

Satellite Constellation Cost Modeling: An Aggregate Model

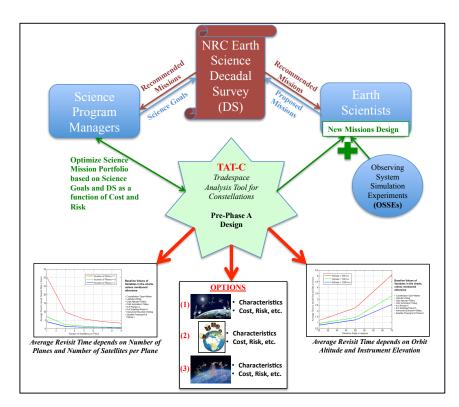
Veronica Foreman, Jacqueline Le Moigne, Olivier de Weck

ESTF2016 - Session B1 June 14, 2016

NASA

Presentation Outline

- Introduction
 - TAT-C
 - VCR Module
- Historical Context
- Aggregate model formulation
 - Motivation and Justification
 - State of the Art
 - Limitations of Existing Models
- Cost Module, Version 1
 - Implementation
 - Future Revisions
 - Impact
- Conclusions/Future Work

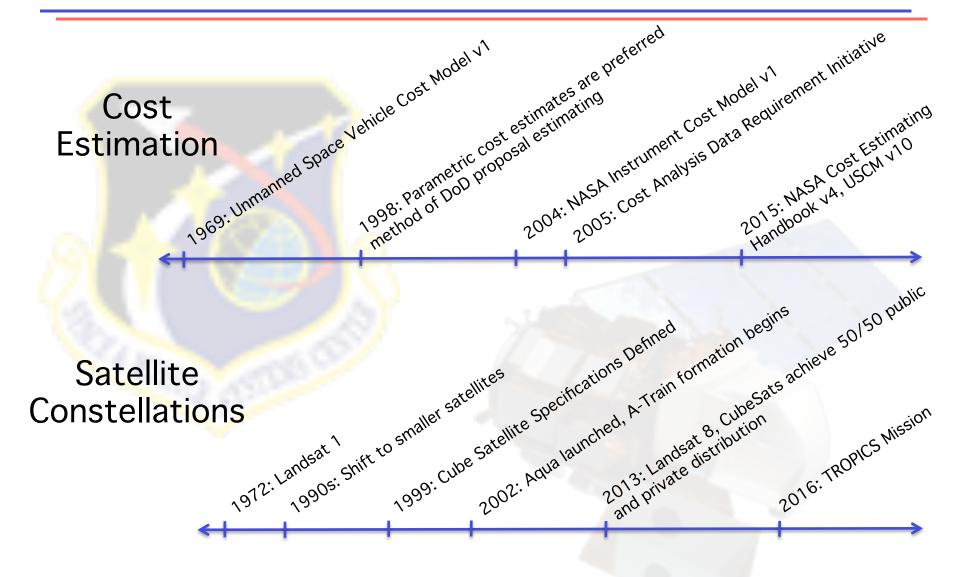


Tradespace Analysis Tool for Design of Distributed Missions PI: Dr. Jacqueline Le Moigne, NASA GSFC

Objectives:

- Provide a framework to perform pre-Phase A mission analysis of Distributed Spacecraft Missions (DSM)
 - Handle multiple spacecraft sharing mission objectives
 - Include sets of smallsats up through flagships
 - Explore tradespace of variables for predefined science, cost and risk goals, and metrics
 - Optimize cost and performance across multiple instruments and platforms vs. one at a time
- Create an open access toolset which handles specific science objectives and architectures
 - Increase the variability of orbit characteristics, constellation configurations, and architecture types
 - Remove STK licensing restrictions

Value, Cost, and Risk Module


- Addresses the TAT-C Objectives that require cost and risk evaluations; given a satellite constellation architecture, the VCR module will provide estimates of:
 - Value, expressed in dollars or utility
 - Cost, life cycle cost (RDT&E, manufacturing, launch, operations)
 - Risk, profile of the system technical and cost risk
- VCR Module will enable trades between performance and value/ cost/risk more readily

This presentation addresses the need for an automated, integrated cost model for constellation mission design and the associated cost estimating challenges.

Historical Context

Building an Aggregate Cost Model

Motivation

- Recent 'design to cost' and 'cost as an independent variable' efforts have changed the nature of cost estimating
- Existing models often focus on single spacecraft or fixed architectures
 - Can be difficult to incorporate this information into the decision making process

Objective

- Develop an automated cost estimating approach that leverages existing and trusted techniques and applies them to Distributed Spacecraft Mission (DSM) architectures
- Build the approach in such a way that it is easily manipulated and highly transparent

Challenges

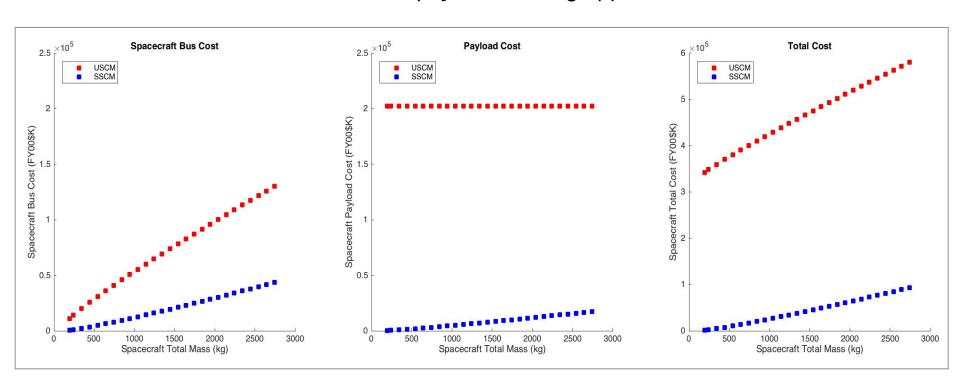
- Automated cost estimation often results in skepticism
- Constellation architectures require that traditional cost estimation assumptions be challenged
- Model must be able to adapt to technological innovation

State-of-the-Art and Existing Literature

- Many widely accepted cost estimating tools exist, including:
 - Unmanned Space Vehicle Cost Model (USCM), Version 10
 - Small Satellite Cost Model (SSCM), 2014 Release
 - NASA Instrument Cost Model (NICM), Version 7
 - QuickCost, Version 6.0
 - NASA Instrument Cost Model (NICM), Version 7
- Popular references:
 - NASA Cost Estimating Handbook, Version 4.0
 - Space Mission Analysis and Design, 3rd Edition
- Previous work has highlighted the limitations of these tools for constellation missions:
 - Limitations of traditional cost models for high performance small satellites, motivating the SSCM [Abramson and Bearden, 1993]
 - Small satellite learning curve parameters, COTS components, technological complexity as they pertain to DSMs [Nag et al.,2014]

Selected Approach

- Interoperable, parametric cost estimating tool to interface with TAT-C
 - Parametric estimating allows for a top down approach
 - More appropriate in early stages of design; does not require extensive design decisions
 - Cost Estimating Relationships (CERs) can be easily updated
 - Allows for relative trades between cost and capability
 - Early stage mission cost estimates are relative, not absolute, trade study tools
 - Outputs as .json files that mimic a traditional Work Breakdown Structure (WBS)
- Plan to supplement the parametric approach with an analogous cost estimate to ensure model fidelity



Model Comparison

USCM (Version 7) and SSCM (1998) results for TAT-C generated spacecraft

- Spacecraft are identical, with IR Sensor payloads, except for total mass
- Payload cost differs substantially between the two models
 - Motivation for alternate payload costing approach

Implementation

- VCR Module Cost Routine combines existing models and applies them to DSMs
 - 1. Assesses mission characteristics (e.g. number of spacecraft)
 - 2. Costs spacecraft and payloads appropriately
 - USCM for spacecraft >= 1000kg
 - SSCM for spacecraft < 1000kg
 - NICM for primary payload instruments
 - 3. Leverages existing best practices to adjust for system level cost considerations (e.g. learning curve, design heritage)
 - 4. Uses current launch vehicle market prices to estimate launch cost and operational support requirements
 - 5. Formats cost estimate and records caveats to valuation
- Shao et al. (2014) took a similar approach to Performance-Based Cost Modeling, leveraging USCM, SSCM, NICM


```
Truncated output .json
  "constellationCost": {
                                            Advantages:
     "totalCost": {
                                               Human readable, promotes transparency
                                               Interoperable
        "estimate": 285896.029,
                                               In full form, follows WBS format
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "
     },
     "rdteCost": {
        "estimate": 81346.16106.
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "
     },
     "drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",
     "spacecraftRank": [1,2]
```



```
"constellationCost": {
     "totalCost": {
        "estimate": 285896.029,
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "
     },
     "rdteCost": {
        "estimate": 81346.16106.
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "
     },
     "drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",
     "spacecraftRank": [1,2]
```



```
"constellationCost": {
     "totalCost": {
        "estimate": 285896.029,
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "
     },
     "rdteCost": {
        "estimate": 81346.16106.
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "
     },
     "drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",
     "spacecraftRank": [1,2]
```



```
"constellationCost": {
     "totalCost": {
        "estimate": 285896.029,
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "
     },
     "rdteCost": {
        "estimate": 81346.16106.
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "
     },
     "drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",
     "spacecraftRank": [1,2]
```



```
"constellationCost": {
     "totalCost": {
        "estimate": 285896.029,
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "
     },
     "rdteCost": {
        "estimate": 81346.16106.
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "
     },
     "drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T. ",
     "spacecraftRank": [1,2]
```



```
"constellationCost": {
     "totalCost": {
        "estimate": 285896.029,
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "
     },
     "rdteCost": {
        "estimate": 81346.16106.
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "
     },
     "drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T",
     "spacecraftRank": [1,2]
```



```
"constellationCost": {
     "totalCost": {
        "estimate": 285896.029,
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "Constellation is homogeneous. Launch Vehicle was not designated,
launch vehicle cost is set to 0. "
     },
     "rdteCost": {
        "estimate": 81346.16106.
        "standardError": null,
        "confidenceInterval": [lowLimit, highLimit, probability]
        "caveats": "CER choice: Input (spacecraft total mass) to thermal RDT&E CER 2
for spacecraft 1 is out of acceptable CER range. CER 1 was used instead. "
     },
     "drivers": "Spacecraft 1, Payload. Spacecraft 1, Operations. Spacecraft 2 IA&T",
     "spacecraftRank": [1,2]
```


Current Status and Future Work

- Cost method version 1 is being integrated TAT-C as a set of MATLAB functions
- Short term remaining tasks:
 - Transition model to C++
 - Cost Risk Estimation, will depend on risk methodology
 - Operations and Ground Segment
 - Operations and maintenance can be most expensive constellation mission element
 - How reliable are existing methods for constellations and what is the impact of increasing automation?
- Long term:
 - Continued model bench marking for reliability
 - Upgrade CERs to most recent formulae

Conclusion

- Aggregate cost model leverages existing tools and applies them to DSM architectures, while addressing limitations of
- This approach allows for integration of cost with early tradespace exploration
 - VCR is designed for TAT-C, but the form and function will allow for interoperability
 - Promote cost estimating transparency in automated processes
 - Relative cost estimates for architecture comparison
- Continues to reveal limits of cost estimating techniques for future DSM development

References and Acknowledgements

- 1. Wertz, James Richard., and Wiley J. Larson. *Space Mission Analysis and Design.* 3rd ed. Torrance, CA: Microcosm, 1999. Print.
- 2. Bearden, David A. "Small-satellite costs." Crosslink 2.1 (2001): 32-44.
- 3. "TROPICS: Mission Overview." Mission Overview. MIT Lincoln Laboratory, 2015. Web. 1 June 2016.
- 4. Tieu, B., J. Kropp, and N. Lozzi. "The Unmanned Space Vehicle Cost Model-Past, Present, and Future." *American Institute of Aeronautics and Astronautics: Space 2000 Conference and Exposition. Long Beach, California.* 2000.
- 5. "Landsat Missions: Imaging the Earth Since 1972." *Landsat Missions Timeline*. US Geological Survey, 2015. Web. 17 Sept 2015.
- 6. Nguyen, Phu, et al. "Unmanned Space Vehicle Cost Model." *US Air Force Space and Missile Systems Center (SMC/FMC)* 2430 (1994): 90245-4687.
- 7. Lao, N. Y., T. J. Mosher, and J. M. Neff. "Small Satellite Cost Model, Version 98 InTRO." (1999).
- 8. Hamaker, Joseph, and Ronald Larson. "Quick Cost 6.0: Introduction and Overview." NASA Cost Symposium 2015. NASA Ames Research Center, Moffett Field, CA. *NASA 2015 Cost Symposium Presentations*. NASA. Web. 5 Oct. 2015.
- 9. Habib-Agahi, Hamid, Joe Mrozinski, and George Fox. "NASA instrument cost/schedule model Hamid Habib-Agahi." *Aerospace Conference, 2011 IEEE.* IEEE, 2011.
- 10. NASA, NASA. "Cost Estimating Handbook." Washington, DC (2008).
- 11. Abramson, R. L., and D. A. Bearden. "Cost Analysis Methodology for High-Performance Small Satellites." *SPIE International Symposium on Aerospace and Remote Sensing, Small Satellite Technology and Applications III.* 1993.
- 12. Nag, Sreeja, Jacqueline LeMoigne, and Olivier de Weck. "Cost and risk analysis of small satellite constellations for earth observation." *Aerospace Conference, 2014 IEEE*. IEEE, 2014.
- 13. Shao, Anthony, Elizabeth A. Koltz, and James R. Wertz. "Performance Based Cost Modeling: Quantifying the Cost Reduction Potential of Small Observation Satellties." *AIAA Reinventing Space Conference, AIAA-RS-2013-1003, Los Angeles, CA, Oct.* 2013.Bearden, David A. "Small Satellite Costs." *Crosslink.* Aerospace Corporation, 2000. Web. 20 May 2016.

This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program.

Guidance and support have also been provided by the Massachusetts Institute of Technology and NASA Goddard Space Flight
Center.

Thank you for your attention! Any questions?

Additional Slides: Key Assumptions

- Comparative, not an exact value, estimate
 - Estimate should provide an approximation that can be used for tradespace analysis
- Comparison during concept evaluation, not as direct budgeting tool
- CERs are based in historical trends; assume that the trends will hold into the foreseeable future
 - Major technological changes will impact model fidelity
 - Smallsat launchers could cause significant changes
- Prototype, not protoflight, hardware development process
- Scope creep is not considered
- Project is executed at the optimal pace

