@ https://ntrs.nasa.gov/search.jsp?R=20180007233 2019-08-31T18:15:35+00:00Z

Mars Sample Return: Grand Challenge for EDL

Ethiraj Venkatapathy Senior Technologist, Entry Systems Exploration Technology Directorate NASA Ames Research Center

Presented at the ESI17 Technical Interchange Meeting: Thermostructural Modeling of TPS NASA Ames Research Center 8/13/18

The key elements of this talk have been presented and discussed in many forums including the last Ablator Workshop in Bozeman, MT .

Contributions by number of folks present here and elsewhere are acknowledged

" 'Test as you fly' is a worthy goal. But if not quite a myth, it is at least 'a custom more honoured in the breach...' "

" Better to do many imperfect tests early and understand, than to attempt a 'perfect' test, as it never actually will be so. "

..... by Ralph Lorenz.

(From his presentation on "Test-as-you-fly" environments for planetary missions, IPPW-2018)

Can advances in multi-scale modelling and physics based simulation redefine "test" as we fly?

Background on Planetary Protection Requirements and the Grand Challenge

- NASA Policy Directive 8020.7G requires compliance with 1967 UN Treaty on Outer Space Article IX, which states:
 - Sample return from Mars and other water worlds: Category V
 - "Restricted Earth Return"
 - Highest degree of concern is expressed by the "Absolute prohibition of destructive impact upon return, the need for containment throughout the return phase"
 - Both ESA and NASA have defined design guidelines for mission studies in the past and these guidelines are evolving.
 - Score card for less restrictive Sample Return Missions:
 - 2 successful (Stardust and Hayabusa) and 1 unsuccessful (Genesis)

MSR Earth Entry Vehicle (and the TPS) need to be extremely robust against all possible failure modes

MSR Demands a New Approach

- Reliability requirements for MSR demand a new approach
 - Risk-based design, accounting also for common cause/mode failures, drives redundancy and diversity of system design [1]
 - Perform studies with reliability as primary metric
 - Allocation of functions to subsystems
 - TPS role in MMOD protection and landing impact attenuation
 - Dissimilar redundant capability
 - *TPS typically exempted from redundancy requirements:*
 - Design for Minimum Risk
 - Re-visit creative options for secondary TPS
 - Account for consequence of primary failure on secondary load environment
 - Safety features
 - Detect incipient failure
 - Sacrifice some science return to assure planetary protection

[1] Conley, Catharine A., and Gerhard Kminek, "Planetary Protection for Mars Sample Return." ESA/NASA, April 29 (2013).

Potential Mars Sample Return – Notional Architecture

Taken from the IPPW -2018 presentation Marcus Lobia et al.

MSR EEV Campaign and Mission Design Challenges

- Launch in 2026 SRL and (ERO with EEV) missions
- ESA-NASA collaboration
- Mission Architecture and design(s) need to be technically <u>robust.</u>
 - Need to be tolerant to programmatic, schedule and budget constraints.
- This is what makes MSR EEV a grand challenge and an opprotunity.

Contained samples

Current MSR EEV Concepts Under Consideration

C/C EEV Concept

2-D and 3-D Carbon-Carbon

- PICA will need to be single piece (like Stardust but much bigger
- HEEET Tiled with seams
 - Tested at much higher conditions
- Other 3-D Woven could be single piece
 - Need further development

- Many different forms of Carbon-Carbons
 - 2-D and 3-D or combination
 - Single or multi-piece
 - DoD experience base (+ and -)
- Hot-structure construct
 - Design, Manufacturing, integration and certification challenges

Design concepts have to be robust against MMOD, entry and ground impact and be mass efficient

State of the Art: System and TPS Reliability

- Waiver required for EFT-1 test flight, due to negative structural margins against cracking of Avcoat ablator (Vander Kam, Gage)
 - PRA estimate for structural failure due to TPS bond-line over temperature ~1/160,000 (6.25e-6)

Orion Crew Vehicle Reliability allocations

Orion Post- PDR	ISS	Lunar
Requirement: Loss of Crew	1/290	1/200
TPS Allocation	1/5600	1/2100

From: (AIAA 2011-422)

- Shuttle *Analysis of data from successful flights (did not include consideration of off-nominal TPS states) estimated TPS reliability of 0.999999 (or failure < 1.0x10⁻⁶)*
 - Columbia accident highlighted need for consideration of damage due to debris impact
- Robotic missions (No known mission failures due to TPS failure) (most not instrumented)
 - Recession data for Galileo indicated near failure at shoulder
 - MSL identified shear-induced failure mode for SLA during ground test campaign switch to PICA
 - Root cause of Mars DS2 failure unknown, but entry failure deemed unlikely
 - Need comprehensive hazard analysis
 - Assess likelihood and consequence for each hazard
 - Need robust performance margins for all failure modes
 - Ground test to failure to establish performance limits

State of the Art: TPS and Thermo-Structural Modeling

Reliable As Primary Design Input

- ID thermal sizing*
- Multi-dimensional conduction*

Must be Augmented Via Test

- Tiled systems / gap performance
- Thermo-structural performance
- Margin assessment

Must be Obtained Via Test

- Singularities (e.g. cut-outs, windows, closeouts, seals)
- Failure modes
- Off-nominal performance (damage)
- Reliability assessment
- Materials design

*once models have been calibrated with arc jet data for conditions and materials of relevance

Flight Certification

Do we know how to do (thermal) margin?

- A TPS system is designed (margined) to a given reliability
 - In other words, it must be robust to off-nominal conditions
 - > Thickness margin is typically applied as one reliability factor
- Thickness margin is evaluated by evaluating uncertainties in environments and material performance and tracking their influence on design metrics of interest (e.g. bondline temperature)
 - Goal is a full Monte-Carlo process, but we are not there yet
 - Margin assessment is currently reliant on statistical performance data (Arc Jet testing)

Understanding the Features From TPS Material to Integrated System

Orion EM1 5.0 m Heat-shield (block Avcoat, RTV gap filler, Compression Pad, Instrumented Plugs)

MSR EEV ?

Larger than Stardust (smaller than Orion) entry at (~13.5 km/s) Ballistic entry MMOD Impact Chuteless Impact Landing

HEEET 1m Engineering Test Unit (ETU)

Stardust single piece, seamless heatshield

Needed: Characterization of TPS -Features, Flaws and Failure

Acreage

- Through Thickness cracks causing "heat leaks"
- In plane cracks causing reduced thickness
- Surface erosion
 - · Mechanical failure causing spallation or accelerated layer loss
 - Melt flow
- Flow through (permeability permits interior flow)
- Loss of attachment of tiles or gap fillers, causing complete loss of thermal material over a large area
 - > Adhesive mechanical failure
 - · Substrate failure adjacent to adhesive
 - > Adhesive thermal failure
- Cracking and opening of seams, permitting a "heat leak" in the gaps between tiles
 - > Adhesive mechanical failure
 - Tile failure adjacent to adhesive
 - Adhesive char and erosion
- Material response prediction error
 - Recession rate error
 - Differential recession at seam
- > Conduction

Seam opening

Structural Aero/Material

Flowthrough

Missions and Induced Features and Flaws

Launch to Landing

➤ Launch,

- deep space cold soak,
- micro-meteor and orbital debris,
- \succ entry and
- ➤ landing

 $\frac{1}{10000} \int_{0}^{0} \int_$

Physics-based impact and hole growth tools needed to assess the MMOD risk

Unique Challenge for MSR EEV

- Human missions certification is via ground and flight tests (Orion as well as Commercial Crew) combined with simulation
- MSR EEV demands a different approach
 - Robustness requirement is more stringent than human missions
 - Launch by 2026 time-line does not allow for flight test

Rethinking our approach –

- Design from the perspective of certification
 - Will require understanding features that become flaws and flaws that lead to failure. Can we design these features that lead to failure? Can we introduce features that prevent failure?
- Certification through modeling and simulation anchored to tailored tests
 - Physics based multi-scale modeling and simulation tools anchored to relevant test data.
- A great opportunity for Multi-scale integrated modeling approach

TPS certification will be the biggest challenge as well as the opportunity

References

- "Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification," E. Venkatapathy, P. Gage and M. Wright, 9th Ablation Workshop, August, 2017, Montana State University, Bozeman, MT
- <u>"A new era and a new trade space: Evaluating Earth entry vehicle concepts for</u> <u>a potential 2026 Mars sample return</u>," Scott Perino, et al., IPPW-2018, Boulder, Colorado.
- 3. <u>"Hot-structure Earth entry vehicle concept for robotic Mars sample return</u>," --Marcus Lobbia, et al., IPPW-2018, Boulder, Colorado.
- 4. <u>"Overview of heatshield for extreme entry environment technology (HEEET)</u> project," Donald Ellerby, et al., IPPW-2018, Boulder, Colorado.
- 5. <u>"Highly reliable 3-dimensional woven thermal protection system for Mars</u> sample return," Keith Peterson, et al., IPPW-2018, Boulder, Colorado.
- 6. <u>"Sizing and margin methodology for dual-layer thermal protection systems,</u>" Milad Mahzari, et al., IPPW-2018, Boulder, Colorado.
- 7. <u>'More Honoured in the Breach?' Test-as-you-fly Environments for Planetary</u> <u>In-Situ Missions</u> -- Ralph Lorenz,

Questions?

