

An Introduction to High-Altitude Space Use of GNSS (For Timing People)

Joel J. K. Parker

NASA Goddard Spaceflight Center

joel.j.k.parker@nasa.gov

CGSIC Timing Subcommittee September 24, 2018

Space Uses of Global Navigation Satellite Systems (GNSS)

- <u>Real-time On-Board Navigation</u>: Precision formation flying, rendezvous & docking, station-keeping, Geosynchronous Orbit (GEO) satellite servicing
- <u>Earth Sciences</u>: GNSS as a measurement for atmospheric and ionospheric sciences, geodesy, and geodynamics
- <u>Launch Vehicle Range Operations</u>: Automated launch vehicle flight termination; providing safety net during launch failures & enabling higher cadence launch facility use
- <u>Attitude Determination</u>: Some missions, such as the International Space Station (ISS) are equipped to use GPS/GNSS to meet their attitude determination requirements
- <u>Time Synchronization:</u> Support precise time-tagging of science observations and synchronization of on-board clocks

Reception of High-Altitude GNSS Signals

- The **Terrestrial Service Volume (TSV)** is defined as the volume of space including the surface of the Earth and LEO, i.e., up to 3,000 km
- The Space Service Volume (SSV) is defined as the volume of space surrounding the Earth from the edge of LEO to GEO, i.e., 3,000 km to 36,000 km altitude
- The SSV overlaps and extends beyond the GNSS constellations, so use of signals in this region often requires signal reception from satellites on the opposite side of the Earth – main lobes and sidelobes
- Use of GPS in the SSV increasing despite geometry, Earth occultation, and weak signal strength challenges
- Spacecraft use of GPS in TSV & SSV enables:
 - reduced post-maneuver recovery time
 - improved operations cadence
 - increased satellite autonomy
 - more precise real-time navigation and timing performance

A History of High-Altitude GPS Users

- **1990s**: Early flight experiments demonstrated basic feasibility Equator-S, Falcon Gold
- **2000**: Reliable GPS orbit determination demonstrated at GEO employing a bent pipe architecture and ground-based receiver (Kronman 2000)
- 2001: AMSAT OSCAR-40 mapped GPS main and sidelobe signals (Davis et al. 2001)
- 2015: MMS employed GPS operationally at 76,000 km and recently 150,000 km
- 2016: GOES-16 employed GPS operationally at GEO

Operational Challenges

Ops Scenario	Altitude Range (km)	Challenges & Observations (Compared to previous scenario)	Mitigations	Operational Status
Terrestrial Service Volume	100- 3,000	Acquisition & Tracking: Higher Doppler, faster signal rise/set; accurate ephemeris upload required; signal strength & availability comparable to Earth use	Development of Space Receivers; fast acquisition algorithm eliminates ephemeris upload	Extensive Operational use
SSV Medium Altitudes	3,000-8,000	More GPS/GNSS signals available; highest observed Doppler (HEO spacecraft)	Max signals require omni antennas; receiver algorithms must track higher Doppler	Operational (US & foreign)
SSV High- GEO Altitudes	8,000-36,000	Earth obscuration significantly reduces main lobe signal availability; frequent ops w/ <4 signals; periods of no signals; weak signal strength due to long signal paths	Nav-Orbit Filter/Fusion algorithms (e.g. GEONS) enables ops w/ <4 signals and flywheel through 0 signal ops; use of signal side lobes and/or other GNSS constellations; higher gained antennas, weak signal receivers	Operational (US & foreign)
Beyond the SSV	36,000-360,000+	Even weaker signals & worse signal geometry	Use higher gain, small footprint antenna; accept geometric performance degradation or augment with signals of opportunity to improve	Operational to 150,000 km (MMS), Orion Lunar perf. experiment

The Promise of using GNSS inside the Space Service Volume

- GPS timing reduces need for expensive on-board clocks (from: \$100sK-1M to: \$15K-50K)
- Significantly improves real-time navigation performance (from: km-class to: meter-class)
- Supports quick trajectory maneuver recovery (from: 5-10 hours to: minutes)
- Supports increased satellite autonomy, lowering mission operations costs (savings up to \$500-750K/year)
- Enables new/enhanced capabilities and better performance for **High Earth Orbit (HEO)** and **Geosynchronous Orbit (GEO) missions,** including:

Earth Weather Prediction using Advanced Weather Satellites

Launch Vehicle Upper Stages & Beyond-GEO applications

Space Weather Observations

Formation Flying, Space Situational Awareness (SSA), Proximity Operations

Precise Relative Positioning

Precise Position Knowledge & Control at GEO

U.S. Initiatives & Contributions to Develop & Grow a High-Altitude GNSS Capability for Space Users

From 1990's to Today, U.S. Provides Leadership & Guidance Enabling Breakthrough, Game-changing Missions through use of GNSS in the SSV

GOES-R Series Weather Satellites

- GOES-R, -S, -T, -U: 4th generation NOAA operational weather satellites
- GOES-R/GOES-16 Launch: 19 Nov 2016; GOES-S/GOES-17 Launch: March 1 2018
- 15 year life, series operational through mid-2030s
- Employs GPS at GEO to meet stringent navigation requirements
- Relies on beyond-spec GPS sidelobe signals to increase SSV performance
- Collaboration with the USAF (GPS) and ICG (GNSS) expected to ensure similar or better SSV performance in the future
- NOAA also identifies EUMETSAT (EU) and Himawari (Japan) weather satellites as reliant on increased GNSS signal availability in the SSV

GOES-16 Image of Hurricane Maria Making Landfall over Puerto Rico

GOES-R/GOES-16 In-Flight Performance

GPS Visibility

- Minimum SVs visible: 7
- DOP: 5–15
- Major improvement over guaranteed performance spec (4+ SVs visible 1% of time)

Navigation Performance

- 3σ position difference from smoothed ground solution (~3m variance):
 - Radial: 14.1 m
 - In-track: 7.4 m
 - Cross-track:5.1 m
- Compare to requirement: (100, 75, 75) m

Source: Winkler, S., Ramsey, G., Frey, C., Chapel, J., Chu, D., Freesland, D., Krimchansky, A., and Concha, M., "GPS Receiver On-Orbit Performance for the GOES-R Spacecraft," ESA GNC 2017, 29 May-2 Jun 2017, Salzburg, Austria.

Using GPS above the GPS Constellation: NASA GSFC MMS Mission

Magnetospheric Multi-Scale (MMS)

- Launched March 12, 2015
- Four spacecraft form a tetrahedron near apogee for performing magnetospheric science measurements (space weather)
- Four spacecraft in highly eccentric orbits
 - Phase 1: 1.2 x 12 Earth Radii (Re) Orbit (7,600 km x 76,000 km)
 - Phase 2: Extends apogee to 25 Re (~150,000 km) (40% of way to Moon!)

MMS Navigator System

- GPS enables onboard (autonomous) navigation and near autonomous station-keeping
- MMS Navigator system exceeds all expectations
- At the highest point of the MMS orbit Navigator <u>set</u> <u>Guiness world record for the highest-ever</u> <u>reception</u> of signals and onboard navigation solutions by an operational GPS receiver in space
- At the lowest point of the MMS orbit Navigator <u>set</u> <u>Guiness world for fastest operational GPS</u> <u>receiver</u> in space, at velocities over 35,000 km/h

MMS Navigation

- MMS baselined Goddard's high-altitude Navigator GPS receiver + GEONS Orbit Determination (OD) filter software as sole means of navigation (mid 2000's)
 - Original design included crosslink, later descoped
 - In order to meet requirements without crosslink, a USO would be needed.
- Main challenge: Sparse, weak, poorly characterized signal signal environment
 - MMS Navigator acquires and tracks below 25dB-Hz (around -178dBW)
 - GEONS navigation filter runs embedded on the Navigator processor
 - Ultra stable crystal oscillator (Freq. Electronics, Inc.) is a key component that supports filter propagation
- USO was specified to meet 100us holdover over 65 hours under all environmental conditions
 - Driven by operational mode where GPS RF chains would be turned off above 3 Earth radii which is no longer a mode that is planned for use.
 - Eventually the timing requirement was relaxed to 325us due to spare margin.
- Specific requirements were developed based on a simulation of the ability of the GEONS filter to estimate the USO behavior, and resulted in around a 5e-11 stability requirement (at 65hrs) over all enveloping environmental conditions.

MMS Navigator GPS hardware

• GPS hardware all developed and tested at GSFC. Altogether, 8 electronics boxes, 8 USOs, 32 antennas and front ends

Ultra Stable Osc.

Front end electronics assembly

GPS antenna

Receiver and USO on spacecraft deck

Redundant receiver electronics

On-orbit Phase 2B results: signal tracking

- Consider 8-day period early in Phase 2B
- Above GPS constellation, majority of signals are still sidelobes
- Long term trend shows average of ~3 signals tracked near apogee, with up to 8 observed.
 - Cumulative outage over sample orbit: 0.5% (22 min over 67-hour orbit); average duration: 2.8 min
- Visibility exceeds preflight expectations significantly

 $[\]overline{C}/N_0$ vs. time, near apogee

On-orbit Phase 2B results: measurement and navigation performance

- GEONS filter RSS 1-sigma formal errors reach maximum of ~50m and briefly 5mm/s (typically <1mm/s)
- Measurement residuals are zero mean, of expected variation <10m 1-sigma.
 - Suggests sidelobe measurements are of high quality.
- As apogee increases, range and clock errors become highly correlated; seen in pos/clock covariances below

Filter formal clock errors (1o root cov)

On-Orbit Clock Performance

- Filter is able to estimate clock phase to within 15m or about 50ns
- Rapid clock reconvergence after maneuvers
- Filter is able to estimate clock phase to within 0.4cm/s or about 1e-11 fractional frequency
- Precise estimation across all oscillators

The Promise of using GNSS beyond the Space Service Volume

- GPS timing reduces need for expensive on-board clocks (from: \$100sK-1M to: \$15K-50K)
- Supports <u>real-time</u> navigation performance (from: no real time to: km or ten meter-class)
- Supports quick trajectory maneuver recovery (from: 5-10 hours to: minutes)
- Near-continuous navigation signals reduces DSN navigation support
- Increased satellite autonomy & robotic operations, lowering ops costs (savings up to \$500-750K/year)
- Supports vehicle autonomy, new/enhanced capabilities and better performance for Cis-Lunar & Gateway mission scenarios, including:

Earth Observations beyond GEO

Launch Vehicle Upper Stages & Cislunar applications

Space Weather Observations

Formation Flying, Space Situational Awareness, Proximity Ops

Precise Relative Positioning

Lunar Orbiting Platform-Gateway Human & Robotic Space Applications

MMS study: Concept Lunar mission

- Study: How will MMS receiver perform if used on a conceptual Lunar mission with 14dBi high-gain antenna?
- Concept lunar trajectory similar to EM-1: LEO -> translunar -> Lunar (libration) orbit -> return
- GPS measurements simulated & processed using GEONS filter.
- Visibility similar to MMS2B, as high-gain makes up for additional path loss
 - Avg visibility: ~3 SVs; C/N0 peaks > 40dB-Hz (main lobes) or > 30 dB-Hz (side lobes)
- Range/clock-bias errors dominate order of 1-2 km; lateral errors 100-200 m
 - With atomic clock, or, e.g., periodic 2-way range/Doppler, could decorrelate and reduce range errors to meas. noise level
 - Additional (independent) measurement source breaks range/clock bias ambiguity

Filter position formal (3σ) and actual errors

Conclusions

- High-altitude space use of GNSS is an emerging operational capability
 - Latest operational demonstrations include: GOES-16, MMS
 - MMS USOs selected to withstand long GNSS signal outages; meeting or exceeding all requirements
- Signal availability is as key to timing as it is to navigation; nearly-continuous availability of signals enables benefits for time synchronization, clock bias estimation, etc.
- Recent predictions show that signal reception of GNSS to lunar distance can be quite good for real-time navigation performance.
 - Breaking the range & clock bias ambiguity will be key to increased performance at increasingly high altitudes
 - High-quality clock OR periodic independent range measurement are potential solutions
- Potential applications are far-reaching:
 - Precise time for time-tagging science measurements
 - Payload time signal on Lunar Orbital Platform—Gateway
 - Precise time redistribution in cis-lunar space

Backup

Some key USO derived requirements

- Hadamard deviation
 - 1 second 1E-11
 - 30 seconds 2E-12
 - 6 hours 7.07E-12
 - 24 hours 1.41E-11
 - 65 hours 2.32E-11
- The USO frequency stability vs. incremental temperature change <u>shall</u> be within 3.0E-11 per degree C, across the proto-flight temperature range.
- The USO frequency stability vs. magnetic field intensity shall be within \pm 1E-11 for magnetic field intensities of \pm 0.5 Oersted.
- USO frequency aging after 30 days within \pm 5E-11/day.
- Other requirements covered stability over comprehensive environmental effects: acceleration, pressure, aging, supply voltage, impedance, etc.

Clock Bias Estimation

Filter is able to estimate clock phase to within 15m or about 50ns

Rapid clock reconvergence after maneuvers

Clock Rate Estimation

Filter is able to estimate clock phase to within 0.4cm/s or about 1e-11 fractional frequency

Precise estimation across all oscillators

Fractional Frequency Trend

USO freq accuracy requirement of 1e-7 met with margin

Total USO Hadamard deviation

- Measured through filter clock rate estimate.
- Requirement line shown is lab Hadamard deviation requirement with 3C temp change and 0.5T magnetics stability req. RSS'd in for intervals >6hrs
 - Covers rough expected environment change over those periods

Signal Tracking Performance During Phase 1 to Phase 2 Apogee Raising (70K km to 150K km)

Signal Tracking Performance Single Phase 2B Orbit (150K km Apogee)

