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Abstract: The terms “independent” and “dependent” scattering are ubiquitous in the 
phenomenological discipline of light scattering by particulate media. Yet there is a wide range 
of ad hoc definitions of these terms, many of which are vague and conceptually 
inconsequential. In this paper we perform a first-principles analysis of these terms based on 
the rigorous volume-integral-equation formulation of electromagnetic scattering. We argue 
that scattering by a multi-particle group can be called independent if certain optical 
observables for the entire group can be expressed in appropriate single-particle observables. 
Otherwise one deals with the dependent scattering regime. The prime (and perhaps the only) 
examples of independent scattering are scattering scenarios described by the first-order-
scattering approximation and the first-principles radiative transfer theory. 

1. Introduction 

Ever since the publication of the classical treatise by Hendrik C. van de Hulst [1] in 1957, the 
notions of “independent” and “dependent” scattering have permeated applied publications 
dealing with frequency-domain electromagnetic scattering by particulate media (see, e.g., 
Refs. [2–37] and numerous references therein). However, the majority of definitions of these 
notions are quite vague and often range from being inconsequential to being outright wrong (a 
typical example is the invocation on page 3 of Ref. [38] of a scenario wherein “the scattering 
particle is unaffected by the presence of neighboring particles”). The common trait of such 
definitions is that they are based on qualitative ad hoc arguments rather than emerge as direct 
corollaries of macroscopic Maxwell’s electromagnetics. It is therefore essential to perform a 
first-principles analysis of these notions starting from an explicit formulation of the 
frequency-domain Maxwell equations for a morphologically complex scattering object in the 
form of a group of N non-overlapping volumes called particles. 

It is not the purpose of this tutorial paper to discuss specifically all the numerous 
definitions of independent and dependent scattering regimes encountered in the literature. 
Indeed, that would largely amount to deciphering what the authors may have wanted to say 
rather than analyzing what they have stated explicitly. Instead, the main objective of this 
paper is to advance the premise according to which scattering by a multi-particle group is 
independent if certain optical observables (i.e., appropriately defined second moments in the 
electromagnetic field) for the entire group can be expressed (explicitly or implicitly) in 
appropriate single-particle observables. Otherwise the scattering by the multi-particle group is 
dependent. The purpose of the following sections is to give a systematic and self-consistent 
justification of this premise and give examples of independent and dependent scattering 
scenarios. 

In lieu of using the standard differential-equation formalism of electromagnetic scattering, 
we build our analysis on the mathematically equivalent volume-integral-equation (VIE) 
formulation. The unique advantage of the latter is that it naturally leads to the introduction of 
mutually independent individual-particle transition operators and yields a rigorous expression 
of the field scattered by an N-particle group in terms of the N single-particle transition 
operators. As such, this formalism allows one to bring the notion of individual-particle 
scattering into the consideration of electromagnetic scattering by the entire multi-particle 
object. Furthermore, it applies to a very wide range of particle morphologies. Although the 
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majority of theoretical results used below are known, they still need to be organized in a 
particular way to make our reasoning and conclusions unequivocal. 

2. Scattering problem 

The state-of-the art of the VIE formulation of frequency-domain electromagnetic scattering 
by an arbitrary fixed object has recently been summarized in Refs. [39–41]. Therefore, we 
recapitulate here only the most essential results while using exactly the same terminology and 
notation. Throughout the paper, we imply (and suppress) the monochromatic exp( i )t− ω  

dependence of all fields, where 1 2i ( 1) ,= −  ω  is the angular frequency, and t is time. 

Consider an arbitrary fixed finite object embedded in an unbounded medium that is 
assumed to be homogeneous, linear, isotropic, non-magnetic, and (for simplicity) 
nonabsorbing (Fig. 1). In general, the scattering object is an arbitrary finite group of 
1 N≤ < ∞  non-overlapping components made of nonmagnetic isotropic materials, including 
those with edges, corners, and intersecting internal interfaces [40]. We assume that the object 

is subjected to an impressed incident electromagnetic field inc ( )E r  in the form of a source-

free solution of the frequency-domain Maxwell equations for an unbounded homogeneous 
space [41], where the position vector r  connects the origin O  of the laboratory coordinate 
system and the observation point. 

 

Fig. 1. Electromagnetic scattering by an arbitrary fixed finite object. 

The total field everywhere in the three-dimensional space 3  can be represented as the 
sum of the incident and so-called scattered fields: 

 inc sca 3( ) ( ) ( ),    ,= + ∈E r E r E r r    (1) 

where the scattered field can be expressed in terms of the incident field and a fundamental 

quantity ( , ),T ′r r


 called the transition dyadic, as follows: 

 
INT INT

sca 3 3 inc( ) d ( , ) d ( , ) ( ).
V V

G T′ ′ ′′ ′ ′′ ′′=  E r r r r r r r E r
 

⋅ ⋅   (2) 

In the latter formula, ( , )G ′r r


 is the free-space dyadic Green’s function and INTV  is the 

cumulative volume of the object’s interior, i.e., the union of the N component volumes INT
iV : 
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r

V1

V2

Vi Vj

Incident field

VN

.
VN − 1

                                                                                                            Vol. 1, No. 1 | 15 Sep 2018 | OSA CONTINUUM 244 



 INT INT
1

.
N

i

i
V V

=
    (3) 

The free-space dyadic Green’s function is a purely mathematical entity completely 
independent of the scattering object, whereas the transition dyadic is the solution of the 
following linear integral equation: 

 
INT

3
INT( , ) ( ) ( ) ( ) d ( , ) ( ,  ),   , ,

V
T U I U G T V′ ′ ′′ ′′ ′′ ′ ′= − + ∈r r r r r r r r r r r r r

  
δ ⋅   (4) 

where 

 
3
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2 2
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0,   \ ,
( )

( ) ,   

V
U

k V

 ∈


− ∈

r
r

r r



ω ε μ

  (5) 

is the potential function, I


 is the identity dyadic, and 2 ( )rε  is the complex permittivity of 

the scattering object. Furthermore, 1 2
1 1 0( )k ω ε μ  is the wave number, where 1ε  is the real-

valued permittivity of the host medium and 0μ  is the magnetic permeability of a vacuum. 

It is important to recognize the ultimate generality of Eq. (2) in that it is valid for any 

impressed incident field. Furthermore, ( , )T ′r r


 is fundamentally independent of inc ( )E r  and 

is fully defined by the spatial distribution of the object’s complex permittivity throughout the 
interior volume INTV  with respect to the laboratory coordinate system. As such, the transition 

dyadic can be considered a unique and universal “scattering ID” of the object. 
To facilitate the following discussion, let us (i) extrapolate the definition of the transition 

dyadic to the entire space by assuming that ( , ) 0T ′ =r r


 unless INTV∈r  and INT ,V′∈r  where 

0


 is a zero dyadic; (ii) define the potential dyadic according to ( , )U ′r r


  ( ) ( ) ,U I′−r r r


δ  

where ( )rδ  is the three-dimensional delta function; and (iii) introduce compact integral-

operator notation according to 

 ( ) ( )3

3 ˆ ˆˆ ˆ ˆd ( , ) ( ), ,BE B BC E B CE′ ′ ′ r r r E r



 ⋅   (6) 

(see Ref. [41]. for details). Then Eqs. (1), (2), and (4) can be re-written as follows: 

 inc sca inc incˆ ˆ ,E E E E GTE= + = +   (7) 

 ˆˆ ˆ ˆ ˆ,T U UGT= +   (8) 

where T̂  can be referred to as the transition operator of the scattering object. 

3. Order-of-scattering expansion 

A fundamental feature of the differential macroscopic Maxwell equations as well as of the 
mathematically equivalent VIE formulation summarized in the preceding section is that an 
object immersed in a homogeneous unbounded medium is treated by definition as a single, 
unified scatterer irrespective of its actual morphology. Hence the total-volume integration 
domains in Eqs. (2) and (4). However, the very feasibility of discussing independent and 
dependent scattering regimes rests on the assumption that it is somehow possible to 
incorporate the notion of individual-particle scattering if the object is a multi-particle group. 
And indeed, the decisive advantage of the VIE formulation over the differential-equation 
formalism is that it allows one to make explicit use of the fact that the entire scattering object 
can be represented geometrically as a union of N distinct non-overlapping partial volumes 
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according to Fig. 1 and Eq. (3). In what follows, we will refer to these partial volumes as 
“particles” and to the entire scattering object as an “N-particle group.” 

The first step is to notice that the potential function of the entire object given by Eq. (5) 

can be rewritten as the sum of the individual-particle potential functions ( , )iU ′r r


: 

 3

1

( , ) ( , ),   ,
N

i
i

U U
=

′ ′= ∈r r r r r
 

   (9) 

where 
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′− ∈
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
 

 
δ

  (10) 

By definition, the individual-particle potential functions are independent of each other. The 
second step is to introduce the individual-particle transition operators with respect to the 
common laboratory reference frame as solutions of the following N separate integral 
equations: 

 ˆˆ ˆ ˆ ˆ , 1,...,i i i iT U U GT i N= + =   (11) 

[cf. Eq. (8)]. In other words, the transition operator of particle i (i.e., its “individual scattering 
ID”) is computed as if all the other particles did not exist. 

A key corollary of the VIE formalism [39,41] then states that the transition operator of the 
entire N-particle group is expressed in terms of the individual-particle transition operators: 

 
1     1     1

( ) 1 ( ) 1
( ) 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ .
N N N

i i j i j l
i i i

j i j i
l j

T T T GT T GT GT
= = =

≠ = ≠ =
≠ =

= + + +      (12) 

Then, according to Eq. (7), the total field is given by the following “order-of-scattering” 
series: 

 inc inc inc inc

1     1     1
( ) 1 ( ) 1

( ) 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .
N N N

i i j i j l
i i i

j i j i
l j

E E GT E GT GT E GT GT GT E
= = =

≠ = ≠ =
≠ =

= + + + +      (13) 

It is Eq. (13) that embodies (even if only mathematically [39,42]) the sought concept of 
“splitting” the scattering by the entire N-particle group into “sequences of single-scattering 

events”. Indeed, the term incˆ
îGT E  can be interpreted as the contribution of the single 

scattering of the incident field by particle i  [cf. Eq. (7)]; the term incˆ ˆˆ ˆ
i jGTGT E  is the 

contribution of the single scattering by particle i  of the singly-scattered incident field by 
particle ;j  etc. 

Given its fundamental importance, it is instructive to compare this result with the 
following two quotes. The first one is from page 11 of Ref. [7]: “Independent scattering can 
be defined as a condition whereby the scattering from a single particle in a cloud is not 
affected by the proximity of its neighbors.” The second one is from page 388 of Ref. [28]: “If 
scattering by one particle is not affected by the presence of surrounding particles, we speak of 
independent scattering, otherwise we have dependent scattering.” It is straightforward to see 
that should we apply these definitions to Eq. (13), we would have to conclude that 
electromagnetic scattering by any multi-particle group is always independent. Indeed, the 

single scattering by particle i  is fully defined by the thi  transition operator îT  which, 
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according to Eq. (11), is completely independent of the presence of all the other particles. 
Presumably, this outcome is not what the definitions of independent scattering in Refs. [7,28] 
were meant to accomplish. 

Note that the infinite series (13) does not necessarily converge in all cases. In fact, specific 
numerical examples of divergence have been reported in the literature [43,44]. In such cases 
any discussion of independent versus dependent scattering regimes becomes pointless. 

4. Energy-budget and optical-characterization problems 

Equations (11) and (13) show how to express the cumulative field scattered by a multi-
particle group in terms of the single-particle transition operators. However, the 
electromagnetic field itself typically is not a directly observable quantity, at least in the 
optical range of frequencies. It is therefore important to recognize that in the usual context of 
electromagnetic scattering by particles, the only two problems of actual practical significance 
are as follows [39,45]: 

• How to evaluate theoretically the time-averaged radiation-energy budget of a 
macroscopic volume of particulate medium? 

• How to model theoretically the particular measurement afforded by an actual detector 
of electromagnetic energy flow and thereby clarify its ability to serve as (i) an 
energy-budget meter and/or (ii) an integral part of a diagnostic technique intended 
for optical characterization of a particulate medium in a laboratory, in situ, or 
remote-sensing setting? 

Both problems can only be solved in terms of optical observables, i.e., specific second 
moments in the electromagnetic field. 

It is clear that if the total field is expressed according to Eq. (13) then any second moment 
in the field can ultimately be expressed in terms of the individual-particle transition operators. 
Yet the complexity of the resulting formulas is overwhelming and hardly makes this approach 
more practical than the use of the primordial expression (2) based on the whole-object 
transition operator. Thus we should look for a way to (i) drastically simplify the nested-
integral expansion (13) by converting it into a purely algebraic one, and (ii) express optical 
observables of the N-particle group directly in terms of individual-particle optical 
observables. 

Thus, the next stage in the first-principles analysis of independent and dependent 
scattering regimes is to import into the picture appropriate single-particle optical observables. 
The first step to do that is to replace individual-particle transition operators in Eq. (13) by 
individual-particle far-field scattering dyadics defined in the following section. 

5. Far-field scattering dyadic 

Let us consider the simplest scenario wherein the entire scattering object is a single particle 
centered at the origin of the laboratory coordinate system, as illustrated schematically in Fig. 
2. The particle is subjected to the impressed incident field in the form of a homogeneous 
plane electromagnetic wave propagating in the direction of the unit vector incn̂ : 

 inc inc inc inc inc
1 0 0
ˆ ˆ( ) exp(i ) , 0.k= =E r n r E E n⋅ ⋅   (14) 
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Fig. 2. Far-field scattering by a single particle. 

Note that the use of a caret above an upright bold-face character to denote a unit vector 
should not be confused with the previous use of a caret above an italic character to denote an 
integral operator. 

A well-known fundamental result of the theory of electromagnetic scattering by small 
particles [39,41,46,47] is that at a sufficiently large distance from the particle, the scattered 
field evolves into a transverse outgoing spherical wave: 

 sca inc inc sca
0

ˆ ˆ ˆ ˆ( ) ( ) ( , ) , ( ) 0,
r

g r A
→∞
= =E r r n E E r r


⋅ ⋅   (15) 

where ;r = r  ˆ ;r=r r  1( ) exp(i ) ;g r k r r=  incˆ ˆ( , )A r n


 is the so-called far-field scattering 

dyadic; and the radial unit vector r̂  plays the role of the scattering direction. The scattering 
dyadic is expressed in terms of the transition dyadic of the particle according to 
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1
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1

1
ˆ ˆ ˆ ˆ ˆ( , ) d exp( i )

4

ˆ ˆ ˆd ( , ) exp(i ),

V

V

A I k

T I k

′ ′= − ⊗ −

′′ ′ ′′ ′′× − ⊗





r n r r r r r

r r r n n n r

 

 
π

⋅ ⋅

⋅ ⋅
  (16) 

where INTV  is the volume occupied by the particle and ⊗  is the dyadic product sign. 

6. Simplified order-of-scattering expansion 

Comparison of Eqs. (7), (13), and (15) suggests that in order to incorporate the notion of the 
individual-particle far-field scattering dyadic in the computation of the field scattered by the 
entire N-particle group, one has to assume that (i) the group is subjected to an impressed 

incident field in the form of a plane wave propagating in the direction incˆ ;n  (ii) each particle 
resides in the far zones of all the other particles; and (iii) the observation point resides in the 
far zone of each of the N particles (but, generally, not in the far zone of the entire group). 

Indeed, let us consider, for example, the term incˆ ˆˆ ˆ
i jGTGT E  in Eq. (13), in which incˆ ˆ

jGT E  is 

the result of scattering of the incident field by particle j. At the distant origin iO  of particle i, 
incˆ ˆ

jGT E  becomes an outgoing spherical wave centered at the origin jO  of particle j which 

can be considered locally plain at iO  owing to the smallness of the solid angle subtended by 

particle i as viewed from .jO  The subsequent application of the operator ˆ
îGT  to this quasi-

plain wave then yields a field at the distant observation point which becomes an -centerediO
outgoing spherical wave. Other terms in Eq. (13) can be interpreted analogously. 

To simplify Eq. (13) according to this interpretation, let us introduce the notation depicted 
in Fig. 3, use a caret above a vector to denote a unit vector pointing in the same direction, and 

denote by jA


 the far-field scattering dyadic of particle j centered at .jO  We then have 

[39,47]: 

.
O

r

Incident plane wave

incn̂

.
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Fig. 3. Notation used in Eq. (17).  
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  (17) 

Importantly, the total scattered field is now a superposition of spherical waves, each one 
originating at the last particle of a sequence. We will see later that this enables meaningful 
optical measurements with well-collimated radiometers. 

It is seen that all the burdensome nested integrations over particles’ volumes in Eq. (13) 
are now gone, and the reduced order-of-scattering expansion (17) is purely algebraic. Still, the 
practical use of Eq. (17) remains problematic. First of all, the evaluation of optical 
observables for exceedingly large N  (e.g., for objects such as clouds or colloidal 
suspensions) is hardly possible even with the use of modern computers. Second of all, the 
observed scattering pattern is unavoidably loaded by countless speckles that can hardly be 
measured let alone interpreted. In addition, optical observables for the multi-particle group 
still cannot be expressed in terms of individual-particle observables. 

Indeed, let us assume for simplicity that N  is sufficiently small that the expansion (17) 
can be truncated by keeping only the cumulative first-order-scattering term: 

 sca inc inc

1

ˆ ˆ( ) ( ) ( , ) ( ).
N

i i i i
i

g r A
=

=E r r n E R


⋅   (18) 

Although the observation point r  is required to reside in the far zone of each particle in the 
group, we will assume that it resides in the near zone of the entire group (Fig. 4). 

.

O r
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.
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Fig. 4. Origin of the speckle pattern. 

Let us consider a rather generic second moment in the scattered field called the scattering 

coherency dyadic and defined according to sca sca sca( ) ( ) [ ( )] ,∗= ⊗r E r E rρ  where the asterisk 

denotes a complex-conjugate value. Then Eq. (18) implies that 

 sca sca sca

1 1 ( ) 1

( ) ( ) ( ),
N N N

i ij
i i j i= = ≠ =

= +  r r r  ρ ρ ρ   (19) 

where 

 
T

sca inc inc inc
2

1
ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ,i i i i i

i

A A
r

∗
 =  r r n r n

  ρ ρ⋅ ⋅   (20) 

are individual-particle contributions; 

 
T

sca inc inc incexp(i )
ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ,ij

ij i i j j
i j

A A
r r

∗Δ
 =  r r n r n

  ρ ρ⋅ ⋅   (21) 

with inc inc
1

ˆ ˆ( )ij i j i jk r rΔ = − + −n R n R⋅ ⋅  are particle–particle pair contributions; and 
inc inc inc

0 0[ ]∗= ⊗E Eρ  is the coherency dyadic of the incident field. Note that in deriving Eqs. 

(20) and (21) we have used the dyadic identity ( ) ( ) T( ) ,A B A B⊗ = ⊗a b a b
  

⋅ ⋅ ⋅ ⋅  where “T” 

stands for “transposed.” 

If all the sca ( )ij rρ  were equal to zero then the optical observable sca ( )rρ  of the entire group 

would be the sum of the mutually independent individual-particle optical observables. Indeed, 

the sca ( )i rρ  for each i  is computed as if all the other 1N −  particles did not exist. In that case 

we could talk of the independent scattering regime. 

It is obvious however that the particle–particle pair contributions sca ( )ij rρ  are of the same 

order of magnitude as the individual-particle contributions. Furthermore, there are ( 1)N N −  

particle–particle pair contributions versus only N  individual-particle contributions. 
Therefore, there is no a priori reason to neglect the second (double) sum on the right-hand 
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side of Eq. (19) in comparison with the first sum. In addition, the complex-exponential factor 

in Eq. (21) makes each sca ( )ij rρ  a rapidly oscillating function of the coordinates of the 

observation point and gives rise to a pronounced speckle pattern. This fundamental optical 
phenomenon is well known and is characteristic of fixed scattering objects subjected to 
coherent monochromatic illumination such as by a continuous-laser beam [48–50]. 

Thus we must conclude that in general, monochromatic electromagnetic scattering by a 
fixed multi-particle group is dependent for any 2N ≥  and any interparticle distances. 

7. Temporal averaging, ergodicity, and ensemble averaging 

Any actual measurement takes a finite amount of time. Therefore, the most obvious way to 
zero out the second sum on the right-hand side of Eq. (19) is to assume that all particles move 
incessantly during the measurement, thereby making the complex exponential in Eq. (21) a 
random function of time such that its temporal average vanishes: exp(i ) 0.ij t Δ  →  

Obviously, this would also serve to extinguish the speckle pattern rarely observed in practice. 
The direct computation of a temporal average is highly problematic since it requires the 

explicit invocation of a dynamical model of the multi-particle group. Therefore, it is typical in 
practice to assume that the multi-particle group is ergodic and replace averaging over time by 
averaging over a representative ensemble of random realizations of the group in terms of 
varying particles’ coordinates (see, e.g., Section 10.4 of Ref. [39] and Section 1.5 of Ref. 
[47]). 

Thus, assuming that random movements of the particles imply sca sca( ) ( )ij t ij  =  Rr r ρ ρ  0=


 

in Eq. (19), we have 

 sca sca sca

1

( ) ( ) ( ) .
N

t i
i=

  =   =  R Rr r r  ρ ρ ρ   (22) 

This result demonstrates that averaging over an ensemble of random configurations of a 
multi-particle group is a key ingredient of the independent scattering regime. 

8. Single-particle extinction and phase matrices 

To give examples of independent scattering regimes often encountered in practice, we need to 
introduce two specific types of single-particle optical observables, as follows. It is convenient 
to characterize a propagation direction r̂  by its polar, ,θ  and azimuthal, ,ϕ  angles with 

respect to the laboratory spherical coordinate system. This helps introduce the 2 2×  

amplitude scattering matrix incˆ ˆ( , )r nS  expressing the -θ  and -componentsϕ  of the scattered 

spherical wave in terms of the -θ  and -componentsϕ  of the incident plane wave: 

 sca inc inc
0

ˆ ˆ ˆ( ) ( ) ( , ) ,
r

r g r
→∞
=r r nE S E   (23) 

where E  denotes a two-component column formed by the -θ  and -componentsϕ  of the 

electric field vector. It then follows from Eq. (15) that 

 
inc inc inc inc

inc

inc inc inc inc

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( , ) ( , )
ˆ ˆ( , ) .

ˆˆ ˆ ˆ ˆˆ ˆ ˆ( , ) ( , )

A A

A A

 
=  
  

r n r n
r n

r n r n

 

 
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

q q q j

j q j j
S   (24) 

The basic far-field individual-particle optical observables are the particle-centered real-valued 

4 4×  phase, incˆ ˆ( , ),r nZ  and extinction, incˆ( ),nK  matrices. Both are defined in terms of the 

elements of the particle-centered amplitude scattering matrix (24) [39,46,47]: 
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Note that the arguments inc incˆ ˆ( , )n n  on the right-hand side of Eq. (25) and incˆ ˆ( , )r n  on both 

sides of Eq. (26) are omitted for brevity. 

 

Fig. 5. The net polarized signal recorded by a WCR depends on the line of sight. 

An essential practical function of the phase and extinction matrices is to quantify the 
reading of a specific optical instrument called the well-collimated radiometer (WCR; see 
Section 11.4 of Ref. [39] and Ref. [51]). The corresponding far-field measurement 
configuration is depicted in Fig. 5. WCR 2 has its optical axis parallel to the incidence 
direction and centered at the origin, while the optical axis of WCR 1 is centered at the origin 
in the direction of the unit vector incˆ ˆ .≠r n  Let us assume that both WCRs are polarization 

Scattered spherical
wave

Incident plane wave
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sensitive and that the real-valued Stokes parameters of a transverse electromagnetic wave are 
defined as in Refs [39,45–47]. Then the polarized reading of WCR 1 per unit time is given by 

 sca inc incol
ol 2

ˆ ˆ ˆ( ) ( , ) ,
S

S
r

= =r r nSignal1 I Z I   (27) 

where inc inc inc inc inc T[ , , , ]I Q U V=I  is the four-element Stokes column vector of the incident 

plane wave, sca ˆ( )rI  is that of the scattered spherical wave, olS  is the area of the objective lens 

of the WCR, and r  is the distance from the origin to the WCR. The corresponding polarized 
reading of WCR 2 per unit time is given by 

 inc inc inc inc inc incol
ol 2

ˆ ˆ ˆ( ) ( , ) .
S

S
r

= − +n n nSignal2 I K I Z I   (28) 

The extinction and phase matrices can also be used to define derivative observables called the 
extinction, scattering, and absorption cross sections [39,46,47]. These quantities define the 
electromagnetic energy budget of any finite volume of space encompassing the particle. 

9. First-order-scattering approximation for a small random group of particles 

An important example of the independent scattering regime is the so-called first-order-
scattering approximation (FOSA) for a small sparse random group of particles (see Chapter 
14 of Ref. [39]). This approximation is based on the following assumptions often encountered 
in laboratory and in situ measurements [52,53]: 

• the number of particles N in the group is sufficiently small and the average distance 
between the particles is sufficiently large that Eq. (18) holds; 

• the group is observed from a distance r much greater than any linear dimension of the 
volume V populated (in the statistical sense) by the group (Fig. 6); 

 

Fig. 6. A random group of N particles populating the volume V is observed from a large 
distance. 
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• the observation point is in the near zone of the volume V yet is remote enough to be in 
the far zone of any particle in the group; 

• the microphysical state of each particle (i.e., the combination of its shape, orientation, 
and size) is independent of its position and of the states and positions of all the other 
particles; 

• the N particles are moving randomly and independently of each other throughout V; and 

• the random N-particle group is fully ergodic. 

Let us first consider the measurement configuration shown in Fig. 6 and paralleling that in 
Fig. 5. Then it can be shown [39] that the time-averaged readings of WCR 1 and WCR 2 are 
given by 

 inc incol
, 2

1

ˆ ˆ( , ) ,
N

i
t

i

S

r =

  =   =  R r nξ ξSignal1 Signal1 Z I   (29) 

 inc inc inc inc inc incol
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1 1
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i i
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i i

S
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r= =

  =   = −   +   R n n nξ ξ ξSignal2 Signal2 I K I Z I    

  (30) 

respectively, where incˆ ˆ( , )i r n ξZ  and incˆ( )i n ξK  are the phase and extinction matrices of 

particle i, respectively, centered at the origin of this particle and averaged over the ensemble 
of its microphysical states. 

Second, we consider the standard energy-budget problem by (i) surrounding the multi-
particle group by an imaginary sphere ,Σ  as shown in Fig. 6, and (ii) computing the net time-
averaged flow of electromagnetic power entering the volume bounded by :Σ  

 2
, ,

ˆRe d ( ) ,tW WΣ Σ Σ
  =   = −  R Rr S r rξ ξ ⋅   (31) 

where ( )S r  is the complex Poynting vector and “Re” stands for “the real part of”. Then 

another fundamental result of the FOSA [39] is the following: 
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  (32) 

Equations (29)–(32) make it explicit that the FOSA exemplifies the independent scattering 
regime. Note however that this would not be true if the observation point was in the far zone 
of the entire group in the direction incˆ ˆ .=r n  Then the exponential factor exp(i )ijΔ  in Eq. (21) 

would be identically equal to one for any i  and j  and would survive ensemble averaging, 

thereby causing the so-called forward-scattering interference phenomenon [1,39,50]. 

10. Radiative transfer theory 

The second example of the independent scattering regime is the first-principles radiative 
transfer theory (RTT) for sparse discrete random media [39,54]. It is based on the following 
fundamental assumptions: 

                                                                                                            Vol. 1, No. 1 | 15 Sep 2018 | OSA CONTINUUM 254 



• Eq. (17) holds, which implies that all particles are widely separated and that the 
observation point resides sufficiently far from any particle; 

• the observation point resides in the near zone of the volume V occupied by the particles 
(including the case of being inside V); 

• the number of particles N in the group is very large ( );N → ∞  

• the N particles are moving randomly and independently of each other throughout V; 

• the physical state of each particle is independent of its position and of the states and 
positions of all the other particles; and 

• the random N-particle group is fully ergodic. 

The main direct corollaries of these assumptions can be summarized as follows [39,47]. 
Let us first consider the reading of a polarization-sensitive WCR placed inside V and 

having its optical axis along the unit vector q̂  (Fig. 7). Let S be the boundary of V and illS  be 

the part of S “directly illuminated” by a plane electromagnetic wave incident in the direction 
incn̂ . The ensemble-averaged phase and extinction matrices are defined according to 

 
1 1

1 1
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) , ( ) ( ) .

N N
i i

i iN N= =

′ ′  =     =   q q q q q qξ ξ ξ ξZ Z Κ Κ   (33) 

Let us further introduce an auxiliary 4-component column ˆ( , )r qI  (called the specific 

intensity column vector) as a function of position vector r and direction q̂  according to 

 inc
c  d

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , ),= − +r q n q r r q δI I I  (34) 

where the “coherent” part is the solution of the boundary-value problem 
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and the “diffuse” part is the solution of the boundary-value problem 
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  (36) 

In these formulas, 0n N V=  is the average number of particles per unit volume; ˆ ←q  is any 

unit vector directed into the volume V; ˆ( )qδ  is the solid-angle delta function; and 0  is a zero 

4-component column. 
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Fig. 7. Sparse discrete random medium. The sizes of the particles and the WCR are 
exaggerated for demonstration purposes. 

Then the temporal average of the polarized reading of the WCR in Fig. 7 per unit time is 
equal to the corresponding ensemble average and can be computed according to 
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  (37) 

where ΔΩ  is the WCR’s acceptance solid angle. Note that Eq. (37) is essentially based on the 
specific functionality of the WCR as a narrow-angle filter of wave-propagation directions 
rather than spurious “energy propagation directions” [39,51,54]. As a consequence of this 
functionality, the WCR in Fig. 7 reacts only to those scattering sequences in the expansion 
(17) that have their last particles residing in the conical acceptance volume shown by gray 
color. 

The same auxiliary quantity ˆ( , )r qI  can be used to evaluate the energy balance of a finite 

volume of discrete random medium bounded by the closed surface Σ  (Fig. 7). Again, the net 
time-averaged flow of electromagnetic power entering the volume bounded by Σ  is 

 2
, ,

ˆRe d ( ) ( ),tW WΣ Σ Σ
  =   = −  R Rr S r n rξ ξ ⋅   (38) 

where ˆ( )n r  is the unit vector in the direction of the local outward normal to .Σ  Then 

 , 4
ˆ ˆ ˆRe ( ) d ( , ),I  = RS r qq r q

ξ π
  (39) 

where ˆ( , ),I r q  called the specific intensity, is the first element of ˆ( , ).r qI  

The inspection of Eqs. (33)–(39) confirms that the assumptions listed in the beginning of 
this section result in the independent scattering regime. 

ΔΩ
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An interesting interference phenomenon not captured by Eq. (37) is the so-called coherent 
backscattering effect. It can be observed if the WCR is located sufficiently far from the 
particulate medium (ideally in its far zone) and has its optical axis along the backscattering 
direction (see, e.g., Chapters 18 and 21 of Ref. [39], Chapter 14 of Ref. [47], and references 
therein). Coherent backscattering exemplifies the dependent scattering regime. 

11. Discussion and conclusions 

We have pointed out in Section 3 that in the framework of frequency-domain electromagnetic 
scattering, the entire multi-particle group acts as a unified, albeit morphologically complex, 
scattering object. We therefore started our analysis by formulating the basic scattering 
problem for the entire multi-particle object and then traced the FOSA and the RTT as direct 
consequences of the first-principles VIE formalism coupled with specific micro- and 
macrophysical assumptions about the object (sparsity, the limit of 0N →  or ,N → ∞  
randomness, ergodicity, etc.) and the deliberate consideration of an observation point located 
in the near zone of the object. We have found that as a result of an explicit first-principles 
derivation, both the FOSA and the RTT are formulated in terms of basic single-particle far-
field observables (i.e., the phase and extinction matrices) and hence are manifestations of the 
independent scattering regime. 

The basic a priori premise in many previous studies has been the belief that if the 
individual far-field optical observables of each constituent particle are known then all 
scattering properties of the entire multi-particle group can somehow be constructed from 
those of the constituent particles using vague “physical obviousness” as the main argument. 
Accordingly, the traditional ad hoc methodology has been to proceed in the direction exactly 
opposite to that of our first-principles approach: 

• by first computing far-field optical observables of each particle in total isolation from 
all the other particles; 

• then postulating that widely separated particles forming a particle group can be 
considered “independently scattering” and characterized individually by the 
previously determined extinction and phase matrices; 

• then considering “incoherent single scattering” by the independently scattering particles 
occupying an imaginary small (“elementary”) volume element; 

• then postulating the FOSA for a small volume element and deriving (essentially 
postulating) the phenomenological radiative transfer equation by considering 
“incoherent multiple scattering” by small volume elements serving as building 
blocks of the particulate medium; and finally 

• by speculating how the single-scattering properties of the individual particles and of the 
small volume elements can change as a consequence of hypothetical “packing 
density” effects. 

Again, this questionable approach is based on the lack of recognition that from the 
fundamental perspective of electromagnetics, the entire particulate medium is a unified 
scattering object and must be treated as such from the outset. 

Our first-principles analysis appears to imply that the FOSA and RTT may be the only 
notable manifestations of the independent scattering regime, all other cases of electromagnetic 
scattering by particulate media belonging to the category of dependent scattering. If so, the 
terms “independent scattering” and “dependent scattering” have limited heuristic value, and 
their use can probably be avoided altogether by referring directly to the FOSA and the RTT as 
opposed to any other scattering scenario. Then the bulleted lists of assumptions in the 
beginning of Sections 9 and 10, respectively, can serve as operational definitions of the 
independent scattering regime in the cases of a sufficiently small and a very large N. 
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It should be recognized that the above analysis is expressly based on the frequency-
domain theory of elastic electromagnetic scattering. Given the widespread use of pulsed light 
sources, some may wonder how the concept of independent scattering might look with a 
femtosecond pulse impinging on a collection of particles. One could imagine a case where the 
particles are close enough together as to certainly be in the dependent scattering regime for a 
monochromatic incident wave, yet perhaps that same collection becomes in some sense 
“independent” for an incident pulse that is short enough. Of course, in such cases even the 
theory of electromagnetic scattering by a single particle may need a major modification [55]. 
Another aspect that needs a first-principle analysis is thermal emission by sufficiently hot 
particles; this is an issue frequently encountered in heat transfer applications (see, e.g., Refs. 
[2,25,28,56,57] and numerous references therein). 
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