
11  0.16679 -0.20391  2.44388  0.30332 1.10014  2.20702  2.47776 
12  0.02667 -0.06597  1.53034  0.52809 1.42422  1.35568  1.56963 
13 -0.07843  0.03749  0.46984  0.63597 0.64683  0.35125  0.51507 
14 -0.14704  0.10503 -0.46340  0.62593 0.83334 -0.54635 -0.42601 
15 -0.17823  0.13573 -1.08703  0.52389 0.86463 -1.12905 -1.04549 
16 -0.17154  0.12915 -1.31537  0.37155 0.85902 -1.32566 -1.27221 
17 -0.12709  0.08540 -1.16178  0.21491 0.80380 -1.15229 -1.12223 
18 -0.04549  0.00506 -0.73812  0.09255 0.20020 -0.67795 -0.66460 
19  0.07214 -0.11074 -0.25180  0.02425 1.21107 -0.18380 -0.18046 
20  0.22350 -0.26105  0.00000  0.00000 1.07750  0.00000  0.00000 

 *Beam center 
  

P = φn = 135° n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3
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Table F5. Nastran-generated surface strain and deflection data, and theoretical deflection data for the two-
end fixed curved beam under a central load of 100 lb and curved-beam angle , 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

 
in. 

(Nastran-
radial) 

 
 rad 

(Nastran-
tangential) 

, in. 
(calculated) 
[eq. (21)] 

in. 
(Disp. 

Theory) 
[eq. (17)] 

in. 
(Corrected) 

[eq. (33)] 

0  0.24470 -0.27142  0.00000  0.00000 1.05177  0.00000  0.00000 
1  0.08793 -0.11611 -0.26919 -0.02788 1.13811 -0.21024 -0.20429 
2 -0.03616  0.00541 -0.79530 -0.11908 0.26028 -0.75686 -0.73305 
3 -0.12360  0.09105 -1.26083 -0.28888 0.84836 -1.28969 -1.23612 
4 -0.17226  0.13870 -1.43970 -0.50975 0.89208 -1.52132 -1.42610 
5 -0.18093  0.14720 -1.20807 -0.72662 0.89721 -1.36840 -1.21961 
6 -0.14940  0.11631 -0.55037 -0.87343 0.87547 -0.80966 -0.59540 
7 -0.07844  0.04682  0.43981 -0.89028 0.74757  0.07975  0.37139 
8  0.03020 -0.05957  1.56393 -0.74027 1.32717  1.09384  1.47475 
9  0.17384 -0.20024  2.52770 -0.42529 1.07057  1.96275  2.44483 

10*  0.34796 -0.37271  2.95484  0.00000 1.03434  2.34952  2.94469 
11  0.17384 -0.20024  2.52770  0.42529 1.07057  1.96276  2.44483 
12  0.03020 -0.05957  1.56393  0.74027 1.32717  1.09386  1.47475 
13 -0.07844  0.04682  0.43981  0.89028 0.74757  0.07979  0.37139 
14 -0.14940  0.11631 -0.55037  0.87343 0.87547 -0.80960 -0.59540 
15 -0.18093  0.14719 -1.20807  0.72662 0.89717 -1.36834 -1.21961 
16 -0.17226  0.13870 -1.43970  0.50975 0.89208 -1.52126 -1.42610 
17 -0.12360  0.09105 -1.26083  0.28888 0.84836 -1.28963 -1.23612 
18 -0.03615  0.00541 -0.79530  0.11908 0.26035 -0.75681 -0.73305 
19  0.08794 -0.11612 -0.26919  0.02788 1.13810 -0.21021 -0.20429 
20  0.24470 -0.27141  0.00000  0.00000 1.05175  0.00000  0.00000 

 *Beam center 
  

P = φn =180° n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3
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Appendix G 
Nastran and Theoretical Data for Two-End 

Simply Supported Curved Beams 
Table G1. Nastran-generated surface strain and deflection data, and theoretically predicted deflection data 
for the two-end simply supported straight beam under a central load of 100 lb and curved-beam angle 

, 20. 
 

i ,
in/in 

(inner) 

 ,
in/in 

(outer)
 

, in. 
(Nastran) 

, in. 
(Nastran) in. 

(Nastran) 

, in. 
(Given) 

 in. 
(Disp. 

Theory) 
[eq. (17)] 

0   0.00000 0.00000 0.00000     0.00000    0.00000 1.00000    0.00000 
1 -0.18750 0.18750 0.00000   23.37621   23.37621 1.00000   23.35994 
2 -0.37501 0.37501 0.00000   46.28365   46.28365 1.00000   46.25112 
3 -0.56251 0.56251 0.00000   68.25358   68.25358 1.00000   68.20478 
4 -0.75002 0.75002 0.00000   88.81722   88.81722 1.00000   88.75217 
5 -0.93752 0.93752 0.00000 107.50580 107.50580 1.00000 107.42450 
6 -1.12503 1.12503 0.00000 123.85060 123.85060 1.00000 123.75304 
7 -1.31253 1.31253 0.00000 137.38280 137.38280 1.00000 137.26900 
8 -1.50004 1.50004 0.00000 147.63370 147.63370 1.00000 147.50363 
9 -1.68754 1.68754 0.00000 154.13450 154.13450 1.00000 153.98817 
10* -1.87505 1.87505 0.00000 156.41640 156.41640 1.00000 156.25385 
11 -1.68754 1.68754 0.00000 154.13450 154.13450 1.00000 153.98817 
12 -1.50004 1.50004 0.00000 147.63370 147.63370 1.00000 147.50363 
13 -1.31253 1.31253 0.00000 137.38280 137.38280 1.00000 137.26900 
14 -1.12503 1.12503 0.00000 123.85060 123.85060 1.00000 123.75304 
15 -0.93752 0.93752 0.00000 107.50580 107.50580 1.00000 107.42450 
16 -0.75002 0.75002 0.00000   88.81722   88.81722 1.00000   88.75217 
17 -0.56251 0.56251 0.00000   68.25358   68.25358 1.00000   68.20478 
18 -0.37501 0.37501 0.00000   46.28365   46.28365 1.00000   46.25112 
19 -0.18750 0.18750 0.00000   23.37621   23.37621 1.00000   23.35994 
20   0.00000 0.00000 0.00000     0.00000     0.00000 1.00000     0.00000 

 *Beam center 
  

P =
φn = 0° n =

ε i ×10−4

� 

εi ×10−4 ui ×10−3 vi ×10−3 ri
(N ), 310-´

� 

ci ri
B 310-´
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Table G2. Nastran-generated surface strain and deflection data, and theoretically predicted deflection data 
for the two-end simply supported curved beam under a central load of 100 lb and curved-beam angle 

, 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 
in. 

(Nastran-
radial) 

rad 
(Nastran-
tangential) 

, in. 
(Given)  

in. 
(Disp. Theory) [eq. (17)] 

in. 
(Corrected) 
[eq. (33)] 

0 -0.04969 -0.04969  0.00000  0.00000 1.00000  0.00000  0.00000 
1  0.04059 -0.14018 -0.79492 -0.04046 1.00000 -0.79405 -0.79344 
2  0.10149 -0.20139 -1.37143 -0.10795 1.00000 -1.37267 -1.37026 
3  0.13303 -0.23310 -1.57607 -0.19084 1.00000 -1.58208 -1.57666 
4  0.13518 -0.23526 -1.32951 -0.27293 1.00000 -1.34261 -1.33297 
5  0.10792 -0.20786 -0.62676 -0.33636 1.00000 -0.64884 -0.63377 
6  0.05131 -0.15094  0.46283 -0.36454 1.00000  0.43040  0.45210 
7 -0.03458 -0.06461  1.79573 -0.34505 1.00000  1.75212  1.78165 
8 -0.14961  0.05102  3.15472 -0.27257 1.00000  3.09939  3.13797 
9 -0.29360  0.19577  4.24952 -0.15174 1.00000  4.18172  4.23053 

10* -0.46657  0.36916  4.71772  0.00000 1.00000  4.63543  4.69569 
11 -0.29360  0.19577  4.24952  0.15174 1.00000  4.18172  4.23053 
12 -0.14961  0.05102  3.15472  0.27257 1.00000  3.09939  3.13797 
13 -0.03458 -0.06461  1.79573  0.34505 1.00000  1.75212  1.78165 
14  0.05131 -0.15094  0.46283  0.36454 1.00000  0.43040  0.45210 
15  0.10792 -0.20786 -0.62676  0.33636 1.00000 -0.64884 -0.63377 
16  0.13518 -0.23526 -1.32951  0.27293 1.00000 -1.34261 -1.33297 
17  0.13303 -0.23310 -1.57607  0.19084 1.00000 -1.58208 -1.57666 
18  0.10149 -0.20139 -1.37143  0.10795 1.00000 -1.37267 -1.37026 
19  0.04059 -0.14018 -0.79492  0.04046 1.00000 -0.79405 -0.79344 
20 -0.04969 -0.04969  0.00000  0.00000 1.00000  0.00000  0.00000 

 *Beam center 
  

P =
φn = 45

 n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3
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Table G3. Nastran-generated surface strain and deflection data, and theoretically predicted deflection data 
for the two-end simply supported curved beam under a central load of 100 lb and curved-beam angle 

, 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

 
in. 

(Nastran-
radial) 

 
rad 

(Nastran-
tangential) 

, in. 
(Given) 

 

in. 
(Disp. Theory) 

[eq. (17)] 

in. 
(Corrected) 
[eq. (33)] 

0 -0.02520 -0.02520  0.00000  0.00000 1.00000  0.00000  0.00000 
1  0.06862 -0.11943 -0.95549 -0.05015 1.00000 -0.96397 -0.96189 
2  0.13237 -0.18385 -1.67920 -0.16648 1.00000 -1.70185 -1.69355 
3  0.16594 -0.21778 -2.00679 -0.32424 1.00000 -2.05109 -2.03241 
4  0.16914 -0.22100 -1.85202 -0.48884 1.00000 -1.92607 -1.89286 
5  0.14193 -0.19351 -1.20783 -0.62202 1.00000 -1.31865 -1.26676 
6  0.08449 -0.13547 -0.14643 -0.68808 1.00000 -0.29820 -0.22348 
7 -0.00282 -0.04724  1.18157 -0.66006 1.00000  0.98881  1.09052 
8 -0.11948  0.07065  2.54901 -0.52587 1.00000  2.31973  2.45257 
9 -0.26476  0.21745  3.65485 -0.29416 1.00000  3.39708  3.56521 

10* -0.43825  0.39179  4.12791  0.00000 1.00000  3.85040  4.05796 
 11 -0.26476  0.21745  3.65485  0.29416 1.00000  3.39708  3.56521 
 12 -0.11948  0.07065  2.54901  0.52587 1.00000  2.31973  2.45257 
 13 -0.00282 -0.04724  1.18157  0.66006 1.00000  0.98881  1.09052 
 14  0.08449 -0.13547 -0.14643  0.68808 1.00000 -0.29820 -0.22348 
 15  0.14193 -0.19351 -1.20783  0.62202 1.00000 -1.31865 -1.26676 
 16  0.16914 -0.22100 -1.85202  0.48884 1.00000 -1.92607 -1.89286 
 17  0.16594 -0.21778 -2.00679  0.32424 1.00000 -2.05109 -2.03241 
 18  0.13237 -0.18385 -1.67920  0.16648 1.00000 -1.70185 -1.69355 
 19  0.06862 -0.11943 -0.95549  0.05015 1.00000 -0.96397 -0.96189 
 20 -0.02520 -0.02520  0.00000  0.00000 1.00000  0.00000  0.00000 

 *Beam center 
  

P =
φn = 90° n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3
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Table G4. Nastran-generated surface strain and deflection data, and theoretically predicted deflection data 
for two-end simply supported curved beam under central load of 100 lb; curved-beam angle 

, 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer) 

 
in. 

(Nastran-
radial) 

 
rad 

(Nastran-
tangential) 

, in. 
(Given) 

 

in. 
(Disp. Theory) 

[eq. (17)] 

in. 
(Corrected) 
[eq. (33)] 

0 -0.01707 -0.01707  0.00000  0.00000 1.00000  0.00000   0.00000 
1   0.08091 -0.11571 -1.05522 -0.07078 0.82301 -1.03304 -1.02805 
2   0.14793 -0.18379 -1.85984 -0.25156 0.89190 -1.84494 -1.82495 
3   0.18350 -0.21992 -2.23458 -0.50210 0.90972 -2.24362 -2.19865 
4   0.18711 -0.22359 -2.08506 -0.76599 0.91118 -2.14003 -2.06008 
5   0.15873 -0.19476 -1.40427 -0.98088 0.89807 -1.52502 -1.40010 
6   0.09875 -0.13383 -0.27283 -1.08871 0.84917 -0.47006 -0.29018 
7   0.00799 -0.04164  1.14310 -1.04602 0.32198   0.90653   1.15137 
8 -0.11228  0.08054  2.59624 -0.83371 1.16461   2.31096   2.63075 
9 -0.26040  0.23100  3.76477 -0.46626 1.05983   3.40541    3.81016 

10* -0.43505  0.40692  4.26094   0.00000 1.03341   3.86657   4.36625 
11 -0.26040  0.23100  3.76477   0.46626 1.05983   3.40541   3.81016 
12 -0.11228  0.08054  2.59624   0.83371 1.16461   2.31096   2.63075 
13   0.00799 -0.04164  1.14310   1.04602 0.32198   0.90653   1.15137 
14   0.09875 -0.13383 -0.27283   1.08871 0.84917 -0.47006 -0.29018 
15   0.15873 -0.19476 -1.40427   0.98088 0.89807 -1.52502 -1.40010 
16   0.18711 -0.22359 -2.08506   0.76599 0.91118 -2.14003 -2.06008 
17   0.18350 -0.21992 -2.23458   0.50210 0.90972 -2.24362 -2.19865 
18   0.14793 -0.18379 -1.85984   0.25156 0.89190 -1.84494 -1.82495 
19   0.08091 -0.11571 -1.05522   0.07078 0.82301 -1.03304 -1.02805 
20  -0.01707 -0.01707  0.00000   0.00000 1.00000   0.00000   0.00000 

  *Beam center 
  

P =
φn = 135° n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3
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Table G5. Nastran-generated surface strain and deflection data, and theoretically predicted deflection data 
for the two-end simply supported curved beam under a central load of 100 lb and curved-beam angle 

, 20. 
 

i ,  
in/in 

(inner) 

 ,  
in/in 

(outer)
 

 
in. 

(Nastran-
radial) 

 
rad 

(Nastran-
tangential) 

, in. 
(Given) 

 

in. 
(Disp. Theory) 

[eq. (17)] 

in. 
(Corrected) 
[eq. (33)] 

0 -0.01309 -0.01309  0.00000  0.00000 1.00000  0.00000  0.00000 
1  0.09104 -0.11815 -1.18721 -0.09999 0.87041 -1.18811 -1.17921 
2  0.16291 -0.19153 -2.09448 -0.36529 0.91925 -2.13357 -2.09795 
3  0.20137 -0.23081 -2.51935 -0.73573 0.93188 -2.63523 -2.55510 
4  0.20549 -0.23501 -2.35497 -1.12677 0.93299 -2.59509 -2.45264 
5  0.17515 -0.20403 -1.59508 -1.44501 0.92384 -2.00257 -1.78000 
6  0.11110 -0.13863 -0.33442 -1.60397 0.88976 -0.93530 -0.61479 
7  0.01493 -0.04043  1.23546 -1.53974 0.53938  0.46114  0.89739 
8 -0.11101  0.08816  2.83489 -1.22549 1.11473  1.89966  2.46946 
9 -0.26360  0.24398  4.10888 -0.68436 1.03865  3.03686  3.75801 

10* -0.44008  0.42219  4.64366  0.00000 1.02075  3.51465  4.40496 
11 -0.26360  0.24398  4.10888  0.68436 1.03865  3.03686  3.75801 
12 -0.11101  0.08816  2.83489  1.22549 1.11473  1.89966  2.46946 
13  0.01493 -0.04043  1.23546  1.53974 0.53938  0.46114  0.89739 
14  0.11110 -0.13863 -0.33442  1.60397 0.88976 -0.93530 -0.61479 
15  0.17515 -0.20403 -1.59508  1.44501 0.92384 -2.00257 -1.78000 
16  0.20549 -0.23501 -2.35497  1.12677 0.93299 -2.59509 -2.45264 
17  0.20137 -0.23081 -2.51935  0.73573 0.93188 -2.63523 -2.55510 
18  0.16291 -0.19153 -2.09448  0.36529 0.91925 -2.13357 -2.09795 
19  0.09104 -0.11815 -1.18721  0.09999 0.87041 -1.18811 -1.17921 
20 -0.01309 -0.01309  0.00000  0.00000 1.00000  0.00000  0.00000 

*Beam center 

 
 
 
  

P =
φn =180° n =

ε i ×10−4

� 

εi ×10−4 ri
(N ), ×10−3 δφi ×10−3

� 

ci ri
B , ×10−3

ri, ×10−3
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Appendix H 
Alternative Theta-Formulation  

 The Curvilinear Displacement Transfer Functions can also be formulated alternatively based on the 
deformed slope angle  measured from the x-axis (fig. 1). Equation (5) is duplicated below as 
equation (H1): 
 
 

 (H1) 

 
In view of figure 3, one can write equation (H2): 
 
 

 (H2) 

 
In view of equation (H2), equation (H1) can be rewritten as equation (H3): 
 
 

 (H3) 

 
For the in-extensional beams ,  in equation (H3) can be considered as . The 

-formulation based on equation (H3) will then give slope angles and deflections in reference to the 
horizontal x-axis. The total deflections will then contain the initial displacements for forming the 
undeformed curved beam and also the strain-induced deflections. 

Slope-Angle Equation in Recursive Form 

 The slope-angle equation can be obtained by piecewise integration of equation (H3) within each small 
domain , assuming  [eq. (10)], shown as 
equation (H4): 
 
 

     ;      (H4) 

 
Using piecewise linear representation of strain distribution given by equation (H5): 
 
 

     ;      (H5) 

 
equation (H4) can be piecewise integrated (process similar to Appendix A) within each small domain 

 to yield equation (H6): 
  

θ (s)

1
R(s)

− 1
R0

= 1+ c(s)
R0

⎡

⎣
⎢

⎤

⎦
⎥
ε(s)
c(s)

1
R(s)

= dθ(s)
ds

dθ(s)
ds

= 1+ c(s)
R0

⎡

⎣
⎢

⎤

⎦
⎥
ε(s)
c(s)

+ 1
R0

(s = x) dθ ds dθ dx
θ

si−1 ≤ s ≤ si c(s) ≈ c = (ci−1 + ci ) 2 (i =1,2,3,...,n)

dθ(s)
dssi−1

s
∫ ds = 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟
1
c

ε(s)si−1
s
∫ ds + 1

R0
dssi−1

s
∫ (si−1 ≤ s ≤ si )

ε(s) = εi−1 − (εi−1 − εi )
s − si−1
Δl

(si−1 ≤ s ≤ si )

si−1 ≤ s ≤ si



87 
 

 
 

         

 

                  

(H6) 

 
At the strain-sensing station , one can write , and equation (H6) yields the slope angle  

at the strain-sensing station  as equation (H7): 
 
 

     ;      
(H7) 

 
Equation (H7) is the slope-angle equation in recursive form in reference to the x-axis. 

Deflection Equation in Recursive Form 

 The curved deflection  (measured from the x-axis) can be obtained by piecewise integration of 

slope equation (H6) within each small domain  as equation (H8): 
 

 

 
(H8)

  

                      
 
At the strain-sensing station , one can write , and equation (H8) yields the curved 

deflection  at the strain-sensing station  as equation (H9): 
 
 

    ;      
(H9) 

 
Equation (H9) is the curved deflection equation in recursive form in reference to the x-axis. 
  

θ(s) = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
1
c

ε i−1 − (ε i−1 − ε i )
s − si−1
Δl

⎡
⎣⎢

⎤
⎦⎥si−1

s
∫ ds +θi−1 +

s − si−1
R0

= 1
c
1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

ε i−1(s − si−1)− (ε i−1 − ε i )
(s − si−1)

2

2Δl
⎡

⎣
⎢

⎤

⎦
⎥ +θi−1 +

s − si−1
R0

(si−1 ≤ s ≤ si )

si (si − si−1) ≡ Δl
θi[≡θ(si )] si

 

θi = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
Δl
2c

ε i−1 + ε i( )
Strain-induced slope-angle increment 
! "### $###

+ θi−1
Slope angle
     at si−1

% + Δl
R0

Initial slope
angle increment

%
(i = 1,2,3,...,n)

y(s)
(si−1 ≤ s ≤ si )

 

⌢y(s)− ⌢yi−1 ≡ θ(s)dssi−1

s
∫

               = 1
c

1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

ε i−1(s − si−1)− (ε i−1 − ε i )
(s − si−1)2

2Δl
⎡

⎣
⎢

⎤

⎦
⎥si−1

s
∫ ds + θi−1 dssi−1

s
∫ + s − si−1

R0
si−1

s
∫ ds

               = 1
c

1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

ε i−1
(s − si−1)2

2
− (ε i−1 − ε i )

(s − si−1)3

6Δl
⎡

⎣
⎢

⎤

⎦
⎥ +θi−1(s − si−1)+ (s − si−1)2

2R0

(si−1 ≤ s ≤ si )

si (si − si−1) ≡ Δl
yi[≡
y(si )] si

 

⌢yi = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε i−1 + ε i( )

Strain-induced deflection increment
" #$$$$ %$$$$

+ ⌢yi−1
deflection
 at si−1

& + (Δl)θi−1

Deflection
due to θi−1

"#$ %$ + (Δl)2

2R0
     Initial 
displacement

&
(i =1,2,3,...,n)
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Deflection Equation in Summation Form 

Combining equations (H6) and (H9) for different indices yields equations (H10)–(H13): 
 
For i = 1: 
 

  
(H10) 

 
For i = 2: 
 

 

      

(H11)
 

 
  

 

y1 = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
(Δl)2

6c
2ε0 + ε1( ) + y0 + (Δl)θ0 + (Δl)

2

2R0

 

⌢y2 = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε1 + ε2( ) + ⌢y1 + (Δl)θ1 +

(Δl)2

2R0

   = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε1 + ε2( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε0 + ε1( ) + ⌢y0 + (Δl)θ0 +

(Δl)2

2R0
⌢y1

" #$$$$$$$$ %$$$$$$$$

     + 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε0 + ε1( ) + (Δl)θ0 +

(Δl)2

R0

(Δl)θ1

" #$$$$$$$ %$$$$$$$
+ (Δl)2

2R0

 

= 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε1 + ε2( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε0 + ε1( )

  + 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε0 + ε1( ) + y0 + 2(Δl)θ0 +

(2Δl)2

2R0



89 
 

 

For i = 3: 

 

 

     

(H12)
 

 

 
  

 

⌢y3 = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε2 + ε3( ) + ⌢y2 + (Δl)θ2 +

(Δl)2

2R0

   = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε2 + ε3( )

    +
1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε1 + ε2( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε0 + ε1( )

  + 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε0 + ε1( ) + (2Δl)2

2R0

+ ⌢y0 + 2(Δl)θ0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

⌢y2

" #$$$$$$$$$$ %$$$$$$$$$$

     + 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε1 + ε2( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε0 + ε1( ) + (Δl)θ0 + 2 (Δl)2

R0

(Δl)θ2

" #$$$$$$$$$$$$ %$$$$$$$$$$$$
+ (Δl)2

2R0

= 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε2 + ε3( )+ 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε1 + ε2( )+ 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε0 + ε1( )

   + 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε1 + ε2( )+ 2 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε0 + ε1( )+ y0 + 3(Δl)θ0 +

(3Δl)2

2R0
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For i = 4: 

 

 

     

(H13) 

 
 Based on the indicial progression patterns in equations (H10)–(H13), one can write the curved 
deflection  in a generalized form of with two summations (with different summation limits) as equation 
(H14): 
 
 

 

                   

(H14)
 

 

 

y4 = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟
(Δl)2

6c
2ε3 + ε4( ) + y3 + (Δl)θ3 + (Δl)

2

2R0

 

  = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε3 + ε4( )

    +
1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε2 + ε3( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε1 + ε2( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε0 + ε1( )    

 + 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε1 + ε2( ) + 2 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε0 + ε1( ) + ⌢y0 + 3(Δl)θ0 +

(3Δl)2

2R0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

⌢y3

" #$$$$$$$$$$$$$$$$ %$$$$$$$$$$$$$$$$

   + 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε2 + ε3( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε1 + ε2( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε0 + ε1( ) + (Δl)θ0 + 3(Δl)2

R0

(Δl)θ3

" #$$$$$$$$$$$$$$$$$ %$$$$$$$$$$$$$$$$$

   + (Δl)2

2R0

 

= 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε3 + ε4( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε2 + ε3( ) + 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε1 + ε2( )

 + 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε0 + ε1( )

 + 1
4−3
! 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε2 + ε3( ) + 2

4−2
! 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε1 + ε2( ) + 3

4−1
! 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
ε0 + ε1( )   

 + ⌢y0 + 4(Δl)θ0 +
(4Δl)2

2R0

 
yi

 

⌢yi = 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε j−1 + ε j( )

j=1

i

∑
Contributions from deflection terms 
" #$$$$$ %$$$$$

+ 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
(i − j) ε j−1 + ε j( )

j=1

i−1

∑
Contribution from slope terms

" #$$$$$$ %$$$$$$
 

        + ⌢y0 + (i)(Δl)θ0

= 0 for cantilever beam
" #$$ %$$ + (iΔl)2

2R0
Due to Initial 
   curvature 

&

(i =1,2,3,...,n)
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 Equation (H14) is the deflection equation in summation form in reference to the x-axis. Notice from 
equation (H14) that the summation of the deflection terms ends at i, but the summation of the slope terms 
ends at , not i. The factor  appearing in the second summation will cause the last term of 

summation to drop out when j reaches i . 

Initial Curved Displacements  

 In view of figure 3, the curved distant a(s) traced by point A from x-axis to curved s-axis to form the 
undeformed curved beam can be calculated from equation (H15) 
 
 

 (H15) 

 
At point , equation (H15) gives equation (H16): 
 
 

     ;      (H16) 

 
Note that the initial curved displacement  of the undeformed curved beam given by 
equation (H16) is exactly the same as the last term of equation (H14).  

Similarity of Theta- and Alpha-Formulations 

 The last term  appearing in equation (H14) is actually the initial curved displacement 

 of point  of the undeformed curved beam given by equation (H16). Therefore, if the term 
is moved to the left-hand side of equation (H14), one can obtain the strain-induced curved 

deflection in reference to the initial undeformed configuration expressed by equation (H17): 
 
 

 

                   

(H17)
 

 
For the cantilever curved beams, the slope and deflection at the fixed end (i = 0) is zero [that is, 

; ], and therefore, the right-hand side of equation (H17) based on 
-formulation will be identical to the right-hand side of equation (15c) [or equation (B6) of Appendix B] 

based on -formulation. Thus, both formulations give identical strain-induced curved deflections. 
 
  

i −1 (i − j)
( j = i)

a(s) = θ0 (s)ds0

s
∫ = s

R0
ds

0

s
∫ = s2

2R0

s = si

a(si ) =
si
2

2R0
= (iΔl)

2

2R0
(i = 1,2,3,...,n)

(iΔl)2 (2R0 )

(iΔl)2 (2R0 )

a(si ) si
(iΔl)2 (2R0 )

 

⌢yi −
(iΔl)2

2R0

Strain induced curved 
deflection in relative to
undeformed s-axis

" #$ %$
= 1+ c

R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

6c
2ε j−1 + ε j( )

j=1

i

∑
Contributions from deflection terms 
" #$$$$$ %$$$$$

+ 1+ c
R0

⎛
⎝⎜

⎞
⎠⎟

(Δl)2

2c
(i − j) ε j−1 + ε j( )

j=1

i−1

∑
Contributions from slope terms

" #$$$$$$ %$$$$$$

                        + ⌢y0 + (i)(Δl)θ0

= 0 for cantilever beams
" #$$ %$$

(i = 1,2,3,...,n)

y0 + (i)(Δl)θ0 = 0 r0 + (i)(Δl)α 0 = 0
θ

α
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